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Abstract: Salient segmentation is a critical step in biomedical image analysis, aiming to cut out
regions that are most interesting to humans. Recently, supervised methods have achieved promising
results in biomedical areas, but they depend on annotated training data sets, which requires labor and
proficiency in related background knowledge. In contrast, unsupervised learning makes data-driven
decisions by obtaining insights directly from the data themselves. In this paper, we propose a
completely unsupervised self-aware network based on pre-training and attentional backpropagation
for biomedical salient segmentation, named as PUB-SalNet. Firstly, we aggregate a new biomedical
data set from several simulated Cellular Electron Cryo-Tomography (CECT) data sets featuring rich
salient objects, different SNR settings, and various resolutions, which is called SalSeg-CECT. Based on
the SalSeg-CECT data set, we then pre-train a model specially designed for biomedical tasks as a
backbone module to initialize network parameters. Next, we present a U-SalNet network to learn to
selectively attend to salient objects. It includes two types of attention modules to facilitate learning
saliency through global contrast and local similarity. Lastly, we jointly refine the salient regions
together with feature representations from U-SalNet, with the parameters updated by self-aware
attentional backpropagation. We apply PUB-SalNet for analysis of 2D simulated and real images and
achieve state-of-the-art performance on simulated biomedical data sets. Furthermore, our proposed
PUB-SalNet can be easily extended to 3D images. The experimental results on the 2d and 3d data sets
also demonstrate the generalization ability and robustness of our method.

Keywords: unsupervised learning; saliency segmentation; biomedical image processing;
pre-trained methods

1. Introduction

Biomedical image segmentation has drawn attention due to its widespread applications in
computer-aided diagnosis and intelligent medical programs [1], among which salient segmentation
refers to pixel-level annotation for regions of interest (e.g., organelle, substructures, and lesions)
on biomedical images (e.g., Cellular Electron Cryo-Tomography (CECT) 3D images, Computed
Tomography (CT), and Magnetic Resonance Imaging (MRI)). An example of semantic segmentation [2]
and salient segmentation with unsupervised methods on CECT images is shown in Figure 1.
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Although image segmentation is widely used in many fields (such as Natural Scenes [3], Autonomous
Driving [4], and Aerial Imaging [5]), we discover that traditional segmentation methods [6–9] cannot
handle CECT images properly due to heterogeneous salient objects, various SNR, and low resolution
of the data set, while salient segmentation can efficiently and effectively capture objects of interest to
people and mask off irrelevant regions. However, accurate salient segmentation is challenging due
to different shapes and sizes of the region of interest and diversity of images produced by various
biomedical imaging devices.

Original Image Semantic Segmentation Salient Segmentation

Figure 1. An unsupervised example of semantic segmentation and salient segmentation on
CECT images.

Recently, current salient segmentation methods on biomedical images [10] mostly use improved
convolutional neural networks (CNNs) and its variants, which rely on supervised learning that require
labor-intensive annotation of large data sets by experts. Furthermore, such methods are strictly limited
by the quality of data sets. They are vulnerable to problems of model generalization and extensibility
when facing adversarial training. In contrast, unsupervised learning not only derives insights directly
from the data but also uses them to make data-driven decisions. It is more practical and robust for
some complex tasks in biomedical areas, such as saliency detection and image segmentation. Therefore,
it is crucial to work out an effective unsupervised salient segmentation method for biomedical images.

However, in recent years, few works have looked into unsupervised salient segmentation on
biomedical images due to the complexity of biological structures. The authors in [11] systematically
reviewed current unsupervised models for biomedical image segmentation. More recently, a unified
unsupervised approach based on clustering and deep representation learning was designed by [12].
The authors in [13] proposed a teacher–student unsupervised learning system. The teacher performs
unsupervised object discovery and, at the same time, multiple students with various network
architectures are trained to ensure a better diversity. The authors [14] utilized the the squeeze and
excitation network to capture interdependencies between channels and iteratively enable the CNN
to learn the target generated by K-Means clustering. These methods are either based on super-pixel
clustering with posterior selection or dependent on carefully optimized network hyper-parameters,
which indicates that they are in need of human interference and are not completely unsupervised.

In this paper, we propose the PUB-SalNet, which is a self-aware network based on pre-training
and attentional backpropagation. In order to build a high-performance automatic biomedical salient
segmentation model to improve computer-aided diagnosis and other biomedical image analyzing
tasks, we design a processing pipeline with three major modules: (1) A pre-training method specially
designed for biomedical images; (2) The U-SalNet model, which selectively attends to salient objects
via fusing two attention mechanisms into U-Net; (3) An unsupervised self-aware backpropagation
method based on superpixels, which iteratively updates the parameters of U-SalNet. Quantitative and
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qualitative experiments comparing our performance with state-of-the-art salient segmentation methods
demonstrate that the proposed PUB-SalNet outperforms all existing unsupervised methods and
achieves state-of-the-art performance on the simulated biomedical data sets. Furthermore, PUB-SalNet
can also be easily extended to 3D images. The experimental results on 2D and 3D biomedical data
sets show generalization ability and robustness of the proposed method. Our main contributions are
summarized as follows:

• We propose the novel PUB-SalNet model for biomedical salient segmentation, which is a
completely unsupervised method utilizing weights and knowledge from pre-training and
attention-guided refinement during back propagation.

• We aggregate a new biomedical data set called SalSeg-CECT, featuring rich salient objects, different
SNR settings, and various resolutions, which also serves for pre-training and fine-tuning for other
complex biomedical tasks.

• Extensive experiments show that the proposed PUB-SalNet achieves state-of-the-art performance.
The same method can be adapted to process 3D images, demonstrating correctness and
generalization ability of our method.

The rest of the paper is organized as follows. We review related works in the next section.
In Section 3, we describe the PUB-SalNet and the completed processing pipeline for salient
segmentation. Quantitative and qualitative experiments are discussed in detail in Section 4.
Lastly, in Section 5, we conclude our method and future works.

2. Related Work

2.1. Pre-Trained Methods in Biomedical Images

Many works have shown that the pre-training method along with adequate fine-tuning is superior
to training from scratch, with a lower risk of over-fitting and being less dependent on the size of the
training set [15]. However, in the biomedical area, it is extremely challenging to build an effective
pre-trained model due to the difficulty of data acquisition and annotation by experts. Only a few
pre-trained models are related to biomedical images, among which the most famous is Ref. [16]’s
MedicalNet. They collect data from some medical challenges and build the 3DSeg-8 data set with
diverse modalities to train MedicalNet, and then transfer it to other segmentation and classification
tasks and achieve state-of-the-art performance. However, their work is demanding of high-quality
medical images with various scan regions, target organs, and pathologies, which is not applicable to
cellular image analysis.

With recent breakthroughs in CECT 3D imaging technology [17], it is now possible for researchers
to deeply look into and comprehend the macromolecular structure of the cell, which is more meaningful
to biomedical fundamental studies. In order to solve the challenges above, we present a pre-trained
model intended for biomedical images featuring a low SNR, low resolution, and rich salient objects.

2.2. Unsupervised Biomedical Image Segmentation

Unsupervised segmentation for biomedical images is very promising yet challenging. The authors
in [18] concatenate two fully convolutional networks together into an autoencoder. The encoder
produces a k-way pixel-wise prediction while the decoder reconstructs the image. Both the normalized
cutting loss of the segmentation map and the reconstruction error are jointly minimized during training.
However, we find the training very difficult to converge due to the inappropriate combination of the
loss functions. The authors in [19] use the classic ACWE (Active Contours Without Edges) method
as an supervision for the CNN-based segmentation model. However, for biomedical images, finding
contours is a difficult task due to great variance in image quality. The authors in [20] used domain
adaptation to minimize the inter-domain and intra-domain gap in three steps, which was also naturally
an unsupervised and pre-trained approach to produce segmentation labels, but also requires high
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quality images, and resemblance in the two domains [21] proposes an unsupervised skin lesion
segmentation method to combine color and brightness saliency maps into enhanced fusion saliency.
Although it shows good results on dermoscopy images, it relies too much on coloring and contrast
information and cannot effectively perform salient segmentation on grey-scale images (such as CECT).
The authors in [2] optimize the pixel labels using a common CNN network while their parameters are
iteratively updated by a gradient descent to unify labels within a superpixel. However, their model
is trained every time on a natural image and displays randomness in predictions. It cannot utilize
knowledge from a large training set. In addition, it does not work well when applied to noisy
biomedical images. In order to solve these problems and adapt to salient segmentation on biomedical
images, we load weights pre-trained on an assembled biomedical data set and present the U-SalNet
model to extract significant features.

2.3. Salient Segmentation

Current salient segmentation methods on biomedical images treat the problem as a binary (namely
salient and non-salient) segmentation task, identifying the label (foreground or background) of pixels.
Recently, the authors in [22] propose an attention gate (AG) model to focus on significant targets
for medical image analysis. Through AG, the model can ignore the background in images while
highlighting the salient objects meaningful to the medical segmentation task. Specifically, AG extracts
local information from a denser layer in the decoder and then uses it as a gating signal for the current
layer to combine low-level features from the encoder network with the decoded features. However,
it does not explicitly make use of global interference when producing attention maps, resulting in their
saliency maps ignoring global contrast mechanisms. Different from their work, our proposed U-SalNet
model applies both global and local self-attention to better integrate saliency information.

3. PUB-SalNet

In this section, we describe our proposed PUB-SalNet. The goal of our work is to build a
high-performance automatic salient segmentation model appropriate for biomedical tasks without
ground-truth labels to improve computer-aided diagnosis. To reach this target, we design a processing
pipeline with three major steps, as shown in Figure 2. In the first step, we aggregate a new biomedical
data set called SalSeg-CECT. We then pre-train a deep feature extraction model specially designed
for biomedical images, which can be used as a backbone module to initialize model parameters
and to boost other tasks without data annotations. In the second step, we present the U-SalNet
model on the basis of the U-Net architecture to learn to selectively attend to salient segmentation
objects. The network includes global attention and local attention to facilitate learning saliency through
global contrast and local similarity. In the last step, we jointly refine the salient regions together with
feature representations from U-SalNet, with the parameters updated by unsupervised attentional
backpropagation. Details of each step are explained in the following sections.
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Figure 2. The overview framework of our proposed method. The processing pipeline consists of three
main steps: (a) pre-training on the SalSeg-CECT data set; (b) prediction using the U-SalNet model;
(c) unsupervised attentional backpropagation iterating on single images. The Enc and Dec stand for
the encoder and decoder. The

⊗
,
⊗

, and
⊗

denote the global attention mechanism, local attention
mechanism and convolutional decoding, respectively.

3.1. Pre-Training Method

Inspired by Ref. [16]’s work, we aggregate a large data set from several simulated CECT data sets
with rich salient objects, different SNR settings, and various resolutions, which is called SalSeg-CECT
and will be described in Section 4. Based on the SalSeg-CECT data set, we then pre-train a model
specially designed for biomedical images, as is shown in the red dashed-line box in Figure 2a. Our goal
is to learn robust feature representations which can benefit training on biomedical data by utilizing
a pre-trained network on the SalSeg-CECT data set. In this work, for deep feature extraction on
biomedical data sets, we adopt the common encoder–decoder architecture to train our backbones of the
network. Particularly, we choose the U-Net model as the basic structure on 2D images, and the V-Net
for 3D volumes. The significant differences of SalSeg-CECT images from natural images come from the
low SNR, limited tilt projection range (the missing wedge effect), and crowded nature of intracellular
structures. Therefore, our pre-trained method is different from the current common pre-trained models.
To the best of our knowledge, we are the first to pre-train a model on biomedical CECT data.

3.2. U-SalNet Architecture

Our U-SalNet model includes two attentional mechanisms: global attention and local attention,
which are integrated into the U-Net architecture, as is shown in the purple dashed-line box in Figure 2b.
U-SalNet aims to selectively segment salient objects from the background by generating an attention
map at each pixel. We apply the two modes of attention to refining salient regions in biomedical
images. The detailed U-SalNet architecture is shown in Figure 3. We first upsample each level of
feature maps in the decoder branch and concatenate them with their corresponding levels of features
in the encoder branch. After concatenating the outputs from encoder and decoder, we get a feature
map Γ ∈ RC×W×H as the input to the attention module, where C, W, H denote the channels, width,
and height, respectively.

For global attention, as is shown in Figure 3a, to generate attention over the whole feature map Γ
for each pixel, we first apply four ReNet models [23] to sweep across a feature volume both horizontally
and vertically along two directions to concentrate global information. Next, a convolution operation
is performed to transform this feature map to DG channels, where DG = W × H. At the same time,
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the feature vector xw,h at each pixel (w, h) is normalized via softmax to obtain global attention weights
Φw,h, as is shown in Equation (1). Here, i, j ∈ {1, ..., DG}.
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Figure 3. The architecture of our U-SalNet model. (a) Global Attention and (b) Local Attention
corresponds to

⊗
and

⊗
from Figure 2b, respectively. GA and LA stand for Global Attention and

Local Attention. Conv means the convolution operation.
⊕

stands for weighted summation over the
feature map.

In order to generate the global attention feature Γatt, as is shown in Equations (2) and (3),
the features at all locations in the whole feature map Γ are summed with weights according to
Φw,h

i . Φw,h
i refers to the salient correlation between the object pixel (w, h) and the pixel at the ith

location (wi, hi). Convi ∈ RC is the Conv feature at (wi, hi) in Γ. Γatt has the same size with Γ.
For the local attention, as is shown in Figure 3b, we consider a local feature cube Γ′w,h ∈ RW ′×H′×C

centered at (w, h) with width W ′ and height H′. Φ′ is derived from convolution layers with a reception
field of W ′ × H′ in the original feature map for each location. Similar to global attention, the features
in Γ′w,h are weightedly summed by Φ′w,h to construct Γ′att, as is shown in Equation (4):

Φw,h
i = softmax

(
xw,h

)
=

exp
(

xw,h
i

)
∑DG

j=1 exp
(

xw,h
j

) ,
(1)

Γw,h
att =

DG

∑
i=1

Φw,h
i Convi, (2)

Convi =
∫
RC

f (τ)g(t− τ)dτ (3)

Γ′w,h
att =

DL

∑
i=1

Φ′w,h
i Conv′w,h

i , (4)

Loss = −(yt log(yp) + (1− yt) log(1− yp)). (5)

It is worth noticing that, although our attention mechanism is similar to [24]’s work, they only
consider the serial combination of global and local attention. Our U-SalNet focuses more on fusing two
attention modules through convolutional decoding. In addition, their model adopts deep supervision,
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as is shown in Equation (5), where yt denotes the true saliency map and yp is the predicted saliency map.
In addition, their experiments are all based on natural images and do not apply to biomedical images.
On the contrary, our proposed U-SalNet architecture not only applies to complex biomedical images
featuring a low SNR, low resolution, and rich salient objects but also achieves complete unsupervision.
We will further describe the unsupervised attentional backpropagation algorithm in the next section.

3.3. Unsupervised Backpropagation

The proposed unsupervised backpropagation algorithm is shown in Algorithm 1. For the salient
segmentation task, we consider two aspects: (1) predicting salient objects through current network
parameters; and (2) training network parameters through current salient predictions. Accordingly,
we can obtain salient regions by a forward pass through the neural network and use the gradient
descent to optimize the backward pass of the network at the same time. In order to update the
parameters, we adopt stochastic gradient descent (SGD) with momentum to backpropagate results
of the cross-entropy loss calculated between outputs of the model {Y′n} and the refined salient object
labels {y′n}. In the backpropagation step, we use the SLIC algorithm [25] implemented in scipy for
the GetSuperpixels method. {y′n} is unified within every superpixel in an image, which is obtained
through voting of labels inside a single superpixel and taking the majority of labels as the result.
Different from Ref. [2]’s work, their prediction results are random and often fail on biomedical images.
For solving these problems, our network parameters are initialized with the pre-trained method
mentioned above. Furthermore, two attentional modules of the U-SalNet are combined to further
refine the results, which achieve self-awareness. Finally, the forward–backward process is iterated I
times to generate the final prediction of salient objects {yn}. The probabilities {Y′n} were trained in a
self-supervised manner using {y′n}. The orange dashed-line box in Figure 2c illustrates the proposed
algorithm to train our U-SalNet model.

Algorithm 1 Unsupervised Backpropagation Algorithm

Require: Original biomedical image
Ensure: Salient segmentation results

1: (W, b) = Init() // Initialize backbone parameters
2: (W ′, b′, nClass) = Init() // Initialize classifier parameters
3: {Sk}K

k=1 = GetSuperpixels({pn}N
n=1)

4: for iter = 1→ I do
5: if nClass > 2 then
6: {Fn}N

n=1 = GetFeatures({pn}N
n=1, {W, b})

7: {GAn}N
n=1 = GlobalAttention({Fn}N

n=1)
8: {LAn}N

n=1 = LocalAttention({Fn}N
n=1)

9: {Yn}N
n=1 = {W ′(GAn

⊕
LAn) + b′}N

n=1
10: {Y′n}N

n=1 = BatchNorm({Yn}N
n=1)

11: {yn}N
n=1 = {argmax Y′n}N

n=1 //predict salient labels
12: for p = 1→ P do
13: ymax = argmax|yn|n∈Sp
14: y′n = ymax for n ∈ Sp
15: end for
16: L = CrossEntropyLoss({Y′n, y′n}N

n=1)
17: {W, b}, {W ′, b′} = Update(L)
18: end if
19: end for

4. Experiments

4.1. Datasets Setting

Our SalSeg-CECT data set includes 36,000 2D and 72,000 3D CECT images, which are generated
with four levels of SNR (0.1, 0.5, 1.0 and 1.5), various resolutions, and missing wedge effects.
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The procedure of simulation uses the same simulator as in [26], which simulates tomographic images
by imitating the actual tomography reconstruction process using macromolecular complexes of known
densities. For 2D images, tomograms are sliced into grayscale images into three dimensions with a
resulting width and height of 200 pixels. Our augmentation includes random flipping and cropping.
For 3D images, tomograms are segmented into volumes of 64× 64× 64 and their values normalized
before being fed into models. The test set is generated independently with macromolecular complexes
different from the training set with SNR = 0.5 and SNR = 1.5. To verify the ability of generalization of
PUB-SalNet, we also apply it to the ISBI data set [27] and visualize our results in Figure 6.

4.2. Implementation Details

All our networks are implemented with PyTorch. Three NVIDIA GTX 1080 Ti GPU with 11 GB
GPU memory each are used for pre-training and testing. In the pre-training step, we choose batch
size = 4 for both 2D and 3D settings. For 2D, we use the SGD optimizer with learning rate = 0.01,
momentum = 0.9 and weight decay = 0.0005, while, for 3D, the learning rate is 1e−5 and momentum
is 0.99. In case of memory explosion, we apply global attention twice followed by local attention
three times and a convolutional decoding layer in the decoder of U-SalNet. The default number and
compactness of superpixels are 10,000 and 100. The maximum number of backpropagation iterations
is set to 1000. The label of the majority of pixels is regarded as “non-salient”. The initial number of
classes to be decreased is set to 100 as default. If the algorithm does not converge to two classes of
labels after 1000 iterations, all the labels except for the non-salient type will be counted as “salient”.

4.3. Evaluation Metrics

To compare the quantitative results generated by different methods, here we use four popular
metrics to evaluate our model against other unsupervised methods.

Region Similarity F. To measure the similarity of matching regions from two salient segmentation
maps, F is defined as:

F =

(
1 + β2) Precision × Recall

β2Precision + Recall
(6)

where β2 = 0.3 to balance between recall and precision.
Pixel-wise Accuracy ε. F does not consider true negative saliency predictions. We define the

normalized ([0, 1]) mean absolute error (MAE) between predicted salient segmentation maps and
ground truth masks as:

ε =
1

W × H

W

∑
x=1

H

∑
y=1
‖M(x, y)− G(x, y)‖ (7)

where W and H are the width and height of images, respectively.
Enhanced Alignment Measure E. Proposed by [28], using the enhanced alignment matrix φFM

to measure the two properties (pixel-level matching and image-level statistics) of a binary map, E is
defined as:

QFM =
1

w× h

w

∑
x=1

h

∑
y=1

φFM(x, y) (8)

where h and w are the height and width of the map, respectively.
Structural Similarity S. S proposed by [29] evaluates the structural similarity by considering

both regions and objects. Since saliency of potential spacial structures is crucial to biomedical images,
we additionally use S to comprehensively evaluate the structural similarity of biomedical images.
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4.4. Quantitative Evaluation

Tables 1–3 show quantitative evaluation results on the simulated biomedical test set, which we
will detailedly discuss in the following three subsections.

Table 1. Comparison of performance of ten unsupervised methods with four metrics on the simulated
biomedical test sets. ε stands for Mean Absolute Error (MAE), F for region similarity, E for the enhanced
alignment measure, and S for structural similarity. Lower is better for ε, and higher is better for the
other three metrics. The results are calculated according to Equations (6)–(8). The best performance of
each metric is in bold and the second best is underlined. The improvements of our PUB-SalNet over
the best of other methods in relative percentage is shown in the last row.

Data Set SNR = 0.5 SNR = 1.5

Method
Metric

ε F E S ε F E S

Itti [30] 0.1277 0.4759 0.3811 0.4445 0.1206 0.6396 0.4639 0.4781
LC [31] 0.1626 0.3277 0.4466 0.4846 0.1463 0.4615 0.4369 0.5022
SR [32] 0.1340 0.2535 0.3020 0.4406 0.1316 0.3439 0.2911 0.4423

IG [33] 0.2843 0.1713 0.4775 0.4262 0.2978 0.1848 0.4739 0.4322
SIG [34] 0.2623 0.2647 0.4959 0.4781 0.2310 0.3387 0.5134 0.5177
VA [35] 0.2843 0.1713 0.4775 0.4262 0.2978 0.1848 0.4739 0.4322

SVA [34] 0.2625 0.2647 0.4957 0.4779 0.2305 0.3414 0.5129 0.5186
VBP [36] 0.1295 0.3049 0.4033 0.4527 0.1224 0.4588 0.4053 0.4717

SalGAN [37] 0.1427 0.1984 0.3126 0.4411 0.1585 0.2367 0.4090 0.4629

PUB-SalNet 0.0914 0.6573 0.7036 0.6494 0.0762 0.7426 0.7522 0.7209

Improvement ↓ 28.43% ↑ 38.12% ↑ 41.88% ↑ 34.01% ↓ 36.82% ↑ 16.10% ↑ 46.51% ↑ 39.00%

Table 2. Quantitative comparisons between different combination of modules from our PUB-SalNet
model. B stands for a single unsupervised backpropagation module; U+B stands for U-SalNet
architecture with B; P+B means B based on the pre-training method; P+U means U-SalNet based
on the pre-training method, note that this is actually not an unsupervised method; P+U+B is our
proposed PUB-SalNet.

Data Set SNR = 0.5 SNR = 1.5

Method
Metric

ε F E S ε F E S

B 0.1461 0.1628 0.3692 0.4230 0.1433 0.1628 0.3960 0.4223
U+B 0.2870 0.1628 0.4834 0.3585 0.2677 0.1628 0.5130 0.3693
P+B 0.1063 0.5631 0.5906 0.5661 0.0949 0.6551 0.5947 0.5979
P+U 0.1104 0.6214 0.6306 0.6506 0.0973 0.7544 0.7465 0.7617

P+U+B 0.0914 0.6573 0.7036 0.6494 0.0762 0.7426 0.7522 0.7209

Table 3. The quantitative comparison of parameter sensitivity analysis under four metrics. ε, F, E and
S are the same as Table 1. For PUB-SalNet-BX, X stands for the initial number of classes to be decreased,
as is in Function Init() parameter in Algorithm 1.

Data Set SNR = 0.5 SNR = 1.5

Method
Metric

ε F E S ε F E S

PUB-SalNet-B20 0.0984 0.6347 0.6964 0.6428 0.0793 0.7239 0.7447 0.7124
PUB-SalNet-B40 0.0961 0.6396 0.6945 0.6443 0.0766 0.7318 0.7320 0.7107
PUB-SalNet-B60 0.0945 0.6437 0.6710 0.6358 0.0774 0.7218 0.7294 0.7032
PUB-SalNet-B80 0.0943 0.6543 0.7221 0.6598 0.0783 0.7327 0.7340 0.7065

PUB-SalNet-B100 0.0914 0.6573 0.7036 0.6494 0.0762 0.7426 0.7522 0.7209
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4.4.1. Comparison with State-of-the-Art

As is shown in Table 1, we compare our PUB-SalNet model to nine other state-of-the-art
unsupervised methods. We demonstrate through experimental results that our proposed PUB-SalNet
outperforms all existing unsupervised methods with a great margin (such as 46.51% for E-Measure on
SNR = 1.5 and 41.88% on SNR = 0.5) and achieves new state-of-the-art performance.

4.4.2. Ablation Study

To demonstrate the effectiveness of the proposed PUB-SalNet model, we compare quantitative
results of different combinations of modules from our method, as is shown in Table 2. B stands for
backpropagation from [2]’s work, which serves as our baseline because it is a classic unsupervised
image segmentation method using deep learning. The experimental results in Table 2 shows that three
parts of our PUB-SalNet functions together and are all indispensable. It is even competitive compared
to the supervised method.

4.4.3. Parameter Sensitivity Analysis

In order to demonstrate the robustness of our proposed model, we also construct an experiment
of parameter sensitivity analysis. The quantitative comparison under four metrics is shown in Table 3.
Our experiments show a deviation within 1–3% on the evaluation of the four metrics, which indicates
that the parameters of our model have little influence to salient segmentation results.

4.5. Qualitative Evaluation

Figure 4 demonstrates the saliency maps predicted by nine unsupervised saliency detection
methods on our testing data set with SNR = 0.5 and SNR = 1.5. Traditional algorithms sometimes are
able to detect multiple salient objects due to their superior capabilities of capturing low-level contrasts
of features. When facing grayscale biomedical data sets with low SNR, deep learning methods are
not as promising as we expected, which highlights blurry regions with richer contextual information.
The performance of PUB-SalNet outperforms all other unsupervised methods on salient segmentation.
We also present our results on the 3D CECT test set in Figure 5, which proves the generalization ability
of our model. Our model is capable of detecting salient objects under various settings and can be
effectively extended to 3D image processing tasks.

Image       GT          PUB        ITTI          LC           SR            IG          SIG          VA           SVA        VBP         SAL 

SNR = 0.5

SNR = 1.5

SNR = 0.5

SNR = 1.5

Figure 4. Qualitative visual results of ten unsupervised methods on the simulated biomedical data set
with SNR = 0.5 and 1.5. GT stands for ground truth images, PUB is PUB-SalNet, and the other nine
methods are referenced in Table 1.
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(a) Original Image (b) Ground Truth

(c) Salient Segmentation (d) Overlapping (a) & (c)

Figure 5. Visualization of 3D salient segmentation by PUB-SalNet on a 3D subvolume of size
64× 64× 64 from the CECT test set. The pictures are obtained using UCSF Chimera, which displays
the isosurface of the four corresponding 3D images; (a) is the original image with a threshold of 0 (b) is
the ground truth of macro-molecular structures (c) is our prediction (d) demonstrates that the predicted
salient region greatly overlaps with the ground truth macro-molecular structure.

4.6. Case Study on the ISBI Challenge

A case study of 2D salient segmentation by PUB-SalNet and the B module on ISBI 2017 Challenge
on Skin Lesion Analysis [27] is shown in Figure 6. To the best of our knowledge, we are the first to
conduct unsupervised salient segmentation on the ISBI challenge. Comparison of the strong baseline
model (B, for backpropagation only) and our proposed PUB-SalNet under three metrics is shown in
Table 4. B module outperforms P+U+B by predicting shapes and edges with more accuracy. However,
with the lack of global features, it falsely captures small differences in color within a piece of illness.
It can also be easily perturbed by impurities or foreign matters, as is shown in the first two examples.
P+U+B can produce smoother results, although sometimes fails to match the target in shape. P+U+B
benefits from abundant semantic information and produces better results in the last two rows, while B
focuses on wrong patches of color and cannot detect saliency on a global scale.

Figure 6. Case study of 2D salient segmentation by PUB-SalNet and the B module on the ISBI
Challenge [27].
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Table 4. The performance comparison of the strong baseline model (B, for backpropagation only) and
our proposed PUB-SalNet under three metrics on the ISBI Challenge [27]. ε, F and E are the same as in
Table 1. The best performance of each metric is in bold.

Data Set ISBI 2017 Skin

Method
Metric

ε F E

B 0.3136 0.3378 0.4140
P+U+B 0.3498 0.3378 0.4674

5. Conclusions

In this paper, we propose a completely unsupervised self-aware network based on pre-training
and attentional backpropagation for biomedical salient segmentation, namely PUB-SalNet. We compare
our PUB-SalNet model to nine other state-of-the-art unsupervised methods. We demonstrate through
experimental results that our proposed PUB-SalNet outperforms all existing unsupervised methods
with a great margin (such as 46.51% for E-Measure on SNR = 1.5 and 41.88% on SNR = 0.5) and
achieves new state-of-the-art performance. The experimental results on the 2D and 3D data also display
the generalization ability and robustness of our method. In the future, we will integrate our salient
segmentation method into other complex biomedical tasks, such as biomedical image registration and
quantification of uncertainty in segmentation.
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