
algorithms

Article

Improved Sliding Mode Finite-Time Synchronization
of Chaotic Systems with Unknown Parameters

Hao Jia 1,2,*, Chen Guo 1, Lina Zhao 2 and Zhao Xu 2

1 College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China;
guoc@dlmu.edu.cn

2 School of Electrical Engineering, Dalian University of Science and Technology, Dalian 116052, China;
zln0225@outlook.com (L.Z.); ffxzy@dlust.edu.cn (Z.X.)

* Correspondence: haun_jia@dlmu.edu.cn; Tel.: +86-0411-8624-5060

Received: 18 November 2020; Accepted: 17 December 2020; Published: 20 December 2020 ����������
�������

Abstract: This work uses the sliding mode control method to conduct the finite-time synchronization
of chaotic systems. The utilized parameter selection principle differs from conventional methods.
The designed controller selects the unknown parameters independently from the system model.
These parameters enable tracking and prediction of the additional variables that affect the chaotic
motion but are difficult to measure. Consequently, the proposed approach avoids the limitations of
selecting the unknown parameters that are challenging to measure or modeling the parameters solely
within the relevant system. This paper proposes a novel nonsingular terminal sliding surface and
demonstrates its finite-time convergence. Then, the adaptive law of unknown parameters is presented.
Next, the adaptive sliding mode controller based on the finite-time control idea is proposed, and its
finite-time convergence and stability are discussed. Finally, the paper presents numerical simulations
of chaotic systems with either the same or different structures, thus verifying the proposed method’s
applicability and effectiveness.

Keywords: chaotic synchronization; finite-time control; nonsingular terminal sliding mode surface;
unknown parameter selection

1. Introduction

The chaos system is a special kind of nonlinear system, and chaos will occur in many aspects.
The chaos phenomenon is generally caused by disturbances and the system parameters satisfying
certain conditions. Thus, to improve the operation reliability of the system, sometimes this chaos
phenomenon should be avoided. Discussions on the relation between the chaos and bifurcation
phenomenon, and the non-linear oscillation of the system are very popular. Most scholars study how to
ensure the stable operation of the system. This research is also of significance for the above-mentioned
chaos control of one class of system in practice.

In most cases, the control of chaotic system refers to the synchronization control of the system.
Therefore, in recent years, chaotic system synchronization control has attracted significant attention
within the fields of mathematics, physics and, engineering science. The research findings on chaotic
system synchronization are widely applied in securing communication, power conversion, biological
systems, information processing, and chemical reactions [1]. The primary approach to two chaotic
systems’ synchronization relies on designing an appropriate controller that controls the slave system,
making the slave system state asymptotically track the main system state.

Numerous control techniques (e.g., in differential dynamics and bifurcation theory)
of chaotic systems synchronization have emerged [2]. Specific methods include classical
Proportional–Integral–Derivative (PID) control [3], adaptive fuzzy control, adaptive pulse
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perturbation [4], random Melnikov method [5], negative feedback algorithm [6], and chaotic
synchronization based on the ant colony algorithm [7]. Alzarano et al. [8] used the Melnikov
method to study the bifurcation phenomenon of chaotic motion, while Bikdashetal [9] utilized it
in researching the fractal state of rolling chaotic motion. Path tracking technique was used in [10],
where the authors found a nonlinear bifurcation set with six degrees of freedom and obtained the chaotic
attractors generated by periodical system multiplication. Acanfora et al. [11] used the optimization
algorithm to explain the phase spectrum’s influence on resonance phenomenon development, given
the mixed nonlinear model of six degrees of freedom.

In early research works, the chaotic system’s parameters were commonly assumed to be known
in advance. However, in the majority of real-world systems, external natural factors inevitably disturb
the chaotic system parameters, thus changing the parameter values. Consequently, the synchronization
of chaotic systems’ unknown parameters has become an important research direction in recent
years. The chaotic systems unknown parameters’ synchronization methods include a sliding mode
control [12,13], backstepping design [14], optimum control [15], adaptive control [16], linear balanced
feedback control [17], active control [18], pulse control, and fuzzy control [19]. In most cases,
the parameters inside the system model are directly selected as unknown parameters, which has
certain limitations, because of the parameters outside the system model cannot be identified. The listed
studies on the synchronization of unknown parameters in chaotic systems pose no time requirements
and guarantee asymptotic stability. In other words, the time approaches infinity until the system
synchronization is achieved. However, practical applications require achieving system synchronization
within finite time. In addition, the finite-time control approaches were shown to result in better
robustness and anti-interference performance. Several researchers realized the chaotic synchronization
control using the finite-time control techniques, such as finite-time stochastic method [20], CLF-based
method [21], sliding mode control [22], and pure finite-time control method [23].

As mentioned above, the unknown parameters of a chaotic system are usually selected in a system
model. For example, in works such as [24,25], relevant model parameters are directly set and regarded
as unknown. Since system models contain multiple parameters, careful analysis and argumentation
are needed when choosing the unknown parameters. Additionally, in general, several parameters
cannot be regarded as unknown.

Building on the presented discussion, this paper proposes a novel finite-time control method for
chaotic systems with unknown parameters. The control strategy is based on sliding mode control
technology. The controller is model-based, but the controller unknown parameter adaptation only
depends on the sliding surface instead of directly selecting the relevant unknown parameters in the
system model, and the sliding surface has new forms. In this way, the selected parameters might be
the outside unknown variables of the system model that affect chaotic motion, which are challenging
to measure. The proposed approach avoids the difficulties of the unknown parameters selection
and mitigates the limitations of choosing the relevant parameters within the system model only.
The paper demonstrates the proposed method’s finite-time convergence. The adaptive law of unknown
parameters is then presented to make the synchronization error system reach the sliding mode surface
in finite-time. Simultaneously, simulation verification is conducted using chaotic systems with the
same, as well as different, structures. The results show a good control effect. This paper discusses the
mathematical theory enabling the realization of the proposed approach. However, further analysis is
required to determine the specific parameters’ value for different chaotic phenomena applications.

The rest of the paper is structured as follows. Section 1 presents the fundamental lemmas used in
the research. In Section 2, a new sliding surface is proposed for a general nonlinear chaotic system.
Additionally, the sliding mode controller that deals with unknown parameters independent of the
controlled system model is designed within this section. The adaptive law of unknown parameters is
described, and the finite-time stability is proved. In Section 3, simulation verification is performed,
demonstrating the same-structure synchronization of the parametric excitation rolling chaotic system
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of a ship, as well as the different structures’ synchronization of the Liu system and the Lorenz system.
Section 4 concludes the paper and discusses the directions for further research.

2. Fundamental Lemmas

In this section, the system description is presented, the synchronization problem is explained,
and the relevant definitions and several necessary lemmas on finite-time synchronization are introduced.

The following two n-dimensional chaotic systems are considered:
Master system: 

•

x1(t) = f1(x1, x2, . . . , xn)
•

x2(t) = f2(x1, x2, . . . , xn)

.

.

.
•

xn(t) = fn(x1, x2, . . . , xn)

, (1)

Slave system: 

•

y1(t) = g1(y1, y2, . . . , yn) + u1(t)
•

y2(t) = g2(y1, y2, . . . , yn) + u2(t)
.
.
.

•

yn(t) = gn(y1, y2, . . . , yn) + un(t)

. (2)

In the above equation, fi(x1, x2, . . . , xn), i = 1, 2, . . . , n and gi(y1, y2, . . . , yn), i = 1, 2, . . . , n are
nonlinear functions, and ui(t), i = 1, 2, . . . , n is a controller with unknown parameters. Equations (1)
and (2) both represent chaotic systems.

This work aims at designing a suitable controller with particular unknown parameters independent
of the system model to synchronize chaotic systems (described by Equations (1) and (2)) in a finite
time while the systems remain chaotic. To achieve finite-time synchronization, a system error is defined
as follows:

ei(t) = xi(t) − yi(t), (3)

The error dynamics equation is obtained as a derivative of the equation resulting from subtracting
Equation (3) from Equation (2). Thus:

•

e1(t) = f1(xi) − g1(yi) − u1(t)
•

e2(t) = f2(xi) − g2(yi) − u2(t)
.
.
.

•

ei(t) = fi(xi) − gi(yi) − ui(t)
.
.
.

•

en(t) = fn(xi) − gn(yi) − un(t)

. (4)
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Definition 1. Let the master system be defined with Equation (1) and the slave system with Equation (2).
Suppose there is a constant T > 0 for which lim

t→T

∣∣∣ei(t)
∣∣∣ = 0, i = 1, 2, . . . , n and

∣∣∣ei(t)
∣∣∣ ≡ 0, i = 1, 2, . . . , n when

t > T. Then, the chaotic synchronization of systems (1) and (2) is achieved in finite time T.

Achieving the finite-time stabilization of the error system (4) is equivalent to realizing the
finite-time synchronization of chaotic systems (1) and (2).

Lemma 1 [26]. Consider a system (5)

•
x = f(x), f(0) = 0, x ∈ Rn, (5)

where f : D→ Rn is continuous on an open neighborhood and D ⊂ Rn. Assuming that there is a continuous
differential positive-definite function V(x) : D→ R , and the real numbers p > 0 and 0 < η < 1 satisfy:

•

V(x) + pVη(x) ≤ 0,∀x ∈ D, (6)

then, the system (5) is a finite-time stable system whose stabilization time depends on the initial state x(0) = x0

,(here x(0) represent vectors, for example x = (x1, x2 . . . xi) , so x(0) = x0 = (x1(0), x2(0) . . . xi(0)), the initial
conditions are simple initial conditions) and satisfies:

T(x0) ≤
V1−η(x0)

p(1− η)
. (7)

Note 1. Throughout the paper, symbols written in boldface represent vectors.

Lemma 2 [27]. For every a1, a2, . . . an ∈ R, the following equation is satisfied:

|a1|+ |a2|+ . . .+ |an| ≥
√

a1
2 + a22 + . . .+ an2. (8)

3. Design of Sliding Mode Surface and Controller

This section introduces a new sliding mode controller that realizes the chaotic synchronization
of two different chaotic systems in a finite time. In doing so, the two main procedures include
designing a sliding surface and guaranteeing the finite-time stability of the system on a sliding surface.
First, an adaptive finite-time controller with unknown parameters independent of the system model is
designed. Then, convergence to sliding surface within finite time is guaranteed, and the adaptive law
of unknown parameters is designed.

The designed novel sliding surface is:

si(t) = ciei(t) +
∫ t

0
sgn(ei(τ))

∣∣∣ei(τ)
∣∣∣αdτ+ ei(t)sgn(ei(t)), i = 1, 2, . . . , n, (9)

where si(t) ∈ R, and ci and α are constants for which ci > 0 and 0 < α < 1. Taking the first-order
derivative of the sliding surface, one obtains:

•

si(t) = ci
•

ei(t) + sgn(ei(t))
∣∣∣ei(t)

∣∣∣α + •

ei(t)sgn(ei(t)), i = 1, 2, . . . , n. (10)

Based on the sliding mode control principle [28],

•

ei(t) = −
sgn(ei(t))

ci + sgn(ei(t))

∣∣∣ei(t)
∣∣∣α. (11)
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Let
ci + sgn(ei(t)) = di > 0,

Then
•

si(t) = di
•

ei(t) + sgn(ei(t))
∣∣∣ei(t)

∣∣∣α, i = 1, 2, . . . , n, (12)

•

ei(t) = −
sgn(ei(t))

di

∣∣∣ei(t)
∣∣∣α. (13)

Theorem 1. Consider the error dynamics Equation (13). Under the introduced sliding surface, the system is
finite-time stable, and the time T1 required to reach the equilibrium ei(t) = 0 is determined by:

T1 ≤
(1/2

∑n
i=1 ei

2(0))
1−α

2

(1− α)ρ2
1−α

2

, (14)

where ρ is the minimum value among 1
di

, ∀i = 1, 2 . . . , n.

Proof of Theorem 1. Consider the Lyapunov function: V(t) = 1
2

n∑
i=1

ei
2(t).

The function’s first-order derivative relative to time equals:
•

V(t) =
n∑

i=1
ei(t)

•

ei(t).

Then, using (13) , one obtains:
•

V(t) =
n∑

i=1
ei(t)(− 1

di
sgn(ei(t))

∣∣∣ei(t)
∣∣∣α),

•

V(t) = −
n∑

i=1

1
di

∣∣∣ei(t)
∣∣∣α+1

≤ −ρ
n∑

i=1

∣∣∣ei(t)
∣∣∣α+1

,

Utilizing Lemma 2, it follows:
•

V(t) ≤ −ρ
n∑

i=1

∣∣∣ei(t)
∣∣∣α+1

≤ −2
α+1

2 ρ( 1
2

n∑
i=1

ei
2(t))

α+1
2 = −2

α+1
2 ρV

α+1
2 (t).

Therefore,
•

V(t) + 2
α+1

2 ρV
α+1

2 (t) ≤ 0 , where 2
α+1

2 ρ > 0 and 0 < α+1
2 < 1. Since Equation (6) is satisfied,

following the Lemma 1 one obtains: T1 ≤
(1/2

∑n
i=1 ei

2(0))
1−α

2

(1−α)ρ2
1−α

2
.

Hence, the error ei(t), i = 1, 2, . . . n converges to zero in finite time T1. In other words, systems (1) and
(2) synchronize in a finite time. The proof is finished. �

Once the sliding surface is designed, one needs to design a controller with unknown parameters
independent of the system model and ensure the error system converges to the sliding surface within
finite time. Therefore, the existence of a sliding surface, as well as the convergence of the error trajectory
ei(t), i = 1, 2, . . . n to sliding surface si(t) = 0, i = 1, 2, . . . , n should be guaranteed. Then, Systems (1) and (2)
reach chaotic synchronization.

The designed controller is as follows:

ui(t) = fi(xi) − gi(yi) +
1
di
[sgn(ei(t))

∣∣∣ei(t)
∣∣∣α + k̂i

∣∣∣si(t)
∣∣∣

si(t)
], (15)

where i = 1, 2, . . . , n, di = ci + sgn(ei(t)) > 0, and ki > 0. Here ki denotes the unknown parameters that are
greater than zero and independent of the synchronized system model. Symbol k̂i denotes the estimated value
of unknown parameter ki. Note that the unknown parameter ki is not within the system model (1) and only
depends on the sliding surface. For the conventional approach, the unknown parameters are selected in the
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system model (e.g., [22] and [23]). Therefore, these parameters can be seen as the arbitrary factors that affect the
system and are difficult to predict or measure. The adaptive law of unknown parameter ki is defined as:

•

k̂i =
∣∣∣si(t)

∣∣∣− ki

∣∣∣k̂i − ki
∣∣∣

(k̂i − ki)
. (16)

The control law proposed in Equation (15) and the adaptive law in Equation (16) ensure the sliding motion
occurs in a finite time. The following theorem demonstrates such a claim.

Theorem 2. When the control law (15) and the adaptive law (16) are used to control the error system (4),
the system state moves towards the sliding surface and approaches the sliding surface si(t) = 0, i = 1, 2, . . . , n
in a finite time, denoted T2. Time T2 is determined by:

T2 ≤

( 1
2

n∑
i=1

[si(0)]
2
+ 1

2

n∑
i=1

k̃2
i (0))

1
2

2−
1
2ρ

(17)

where k̃i denotes the errors of unknown parameters ( k̃i = k̂i − ki , ∀i = 1, 2 . . . , n ).

Proof of Theorem 2. Consider the Lyapunov function: V(t) = 1
2

n∑
i=1

[si(t)]
2 + 1

2

n∑
i=1

k̃i
2 , where k̃i is the error

of unknown parameter. Clearly,
•

k̃i =
•

k̂i. Calculating the first-order derivative of V(t), one obtains:

•

V(t) =
n∑

i=1

[si(t)
•

si(t)] +
n∑

i=1

[̃ki

•

k̃i].

Utilizing Equation (12) , it follows:
•

V(t) =
n∑

i=1
[si(t)(di

•

ei(t) + sgn(ei(t))
∣∣∣ei(t)

∣∣∣α)] + n∑
i=1

[̃ki

•

k̃i].

Next, using Equation (4), one derives:

.
V(t) =

n∑
i=1

[si(t)(di( fi(xi) − gi(yi) − ui(t)) + sgn(ei(t))
∣∣∣ei(t)

∣∣∣α)] + n∑
i=1

[k̃i

.

k̃i] .

Then, one can utilize Equation (15) to obtain:

.
V(t) =

n∑
i=1

[si(t)(di( fi(xi) − gi(yi) − ( fi(xi) − gi(yi)+

1
di
[sgn(ei(t))

∣∣∣ei(t)
∣∣∣α + k̂i

|si(t)|
si(t)

])) + sgn(ei(t))
∣∣∣ei(t)

∣∣∣α)] + n∑
i=1

[k̃i

.

k̃i]

= −
n∑

i=1
[si(t)(k̂i

|si(t)|
si(t)

)] +
n∑

i=1
[k̃i

.

k̃i]

= −
n∑

i=1
[k̂i

∣∣∣si(t)
∣∣∣] + n∑

i=1
[k̃i

.

k̃i]

= −
n∑

i=1
[k̂i

∣∣∣si(t)
∣∣∣] + n∑

i=1
[k̂i − ki]

.
k̂i

From Equation (16) follows:

•

V(t) = −
n∑

i=1
[k̂i

∣∣∣si(t)
∣∣∣] + n∑

i=1
[(k̂i − ki)

•

k̂i] = −
n∑

i=1
[k̂i

∣∣∣si(t)
∣∣∣] + n∑

i=1
[(k̂i − ki)[

∣∣∣si(t)
∣∣∣− ki

∣∣∣k̂i−ki
∣∣∣

(k̂i−ki)
]

= −
n∑

i=1
[ki

∣∣∣si(t)
∣∣∣] − n∑

i=1
ki
∣∣∣k̂i − ki

∣∣∣
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Thus,
•

V(t) = −
n∑

i=1

[ki
∣∣∣si(t)

∣∣∣] − n∑
i=1

ki
∣∣∣k̂i − ki

∣∣∣ ≤ −γ( n∑
i=1

[
∣∣∣si(t)

∣∣∣] + n∑
i=1

[
∣∣∣k̂i − ki

∣∣∣]).
where γ denotes the minimum value among ki. Using Equation (8) in Lemma 2, it follows:

−γ(
n∑

i=1
[
∣∣∣si(t)

∣∣∣] + n∑
i=1

[
∣∣∣k̂i − ki

∣∣∣]) ≤ −γ( n∑
i=1

[si(t)]
2
+

n∑
i=1

k̃2
i )

1
2 = −2

1
2γ( 1

2

n∑
i=1

[si(t)]
2
+ 1

2

n∑
i=1

k̃2
i )

1
2

= −2
1
2γV

1
2 (t) ≤ 0

where 2
1
2γ > 0, 0 < 1

2 < 1. Since Equation (6) is satisfied, Lemma 1 gives:

T2 ≤

( 1
2

n∑
i=1

[si(0)]
2
+ 1

2

n∑
i=1

k̃2
i (0))

1
2

2−
1
2γ

.

Therefore, the error trajectory ei(t) converges to sliding mode surface si(t) = 0 in finite time T2. The proof
is finished. �

In summary, the block diagram of synchronization and control scheme is as follows:

Note 2. Following Theorems 1 and 2, the sliding mode controller (15) with the adaptive law (16) and
sliding surface (9) enables synchronization of systems (1) and (2) within finite time. The synchronization time
equals T = T1 + T2.

Note 3. Constant ci is directly proportional to convergence times T1 and T2. Thus, a smaller ci results in
shorter T1 and T2. On the other hand, from Equation (15), it follows that the controller input ui(t) is inversely
proportional to ci, meaning that smaller ci leads to greater ui(t).

4. Simulation Verification

In this section, MATLAB software is used to perform numerical simulations of chaotic systems
with either the same or with different structures [29,30]. The chaotic systems’ synchronization
is realized utilizing the novel sliding surface and controller designed in the previous section.
Additionally, the introduction of unknown parameters independent of the system model is realized,
and the adaptive law is presented.

4.1. Simulation Verification of Parametric Excitation Rolling Chaotic System of Ship with the Same Structure

The nonlinear mathematical model for the roll system of a ship with parametric and forced
excitation in a regular longitudinal wave is as follows:

••

φ + µ1
•

φ+ µ3
•

φ
3
+ω0

2(φ+ α3φ
3 + α5φ

5 + h0φ cos(ω1t)) = Ke sin(ω1t + δ0),

where φ(t) is the roll angle; h0 is the amplitude of parametric excitation; ω1 is the frequency of metric
excitation, which is usually twice that of the natural frequency when chaos occurs in the system; µ1 and
µ3 are the damping factors of the roll; α3 and α5 are the dimensionless righting moment coefficients;
ω0 is the natural frequency of the ship roll; and Ke sin(ω1t + δ0) is the forced roll moment in regular
waves, where Ke is the amplitude of the forced excitation and δ0 is encounter location of the ship and
regular wave, assigned as 0.
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After the above parameters are determined, the nonlinear mathematical model for the roll system
of a ship with parametric and forced excitation is changed to the following:

••

φ + 0.069
•

φ+ 0.5367
•

φ
3
+ 1.25φ− 0.9926φ3 + 0.0998φ5 + 2.875φ cos 2.236t = 0.16 sin 2.236t

Let x1(t) = φ(t), x2(t) =
.
φ(t), and, by conversion to state equations, it is obtained as follows:

•
x1 = x2
•

x2 = −0.069x2 − 0.5367x2
3
− 1.25x1 + 0.9926x1

3
− 0.0998x1

5

−2.875x1 cos 2.236t + 0.16 sin 2.236t
. (18)

The parametric excitation roll system of a ship is a chaos system that can be proved by MATLAB
simulation results. The history charts of x1 and x2 of the parametric excitation roll system of the ship
are shown in Figures 1 and 2, respectively, in which it is clear that the system is in chaos. The phase
diagram of the parametric excitation roll system of the ship is shown in Figure 3, which further proves
that the system is a chaos system and similar to a Duffing chaos system.

Algorithms 2020, 13, x FOR PEER REVIEW 9 of 17 

moment coefficients; 0ω  is the natural frequency of the ship roll; and 1 0sin( )eK tω δ+  is the forced 

roll moment in regular waves, where eK  is the amplitude of the forced excitation and 0δ  is 
encounter location of the ship and regular wave, assigned as 0.  

After the above parameters are determined, the nonlinear mathematical model for the roll 
system of a ship with parametric and forced excitation is changed to the following: 

3•• • •
3 50.069 0.5367 1.25 0.9926 0.0998 2.875 cos 2.236 0.16sin 2.236t tφ φ φ φ φ φ φ+ + + − + + =   

Let 1 2( ) ( ), ( ) ( )x t t x t tφ φ= =  , and, by conversion to state equations, it is obtained as follows: 

•

1 2
•

3 3 5
2 2 2 1 1 1

1

0.069 0.5367 1.25 0.9926 0.0998
2.875 cos 2.236 0.16sin 2.236

x x

x x x x x x
x t t

 =


= − − − + −
− +


. (18) 

The parametric excitation roll system of a ship is a chaos system that can be proved by MATLAB 
simulation results. The history charts of 1x  and 2x  of the parametric excitation roll system of the 
ship are shown in Figures 1 and 2, respectively, in which it is clear that the system is in chaos. The 
phase diagram of the parametric excitation roll system of the ship is shown in Figure 3, which further 
proves that the system is a chaos system and similar to a Duffing chaos system.  

 

Figure 1. The time response of 1x  about ship parametric excitation rolling system Equation (18) . 

 

Figure 2. The time response of 2x  about ship parametric excitation rolling system Equation (18) . 

Figure 1. The time response of x1 about ship parametric excitation rolling system Equation (18).

Algorithms 2020, 13, x FOR PEER REVIEW 9 of 17 

moment coefficients; 0ω  is the natural frequency of the ship roll; and 1 0sin( )eK tω δ+  is the forced 

roll moment in regular waves, where eK  is the amplitude of the forced excitation and 0δ  is 
encounter location of the ship and regular wave, assigned as 0.  

After the above parameters are determined, the nonlinear mathematical model for the roll 
system of a ship with parametric and forced excitation is changed to the following: 

3•• • •
3 50.069 0.5367 1.25 0.9926 0.0998 2.875 cos 2.236 0.16sin 2.236t tφ φ φ φ φ φ φ+ + + − + + =   

Let 1 2( ) ( ), ( ) ( )x t t x t tφ φ= =  , and, by conversion to state equations, it is obtained as follows: 

•

1 2
•

3 3 5
2 2 2 1 1 1

1

0.069 0.5367 1.25 0.9926 0.0998
2.875 cos 2.236 0.16sin 2.236

x x

x x x x x x
x t t

 =


= − − − + −
− +


. (18) 

The parametric excitation roll system of a ship is a chaos system that can be proved by MATLAB 
simulation results. The history charts of 1x  and 2x  of the parametric excitation roll system of the 
ship are shown in Figures 1 and 2, respectively, in which it is clear that the system is in chaos. The 
phase diagram of the parametric excitation roll system of the ship is shown in Figure 3, which further 
proves that the system is a chaos system and similar to a Duffing chaos system.  

 

Figure 1. The time response of 1x  about ship parametric excitation rolling system Equation (18) . 

 

Figure 2. The time response of 2x  about ship parametric excitation rolling system Equation (18) . Figure 2. The time response of x2 about ship parametric excitation rolling system Equation (18).
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In the traditional methods, h0 and ω1 are usually chosen as unknown parameters. In the model
••

φ + µ1
•

φ+ µ3
•

φ
3
+ω0

2(φ+ α3φ3 + α5φ5 + h0φ cos(ω1t)) = Ke sin(ω1t+ δ0), h0 is parameter excitation
amplitude and ω1 is parameter excitation frequency, which can affect the chaotic state of the system.
This method can be seen in references [24] and [25].

In the method discussed in this paper, a ship’s parametric excitation rolling system is regarded
as a master system. The controller’s chaotic system with unknown parameters independent of the
system model is regarded as a slave system. The master system and slave system are based on the ship
parametric excitation rolling system with the same fundamental structure. In other words, the chaotic
control is achieved over the same structure systems.

Master system:
•

x1 = x2
•

x2 = −0.069x2 − 0.5367x2
3
− 1.25x1 + 0.9926x1

3
− 0.0998x1

5

−2.875x1 cos 2.236t + 0.16 sin 2.236t
, (19)

Slave system: 
•
y1 = y2 + u1(t)
•
y2 = −0.069y2 − 0.5367y2

3
− 1.25y1 + 0.9926y1

3
− 0.0998y1

5

−2.875y1 cos 2.236t + 0.16 sin 2.236t + u2(t)
, (20)

Error system :
{

e1 = x1 − y1

e2 = x2 − y2
,

Error dynamics equation:

•
e1 = x2 − y2 − u1(t)
•
e2 = −0.069x2 − 0.5367x2

3
− 1.25x1 + 0.9926x1

3
− 0.0998x1

5

−2.875x1 cos 2.236t + 0.16 sin 2.236t + 0.069y2+

0.5367y2
3 + 1.25y1 − 0.9926y1

3 + 0.0998y1
5

+2.875y1 cos 2.236t− 0.16 sin 2.236t− u2(t)

, (21)

Using Equation (9), the sliding mode surface is designed as follows: s1 = c1e1(t) +
∫ t

0 sgn(e1(τ))
∣∣∣e1(τ)

∣∣∣αdτ+ e1(t)sgn(e1(t))

s2 = c2e2(t) +
∫ t

0 sgn(e2(τ))
∣∣∣e2(τ)

∣∣∣αdτ+ e2(t)sgn(e2(t))
, (22)
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According to Equation (15), the controller with unknown parameters independent of the system
is designed as: 

u1(t) = x2 − y2 +
1

c1+sgn(e1(t))
[sgn(e1(τ))

∣∣∣e1(τ)
∣∣∣α + k̂1

|s1 |
s1
]

u2(t) = −0.069x2 − 0.5367x2
3
− 1.25x1 + 0.9926x1

3
− 0.0998x1

5

−2.875x1 cos 2.236t + 0.16 sin 2.236t + 0.069y2 + 0.5367y2
3

+1.25y1 − 0.9926y1
3 + 0.0998y1

5 + 2.875y1 cos 2.236t
−0.16 sin 2.236t + 1

c2+sgn(e2(t))
[sgn(e2(τ))

∣∣∣e2(τ)
∣∣∣α + k̂2

|s2 |
s2
]

, (23)

From Equation (16), the adaptive law of unknown parameters is:
•

k̂1 = |s1| − k1

∣∣∣k̂1−k1
∣∣∣

(k̂1−k1)
•

k̂2 = |s2| − k2

∣∣∣k̂2−k2
∣∣∣

(k̂2−k2)

. (24)

In the simulation, the step size was set to 0.01 s, and the initial values were x1(0) = 3, x2(0) =
3,y1(0) = 1, y2(0) = 1, and c1 = 8, c2 = 9,. In addition, the initial values of unknown parameters were
set to k1 = 0.1 and k2 = 0.2.

Figures 4 and 5 reflect the synchronization process of Systems (19) and (20), and synchronization
error is shown in Figure 6, the identification processes of unknown parameters k1 and k2 are shown in
Figure 7. Figures 4 and 5 demonstrate that, when t approaches 2 s, the drive system parameters (x1 and
y1) synchronize with the response system parameters (x2 and y2). The error effect in Figure 6 shows
that, when t approaches 2 s, errors e1 and e2 stabilize around zero. Finally, Figure 7 demonstrates that,
when t approaches 2 s, the parameters k1 and k2 reach values 6 and 7, respectively.Algorithms 2020, 13, x FOR PEER REVIEW 12 of 17 
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By using the parameters to update the rule (24), one can identify the special unknown parameters
in the controller (23). In other words, the drive system and the response system reach a finite-time
synchronization. After the controller facilitates the ship parametric excitation rolling system with
unknown parameters independent of the system model, the response system successfully tracks the
original system in a finite time. The adaptive parameters converge to bounded values within the
finite time.

4.2. Simulation Verification of Chaotic System with Different Structures

Both the Liu system and the Lorenz system [31,32] are well-known chaotic systems that do not
require a detailed introduction. In addition, their structures are different. In the traditional methods,
the coefficients of the equations are usually chosen as unknown parameters. The coefficients of
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these equations can affect the chaotic state of the system. This treatment method can be seen in
references [24,25].

Here, the method mentioned in the previous section are used to verify the proposed method’s
performance in the chaotic synchronization of systems with different structures.

Master system:

Liu :


•

x1 = − 20
7 x1 − x2x3 + 10

•
x2 = −10x2 + x1x3
•

x3 = −4x3 + x1x2

, (25)

Slave system:

Lorenz :


•
y1 = 10(y2 − y1)
•
y2 = 28y1 − y2 − y1y3
•
y3 = y1y2 −

8
3 y3

, (26)

Using the Equation (9), the sliding mode surface is designed as follows:
s1 = c1e1(t) +

∫ t
0 sgn(e1(τ))

∣∣∣e1(τ)
∣∣∣αdτ+ e1(t)sgn(e1(t))

s2 = c2e2(t) +
∫ t

0 sgn(e2(τ))
∣∣∣e2(τ)

∣∣∣αdτ+ e2(t)sgn(e2(t))

s3 = c3e2(t) +
∫ t

0 sgn(e3(τ))
∣∣∣e3(τ)

∣∣∣αdτ+ e3(t)sgn(e3(t))

, (27)

According to Equation (15), the controller with unknown parameters independent of the system
is designed as:

u1(t) = 10(x2 − x1) − 10(y2 − y1) +
1

c1+sgn(e1(t))
[sgn(e1(τ))

∣∣∣e1(τ)
∣∣∣α + k̂1

|s1 |
s1
]

u2(t) = 40x1 − x1x3 − (28y1 − y2 − y1y3) +
1

c2+sgn(e2(t))
[sgn(e2(τ))

∣∣∣e2(τ)
∣∣∣α + k̂2

|s2 |
s2
]

u3(t) = −2.5x3 + 4x1
2
− (y1y2 −

8
3 y3) +

1
c3+sgn(e3(t))

[sgn(e3(τ))
∣∣∣e3(τ)

∣∣∣α + k̂3
|s3 |
s3
]

, (28)

From Equation (16), the adaptive law of unknown parameters is:

•

k̂1 = |s1| − k1

∣∣∣k̂1−k1
∣∣∣

(k̂1−k1)
•

k̂2 = |s2| − k2

∣∣∣k̂2−k2
∣∣∣

(k̂2−k2)
•

k̂3 = |s3| − k3

∣∣∣k̂3−k3
∣∣∣

(k̂3−k3)

. (29)

In the simulation, the step size was set to 0.01 s, and the initial values were x1(0) = −1.5, x2(0) =
2.25, x3(0) = 2.1,y1(0) = 1, y2(0) = 1, y3(0) = 1, and c1 = 8, c2 = 9, c3 = 10. In addition, the initial
values of unknown parameters were set to k1 = 0.1, k2 = 0.2, k3 = 0.3.

Figures 8–10 reflect the synchronization process of Systems (25) and (26), and synchronization
error is shown in Figure 11, the identification processes of unknown parameters k1, k2, k3 are shown
in Figure 12. Figures 8–10 demonstrate that, when t approaches 1.7 s, the drive system parameters
(x1, y1 and z1) synchronize with the response system parameters (x2, y2 and z2). The error effect in
Figure 11 shows that, when t approaches 1.7 s, errors e1, e2, and e3 stabilize around zero. Finally,
Figure 12 demonstrates that, when t approaches 1.7 s, the parameters k1, k2, and k3 reach values 5.2, 2.5,
and 2, respectively.
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By using the parameters to update the rule (29), one can identify the special unknown parameters
in the controller (28). In other words, the master system and the slave system reach a finite-time
synchronization. The adaptive parameters converge to bounded values within the finite time.
The effectiveness of the algorithm is further proved.

5. Conclusions

This paper uses a sliding mode control theory to study the finite-time synchronization problem of
chaotic systems. A novel nonsingular terminal sliding surface was proposed. Additionally, a controller
with unknown parameters only depends on the sliding surface, instead of directly selecting the relevant
unknown parameters in the system model. The adaptive laws were designed, the convergence and
the stability within finite time were proved. The simulation results demonstrate that synchronization
of chaotic systems can be achieved in a finite time with high control speed, irrespective of whether
the systems differ in structures or not. The practical meaning of the selected unknown parameters in
specific chaotic systems will be further discussed in the subsequent studies.
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