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Abstract: We discuss the local convergence of a derivative-free eighth order method in a Banach
space setting. The present study provides the radius of convergence and bounds on errors under the
hypothesis based on the first Fréchet-derivative only. The approaches of using Taylor expansions,
containing higher order derivatives, do not provide such estimates since the derivatives may be
nonexistent or costly to compute. By using only first derivative, the method can be applied to a wider
class of functions and hence its applications are expanded. Numerical experiments show that the
present results are applicable to the cases wherein previous results cannot be applied.
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1. Introduction

We study local criteria for obtaining a unique solution u∗ of the nonlinear model

F(u) = 0, (1)

for Banach space valued mappings with F : Ω ⊂ B → B, where F is differentiable in the sense of
Fréchet [1,2]. For a good survey of literature on local and semilocal convergence criteria of iterative
methods see [3–13].

The most popular numerical method for approximating a solution u∗ of Equation (1) is the
quadratically convergent Newton’s method, which is expressed as

un+1 = un − F′(un)
−1F(un), for each n = 0, 1, 2, . . .

In quest of efficient higher order method, a number of improved, multipoint Newton’s or Newton-like
iterative schemes have been proposed in literature; see, for example [3,5,8–10,12–19] and references
cited therein.

In particular, Amiri et al. [16] have recently developed an eighth order method for solving
F(u) = 0 using a derivative-free composite scheme. The method is of order eight using only divided
differences, derivatives up to the order nine and Taylor expansions in the special case when B = Ri

and Q(u) =
(

f m
1 (u), f m

2 (u), · · · , f m
i (u)

)
, m ≥ 2, where Q : B→ B, Q(u∗) = F(u∗) = 0. We study this

method in the more general setting of a Banach space setting:
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yn = un − [un + Q(un), un; F]−1F(un),

zn = yn −
[

13
4

I − An

(
7
2

I − 5
4

An

)]
[un + Q(un), un; F]−1F(yn),

un+1 = zn −
[

7
2

I − An

(
4I − 3

2
An

)]
[un + Q(un), un; F]−1F(zn), (2)

where u0 ∈ Ω is an initial point, An = [un + Q(un), un; F]−1[yn + Q(yn), yn; F], [., .; F] : Ω ×Ω →
L(B, B) is divided difference of order one with

[u, y; F](u− y) = F(u)− F(y)

for each u, y ∈ Ω with u 6= y and [u, u; F] = F′(u) for each u ∈ Ω, if F is differentiable at u. Here L(B, B)
is the set of bounded linear operators from B into B.

The benefits of using method (2) over others in the literature have been well explained in [16].
Then to avoid repetitions, we refer the reader to [16]. But there are drawbacks when it comes to using
method (2) limiting its applicability. These are: The existence of the ninth derivative is needed to show
the order of convergence; the upper bounds on ‖un − u∗‖ or results on the uniqueness of the solution
are not given; the initial point is a shot in the dark; the method is restricted only on the i-dimensional
Euclidean space and higher order derivatives do not appear on the method. Notice that the method
cannot even guarantee convergence, if we consider the scalar function ϕ on Ω = [− 1

2 , 3
2 ] given as

ϕ(x) =

{
x3 ln x2 + x5 − x4, x 6= 0
0, x = 0.

Then, clearly ϕ′′′(x) is unbounded on Ω. Hence, there is no assurance that limn→∞ un = u∗ under
the conditions in [16]. The novelty of this work is that we deal with all these drawbacks using only
conditions on the divided difference of order one which actually used in Equation (2). Hence, we
extend its applicability and for operators valued on Banach space.

2. Local Convergence Analysis

Certain real functions and parameters appearing in the local convergence analysis of Equation (2)
are introduced. Set S = [0, ∞], let w0 : S× S→ S, w1 : S→ S be continuous and increasing functions
with w0(0, 0) = 0. Suppose that equation

w0(w1(x)x, x) = 1 (3)

has at least one positive solution. Let ρ0 be the smallest such solution. Set S0 = [0, ρ0). Let also
w : S0 × S0 → S, v : S0 → S and w2 : S0 → S be continuous and increasing functions with w(0, 0) = 0.
Define functions p1 and p̄1 in the interval S0 by

p1(x) =
w(w1(x)x, x)

a(x)

and
p̄1(x) = p1(x)− 1,

where a(x) = 1− w0(w1(x)x, x).
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We have p̄1(0) = −1 < 0 and p̄1(x) → ∞ as x → ρ−0 . The intermediate value theorem implies
that equation p̄1(x) = 0 has at least one solution in (0, ρ0). Let r1 be the smallest such solution. Further
assume that equation

w0
(
w1(p1(x)x)p1(x)x, p1(x)x

)
= 1 (4)

possesses at least one positive solution. Denote by ρ1 the smallest such solution. Set ρ2 = min{ρ0, ρ1}
and S1 = [0, ρ2). Define functions p2 and p̄2 on the interval S1 by

p2(x) =
(

p1(p1(x)x) +
d(x)

a(x)b(x)
v(p1(x)x) +

1
4
[
4h(x) + 5h2(x)

]v(p1(x)x)
a(x)

)
p1(x)

and
p̄2(x) = p2(x)− 1,

where

b(x) = 1− w0(w1(p1(x)x)p1(x)x, p1(x)x),

d(x) = w0(w1(x)x, x) + w0(w1(p1(x)x), p1(x)x)

and

h(x) =
d(x)
a(x)

.

Then, we also get p̄2(0) = −1 and p̄2(x) → ∞ as x → ρ−2 . Denote by r2 the smallest solution of
equation p̄2(x) = 0 in (0, ρ2).

Assume that equation
w0
(
w1(p2(x)x)p2(x)x, p2(x)x

)
= 1 (5)

possesses at least one positive solution. Denote by ρ3 the smallest such solution. Set ρ = min{ρ2, ρ3}
and S2 = [0, ρ). Define functions p3 and p̄3 on the interval S2 by

p3(x) =
(

p1(p2(x)x) +
e(x)v(p2(x)x)

a(x)c(x)
+

1
2
[
2h(x) + 3h2(x)

]v(p2(x)x)
a(x)

)
p2(x)

and
p̄3(x) = p3(x)− 1,

where

c(x) = 1− w0(w1(p2(x)x)p2(x)x, p2(x)x)

and

e(x) = w0(w1(x)x, x) + w0(w1(p2(x)x), p2(x)x).

We obtain again p̄3(0) = −1 and p̄3(x)→ ∞ as x → ρ−. Denote by r3 the smallest solution of equation
p̄3(x) = 0 in (0, ρ). Define parameter r by

r = min{rj}, j = 1, 2, 3. (6)
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This parameter shall be shown to be a radius of convergence for Equation (2) in Theorem 1. Then, we
have that for each x ∈ [0, r)

a(x) > 0, (7)

b(x) > 0, (8)

c(x) > 0, (9)

d(x) ≥ 0, (10)

e(x) ≥ 0, (11)

h(x) ≥ 0, (12)

and

0 ≤ pi(x) ≤ 1. (13)

By U(µ, λ), Ū(µ, λ) we denote the open and closed balls in B, respectively with center µ ∈ B and of
radius λ > 0. In order to study the local convergence of Equation (2), we need to rewrite the three steps.

Lemma 1. Suppose that Equation (2) is well defined for each n = 0, 1, 2, .... and [u + Q(u), u; F]−1 ∈ L(B, B)
for each u ∈ Ω. Then, the following assertions hold

yn − u∗ = [un + Q(un), un; F]−1
(
[un + Q(un), un; F]− [un, u∗; F]

)
(un − u∗), (14)

zn − u∗ = yn − u∗ + [yn + Q(yn), yn; F]−1F(yn) +
(
[yn + Q(yn), yn; F]−1 − [un + Q(un), un; F]−1

)
F(yn)

− 1
4
[4(I − An) + 5(I − An)

2][un + Q(un), un; F]−1F(yn) (15)

and

un+1 − u∗ = zn − u∗ − [zn + Q(zn), zn; F]−1F(zn) +
(
[zn + Q(zn), zn; F]−1 − [un + Q(un), un; F]−1

)
F(zn)

− 1
2
[2(I − An) + 3(I − An)

2][un + Q(un), un; F]−1F(zn). (16)

Proof. We have in turn by the first substep of Equation (2) and the definition of the divided difference

yn − u∗ = un − u∗ − [un + Q(un), un; F]−1F(un)

= [un + Q(un), un; F]−1
(
[un + Q(un), un; F]− [un, u∗; F]

)
(un − u∗)

which shows Equation (14).
Then, similarly from the second substep of Equation (2)

zn − u∗ = yn − u∗ − [yn + Q(yn), yn; F]−1F(yn) +
(
[yn + Q(yn), yn; F]−1 − [un + Q(un), un; F]−1

)
F(yn)

− 1
4
(9I − 14An + 5A2

n)[un + Q(un), un; F]−1F(yn)

= yn − u∗ − [yn + Q(yn), yn; F]−1F(yn) +
(
[yn + Q(yn), yn; F]−1 − [un + Q(un), un; F]−1

)
F(yn)

− 1
4
[4(I − An) + 5(I − An)

2][un + Q(un), un; F]−1F(yn),



Algorithms 2020, 13, 25 5 of 10

which shows Equation (15). Finally, from the third substep of Equation (2), we obtain in turn that

un+1 − u∗ = zn − u∗ − [zn + Q(zn), zn; F]−1F(zn) +
(
[zn + Q(zn), zn; F]−1 − [un + Q(un), un; F]−1

)
F(zn)

−
(

5
2

I − An(4I − 3
2

An)

)
[un + Q(un), un; F]−1F(zn)

= zn − u∗ − [zn + Q(zn), zn; F]−1F(zn)
(
[zn + Q(zn), zn; F]−1 − [un + Q(un), un; F]−1

)
F(zn)

− 1
2
[2(I − An) + 3(I − An)

2][un + Q(un), un; F]−1F(zn),

which completes the proof.

The local convergence analysis is based on the following conditions (say, A) :

(a1) F : Ω → B is continuously differentiable in the sense of Frèchet, [., .; F] : Ω ×Ω → L(B, B),
[., .; Q] : Ω×Ω→ L(B, B) are a divided difference of order one and there exists u∗ ∈ Ω such that
F(u∗) = Q(u∗) = 0 and F′(u∗)−1 ∈ L(B, B).

(a2) There exist continuous and increasing functions w0 : S× S→ S and w1 : S→ S with w0(0, 0) = 0
such that for each u ∈ Ω

‖F′(u∗)−1([u + Q(u), u; F]− F′(u∗))‖ ≤ w0(‖u + Q(u)− u∗‖, ‖u− u∗‖).

and
‖I + [u, u∗; Q]‖ ≤ w1(‖u− u∗‖).

Set Ω0 = Ω
⋂

U(u∗, ρ0), where ρ0 is given in Equation (3).
(a3) There exist continuous and increasing functions w : S0 × S0 → S, w2 : S0 → S and v : S0 → S

such that for each u ∈ Ω0

‖F′(u∗)−1([u + Q(u), u; F]− [u, u∗; F])‖ ≤ w(‖Q(u)‖, ‖u− u∗‖),
‖Q(u)‖ ≤ w2(‖u− u∗‖)‖u− u∗‖

and
‖F′(u∗)−1[u, u∗; F]‖ ≤ v(‖u− u∗‖).

(a4) Ū(u∗, r̄) ⊆ Ω, r̄ = w1(r)r, ρ0, ρ1 and ρ3 given by Equations (3)–(5), respectively exist and r is
defined in Equation (6).

(a5) There exists r∗ ≥ r such that

v0(r∗) < 1,

where function v0 : S0 → S is continuous and increasing with v0(0) = 0. Set Ω1 = Ω
⋂

U(u∗, r∗).

By Lemma 1, we can use the notations

an = 1− w0
(
w1(‖un − u∗‖)‖un − u∗‖, ‖un − u∗‖

)
,

bn = 1− w0
(
w1(p1(‖un − u∗‖)‖un − u∗‖), p1(‖un − u∗‖)‖un − u∗‖

)
,

cn = 1− w0
(
w1(p2(‖un − u∗‖)‖un − u∗‖)p2(‖un − u∗‖)‖un − u∗‖, p2(‖un − u∗‖)‖un − u∗‖

)
,

dn = w0
(
w1(‖un − u∗‖)‖un − u∗‖, ‖un − u∗‖

)
+ w0

(
w1(p1(‖un − u∗‖)‖un − u∗‖), p1(‖un − u∗‖)‖un − u∗‖

)
,

en = w0
(
w1(‖un − u∗‖)‖un − u∗‖, ‖un − u∗‖

)
+ w0

(
w1(p2(‖un − u∗‖)‖un − u∗‖), p2(‖un − u∗‖)‖un − u∗‖

)
and

hn =
dn

an
.
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Next, we present the local convergence of Equation (2) using the conditions (A) and the notations
mentioned above.

Theorem 1. Suppose that the conditions (A) hold. Then, sequence {un} generated for u0 ∈ U(u∗, r)− {u∗}
is well defined, remains in U(u∗, r) for each n = 0, 1, 2...... and converges to u∗, so that

‖yn − u∗‖ ≤ p1(‖un − u∗‖)‖un − u∗‖ ≤ ‖un − u∗‖ < r, (17)

‖zn − u∗‖ ≤ p2(‖un − u∗‖)‖un − u∗‖ ≤ ‖un − u∗‖ (18)

and

‖un+1 − u∗‖ ≤ p3(‖un − u∗‖)‖un − u∗‖ ≤ ‖un − u∗‖, (19)

where the functions pi are given previously and r is defined in Equation (6).

Proof. We shall show estimates for Equations (17)–(19) using mathematical induction. Let u ∈
U(u∗, r)− {u∗}. By (a1), (a2), (a4) and Equation (6), we obtain in turn

‖F′(u∗)−1([u + Q(u), u; F]− F′(u∗)
)
‖ ≤ w0(‖u + Q(u)− u∗‖, ‖u− u∗‖)
≤ w0

(
‖(I + [u, u∗])(u− u∗)‖, ‖u− u∗‖

)
≤ w0

(
w1(‖u− u∗‖)‖u− u∗‖, ‖u− u∗‖

)
< w0(w1(r)r, r)r < 1, (20)

where we also used that

‖u + Q(u)− u∗‖ = ‖(I + [u, u∗, Q])(u− u∗)‖ ≤ w1(‖u− u∗‖)‖u− u∗‖ ≤ w1(r)r = r̄,

so u + Q(u)− u∗ ∈ U(u∗, r̄).
It follows from Equation (20) and the Banach perturbation lemma on invertible operators [8] that

[u + Q(u), u; F]−1 ∈ L(B, B) and

‖[u + Q(u), u; F]−1F′(u∗)‖ ≤
1

a(‖u− u∗‖)
(21)

and y0, z0, u1 are well defined by Equation (2) for n = 0.
Then, by Equations (6) and (13) (for j = 1), (14) and (21) (for u = u0), and (a3), we get, in turn,

that

‖y0 − u∗‖ ≤ ‖[u0 + Q(u0), u0; F]−1F′(u∗)‖‖F′(u∗)−1([u0 + Q(u0), u0; F]− [u0, u∗; F]
)
‖‖u− u∗‖

≤
w
(
w1(‖u0 − u∗‖)‖u0 − u∗‖, ‖u0 − u∗‖

)
‖u0 − u∗‖

a(‖u0 − u∗‖)
= p1(‖u0 − u∗‖)‖u0 − u∗‖ ≤ ‖u0 − u∗‖ < r, (22)

so Equation (17) holds for n = 0 and y0 ∈ U(u∗, r). We need the estimate obtained using (a2) and (20)

‖I − A0‖ =
∥∥([u0 + Q(u0), u0; F]−1F′(u∗)

)
F′(u∗)−1

×
[(
[u0 + Q(u0), u0; F]− F′(u∗)

)
+
(

F′(u∗)− [y0 + Q(y0), y0; F]
)]∥∥

≤ d(‖u− u∗‖)
a(‖u− u∗‖)

(23)

and the estimate using (a1) and (a3) that

F(u)− F(u∗) = [u, u∗; F](u− u∗),
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so
‖F′(u∗)−1[u, u∗; F]‖ ≤ v(‖u− u∗‖). (24)

Then, by Equations (6), (13) (for j = 2), (15), and Equations (21)–(24) (for u = y0), we have, in turn,
that

‖z0 − u∗‖ ≤
(

p1
(

p1(‖u0 − u∗‖)‖u0 − u∗‖
)
+

d(‖u0 − u∗‖)v
(

p1(‖u0 − u∗‖)‖u0 − u∗‖
)

a(‖u0 − u∗‖)b(‖u0 − u∗‖)

+
1
4

[
4

d(‖u0 − u∗‖)
a(‖u0 − u∗‖)

+ 5
(

d(‖u0 − u∗‖)
a(‖u0 − u∗‖)

)2] v(p1(‖u0 − u∗‖)‖u0 − u∗‖)
a‖u0 − u∗‖

)
p1(‖u0 − u∗‖)

= p2(‖u0 − u∗‖)‖u0 − u∗‖ ≤ ‖u0 − u∗‖, (25)

so Equation (18) holds for n = 0 and z0 ∈ U(u∗, r). Next, from Equations (6) and (13) (for j = 3), (21)
(for u = z0), and Equations (22)–(25), we obtain in turn that

‖u1 − u∗‖ ≤
(

p1
(

p2(‖u0 − u∗‖)‖u0 − u∗‖
)
+

e(‖u0 − u∗‖)v
(

p2(‖u0 − u∗‖)‖u0 − u∗‖
)

a(‖u0 − u∗‖)c(‖u0 − u∗‖)

+
1
2

[
2

d(‖u0 − u∗‖)
a(‖u0 − u∗‖)

+ 3
(

d(‖u0 − u∗‖)
a(‖u0 − u∗‖)

)2] v(p2(‖u0 − u∗‖)‖u0 − u∗‖)
a‖u0 − u∗‖

)
p2(‖u0 − u∗‖)

= p3(‖u0 − u∗‖)‖u0 − u∗‖, (26)

so Equation (19) holds for n = 0 and u1 ∈ U(u∗, r). The induction for estimates of Equations (17)–(19)
is terminated, if we replace u0, y0, z0, u1 by um, ym, zm, um+1 in the preceding computations.

Then, from the estimate

‖um+1 − u∗‖ ≤ q‖um − u∗‖ < r, q = p3(‖u0 − u∗‖) ∈ [0, 1), (27)

we get that limm→∞um = u∗ and um+1 ∈ U(u∗, r). Finally, set G = [y∗, u∗; F] for some y∗ ∈ Ω1 for
F(y∗) = 0. Using (a5), we have

‖F′(u∗)−1(G− F′(u∗))‖ ≤ v0(‖y∗ − u∗‖) ≤ v(r∗) < 1,

so G−1 is invertible. Then, we obtain u∗ = y∗ via identity

0 = F(u∗)− F(y∗) = G(u∗ − y∗).

3. Numerical Results

It is noted that in all examples ri are found by solving scalar equations p̄i(x) = 0, i = 1, 2, 3.
Then, r is obtained using Equation (6). The parameters ri have been shown to exist above Lemma 1.
The divided difference in all examples is chosen as

[x, y, F] =
∫ 1

0
F′(y + θ(x− y))dθ. (28)

All computations are performed in Mathematica software using multi-precision arithmetic.

Example 1. Let B = C[0, 1], Ω = Ū(u∗, 1). Consider the Hammerstein-type problem as

u(s) =
∫ 1

0
K(s, x)

u(x)2

2
dx,
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where

K(s, x) =

{
(1− s)x, x ≤ s,
s(1− x), s ≤ x.

Let F : C[0, 1] be defined as

F(u)(s) = u(s)−
∫ 1

0
K(s, x)

u(x)2

2
dx.

But, we get ∥∥∥ ∫ 1

0
K(s, x)dx

∥∥∥ ≤ 1
8

,

leading to

F′(u)y(s) = y(s)−
∫ 1

0
K(s, x)u(x)dx,

since F′(u∗(s)) = I,

‖F(u∗)−1(F(u)− F′(y))‖ < 1
8
‖u− y‖.

By Equation (28), we select w0(s, x) = w(s, x) = s+x
16 , v(x) = w1(x) = 8. The parameters are

r1 = 0.888889, r2 = 0.118175, r3 = 1.42264× 10−2 and r = 1.42264× 10−2.

Example 2. Consider the three-dimensional system

f ′1(u1)− f1(u1)− 1 = 0,

f ′2(u2)− (e− 1)u2 − 1 = 0,

f ′3(u3)− 1 = 0,

with u1, u2, u3 ∈ Ω for f1(0) = f2(0) = f3(0) = 0. Then, the system for u = (u1, u2, u3)
T with

F := ( f1, f2, f3) : Ω→ R3 is

F(u) =
(

eu1 − 1,
e− 1

2
u2

2 + u2, u3

)T
.

Hence, we obtain

F′(u) =

eu1 0 0
0 (e− 1)u2 + 1 0
0 0 1

 .

But u∗ = (0, 0, 0)T and F′(u∗) = I, by the definition in Equation (28), we select w0(s, x) = L0
2 (s + x),

w(s, x) = L
2 (s + x), and w1(x) = v(x) = 1

2 (1 + e
1

L0 ), where L0 = e− 1, L = e. Then, we have

r1 = 1.88242× 10−1, r2 = 3.70077× 10−2, r3 = 7.34314× 10−3 and r = 7.34314× 10−3.

Example 3. Consider F := ( f1, f2, f3) : Ω→ R3 be defined by

F(u) = (10u1 + sin(u1 + u2)− 1, 8u2 − cos2(u3 − u2)− 1, 12u3 + sin(u3)− 1)T ,

where u = (u1, u2, u3)
T .

Then, we obtain

F′(u) =

10 + cos(u1 + u2) cos(u1 + u2) 0
0 8 + sin2(u2 − u3) −sin2(u2 − u3)

0 0 12 + cos(u3)

 .
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Hence, by Equation (28) w1(x) = v(x) = 0.269812 x, and w(s, x) = w0(s, x) = 1.08139
2 (s + x). Then we

obtain the parameters as

r1 = 0.766299, r2 = 0.658762, r3 = 0.637403, r = 0.637403.

Example 4. Define function F on Ω = Ū(0, 1), given as

F(φ)(s) = φ(s)− 10
∫ 1

0
s xφ(x)dx.

Then, we get

F′(φ(ξ))(s) = ξ(s)− 30
∫ 1

0
s xφ(x)2ξ(x)dx, for all ξ ∈ Ω.

By Equation (28), we can choose w1(x) = v(x) = 30 and w(s, x) = w0(s, x) = 15
2 (s + x). The parameter

values are given as

r1 = 2.15054× 10−3, r2 = 2.24959× 10−9, r3 = 9.81657× 10−16, r = 9.81657× 10−16.

Example 5. The Van der Waals equation of state for a vapor is (see [16])(
P +

a
V2

)
(V− b) = R T,

This equation leads to,
PV3 − (Pb + RT)V2 + aV− ab = 0

in V, where all constants have a physical meaning whose values can be found in [16]. Choose P = 10,000
kPa and T = 800 K. Then, u∗ = 36.9167 . . .. By Equation (28), we can set w1(x) = v(x) = 10 and
w(s, x) = w0(s, x) = 0.386121(s + x). The parameter values are given as

r1 = 1.17721× 10−1, r2 = 8.79936× 10−4, r3 = 2.96866× 10−6, r = 2.96866× 10−6.

4. Conclusions

In the forgoing study, the local convergence of an eighth order derivative-free method is discussed
comprehensively in Banach space. Far from other methods that depend on higher derivatives and
Taylor series, we have considered only the first derivative in our procedure. In this sense, the method
can be applied to a wider class of functions and hence its applications are expanded. Another advantage
of analyzing the convergence is the computation of a convergence ball (wherein the iterates lie) and
error estimates. Theoretical results of analysis so derived are confirmed through numerical testing on
some practical problems.
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