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Abstract: Finding the size of the dictionary is an open issue in dictionary learning (DL). We propose
an algorithm that adapts the size during the learning process by using Information Theoretic Criteria
(ITC) specialized to the DL problem. The algorithm is built on top of Approximate K-SVD (AK-SVD)
and periodically removes the less used atoms or adds new random atoms, based on ITC evaluations
for a small number of candidate sub-dictionaries. Numerical experiments on synthetic data show
that our algorithm not only finds the true size with very good accuracy, but is also able to improve
the representation error in comparison with AK-SVD knowing the true size.

Keywords: dictionary learning; sparse representation; information theoretic criteria; dictionary size

1. Introduction

Dictionary learning (DL) is now a mature field [1–3], with several efficient algorithms for solving
the basic problem or its variants and with numerous applications in image processing (denoising and
inpainting), classification, compressed sensing and others. The basic DL problem is: given N training
signals gathered as the columns of the matrix Y ∈ Rm×N and the sparsity level s, find the dictionary
D ∈ Rm×n by solving

min
D,X

‖Y − DX‖2
F

s.t. ‖x`‖0 ≤ s, ` = 1 : N

‖dj‖2 = 1, j = 1 : n

(1)

Here, ‖ · ‖F is the Frobenius norm; and x` and dj are columns of X and D, respectively. The first
constraint says that the matrix X has at most s nonzeros on each column. The second constraint is the
normalization of the atoms (columns of the dictionary).

An alternative view is to relate Equation (1) to the sparse matrix factorization—or dictionary
recovery (DR)—problem. The different assumption is that there indeed exist a dictionary D and a
sparse matrix X such that Y ≈ DX; the purpose is to recover them from the data Y . Such a ground truth
is usually not available in practical applications. However, investigating DR is useful for theoretical and
practical developments. Significant recent work on this matter can be found in [4–7]. Our contribution
belongs more to the DR line of thought.

In most DR algorithms, the dictionary size n (the number of atoms) is assumed to be known.
In DL applications, n is chosen with a rather informal trial-and-error procedure: a few sizes are used
and that giving the best performance in the application at hand is selected. A dictionary with more
atoms typically gives a smaller error: if D1 ∈ Rm×n1 and D2 ∈ Rm×n2 , with n1 < n2, we expect that
‖Y − D1X1‖2

F > ‖Y − D2X2‖2
F. However, this does not mean that D2 is necessarily better. We aim
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here at an automatic choice of the size that is the most appropriate to the data, based on Information
Theoretic Criteria (ITC).

The only previous work based on ITC [8] uses Minimum Description Length for the choice of the
size and the sparsity level. Their algorithm implements a virtual coder and searches exhaustively over
all considered dictionary sizes. A recent method [9] reporting promising results has a similar purpose,
but is based on geometric properties of the DR problem.

All other methods are based on heuristics that essentially aim to obtain a dictionary having the
same representation error as that obtained with a standard method, but with smaller size. We list a
few of the successful approaches. In [10,11], a small dictionary is grown by adding representative
atoms from time to time in the iterative DL process. Clustering ideas are used in [12–14] to reduce the
size of a large dictionary. A direct attempt of optimizing the size is employed in [15] by introducing
in the objective a proxy for the size as penalization. An Indian Buffet Process is the tool in [16].
Other techniques based on Bayesian learning are [17,18].

Unlike the method in [8] but similarly to that in [9], our approach tries to adapt the size during
the DL process. It also has a much simpler implementation, using standard ITC that do not intervene
in the learning itself, but only in the selection of the atoms. Hence, the complexity is not much higher
than that of the underlying DL algorithm.

Section 2 presents the ITC, specialized to the DL problem, and describes the pool of candidate
dictionaries during the DL algorithm. Section 3 gives the details of our algorithm for adapting the
dictionary size. Section 4 is dedicated to experimental results on synthetic data that show that our
algorithm is able to recover the size of the true dictionary, in various noise and sparsity level conditions
and with various initializations. Our algorithm also gives, almost always, recovery errors on test data
that are better than those given by the underlying DL algorithm in possession of the true dictionary size.
Comparison with the method in [9] is also favorable.

2. Ingredients

2.1. Information Theoretic Criteria

ITC serve for assessing the adequacy of a model to a process described by experimental data,
by combining its goodness of fit (approximation error) with its complexity. The underlying model in
Equation (1) is Y = DX + U, where U is a matrix with entries that follow a Gaussian distribution with
zero mean and an unknown variance (the same for all entries) [19]. Denoting T = mN, the goodness
of fit is expressed via the Root Mean Square Error

RMSE =
1√
T
‖Y − DX‖F. (2)

The complexity depends primarily on the number of parameters; in the DL or DR case, this is

NoP = sN + (m− 1)n. (3)

The first term corresponds to the number of nonzeros in X. The second term is the number of
independent elements of the dictionary; we subtract n from the total of mn elements to account for the
atom normalization constraints.

After preliminary investigation with several ITC, we kept only two for our DL approach. The first
is Bayesian Information Criterion (BIC) [20], extended to the form

EBIC = 2 log RMSE +
log T

T
NoP +

2N
T

log
(

n
s

)
. (4)

The first two terms are the standard ones; we have added a third term to account for all possible
positions of the nonzero entries in the matrix X, inspired by [21].
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The second ITC is Renormalized Maximum Likelihood (RNML) [22,23], adapted as in [24] to our
context, to which we have added the same combinatorial term as above:

ERNML1 = (T −NoP) log RMSE2

T−NoP + NoP log ‖DX‖2
F

T·NoP
+ log[NoP(T −NoP)] + 2N log (n

s).
(5)

We note that a different version, ERNML2, derived in [25], further analyzed in [26] and adapted
as Equation (5), gave results similar to those of ERNML1, thus we do not report it here. The ITC
dismissed after preliminary (and thus possibly insufficient) investigation are those from [27,28].

2.2. Candidate Dictionaries

Application of ITC needs several candidate dictionaries from which selection is made with the
minimum ITC value. Since we aim to run a single instance of the learning algorithm and, as such, we
have a single dictionary, the only possibility is to compare smaller dictionaries made of a subset of
the atoms. Even so, there are too many possible combinations. To reduce their number, we order the
atoms based on their importance in the representations. Since

DX =
n

∑
j=1

djxT
j ,

where xT
j is the j-th row of X, we sort the atoms in decreasing order of their “power”

P(dj) = ‖xT
j ‖2. (6)

We still name D the sorted dictionary. For selection, we consider dictionaries Dν ∈ Rm×ν that
are made of the first ν ≤ n atoms of D. Thus, there are at most n candidates. However, since small
dictionaries are certainly not useful, we can also impose a lower bound nmin and take ν ≥ nmin.
One can choose nmin = m or even larger values.

2.3. DL Algorithm

Many DL algorithms are suited to the framework that we propose. We confine the discussion to
standard algorithms, which aim to iteratively improve the dictionary and whose iterations have two
stages: (i) sparse coding, in which the representation matrix X is computed for fixed dictionary D; and
(ii) dictionary update, in which D is improved, possibly together with the nonzero elements of X, but
without changing the nonzero positions. Such algorithms are impervious to dictionary size changes;
atoms can be removed or added between iterations without any change in the algorithm. Since they
give good results and are fast, we adopt some of the simplest algorithms: Orthogonal Matching Pursuit
(OMP) [29] for sparse coding and Approximate K-SVD (AK-SVD) [30] for dictionary update.

3. Algorithm

We assume first that the sparsity level is known. Our strategy is implemented by Algorithm 1,
named ITC-ADL. Starting with an initial dictionary of size ninit, we run the DL algorithm. We change
the size only every c iterations, to allow the current set of atoms to be sufficiently trained together.
Thus, the selection based on ITC described in Section 2.2 can be meaningful.

Although we could compute ITC values for all dictionary sizes between nmin and the current n,
it is more efficient to consider only a smaller number of candidates ncand; note that the representations
have to be recomputed for each sub-dictionary; although this can be done economically (see below
the discussion on complexity), it may become a significant burden. Let us denote nITC the size with
minimum ITC value among the ncand largest possible dictionaries (those with sizes n, n − 1, . . . ,
n− ncand + 1).
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The main question is now how to use this value. If nITC < n, we might be tempted to continue the
learning process with only nITC atoms. However, this seems to be (assertion confirmed by numerical
experiments) a too drastic decision, that can easily lead to premature shrinking of the dictionary.
Instead, we take nITC as an indicator of the direction where n must evolve. If nITC is much smaller
than the current n, we decrease the size by δ− (this number is 5 in our experiments); if nITC is only
slightly smaller, than we decrease the size by one; finally, we interpret nITC = n as a sign that the size
needs to be increased and add δ+ atoms to the dictionary (we take δ+ = 5). There are several methods
for generating new atoms [3] (Section 3.9); we choose the simplest: random atoms.

The whole algorithm is run, as typical in DL, for a preset number K of iterations. Only at the end
of these iterations we take nITC as a true size information. With this size, we run c more DL iterations,
as a final refinement.

Algorithm 1: ITC-ADL: DL with ITC-adapted dictionary size.

Data: training signals Y ∈ Rm×N

sparsity level s
initial dictionary size ninit

number of iterations between size changes c
number of candidate sizes ncand
dictionary size change steps δ+, δ−
maximum number of iterations K

Result: learned dictionary D, adapted size n

1 Initialization: n← ninit, set D ∈ Rm×n randomly
2 for k = 1 : K do
3 Sparse coding: compute X using OMP (with sparsity level s)
4 Dictionary update: update D and X with AK-SVD iteration
5 if k mod c = 0 then
6 Sort atoms of D in decreasing order of power (Equation (6))
7 Compute ITC values for dictionaries D(:, 1 : ν), with ν = n− ncand + 1 : n
8 Let nITC be the size for which ITC is minimum
9 if nITC = n then

10 Increase size: append δ+ new atoms to D and set n← n + δ+

11 else
12 if nITC < n− δ− then
13 Decrease size: n← n− δ−

14 else
15 Slightly decrease size: n← n− 1

16 Trim dictionary: D ← D(:, 1 : n)

17 Set n← nITC, trim dictionary and run c more iterations

It is relatively hard to estimate the complexity of ITC-ADL, due to the dictionary size variations.
We describe only the extra operations with respect to a standard DL algorithm, disregarding the size.
There are two main categories of operations that increase the complexity. The first is the total number
of iterations, that has to be larger than for standard DL, in order to let the dictionary size converge.
The ITC give reliable information if the dictionary is well trained, hence neither K nor c can be small.
In the tests reported below, we took K ≥ 200 and c = 5.

The second extra operation is the computation of ITC, which involves the recomputation of
the representations for each dictionary. Since we already have the representations X for the full
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dictionary of size n, we can progressively recompute only the representations that change as the size
decreases. For example, the dictionary of size n− 1 lacks atom dn, but is otherwise identical with D.
We need to recompute only the representations that contain dn. Their number should be less than
(Ns)/n, since atom dn, which is the least used, should appear in less representations than the average.
Thus, overall, the number of recomputed representations is likely bounded by (ncands/n)N, which
is comparable with N (the number of signals represented at each iteration); since this happens only
every cth iteration, the extra complexity is relatively small.

In the experimental conditions described in the next section, ITC-ADL is about 3–5 times slower
than the underlying AK-SVD, which is one of the fastest DL algorithms. This is not an excessive
computational burden.

If the sparsity level s is not known, we simply run ITC-ADL for several candidate values; the best
ITC value decides the best (n, s) pair. Adapting also s during the algorithm may be possible, but seems
more difficult than adapting only the size and was left for future work.

4. Numerical Results

We tested our algorithm on synthetic data, obtained with “true” dictionaries Dtrue whose unit
norm atoms are generated randomly following a Gaussian distribution. Given the sparsity level s,
the representations X are also generated randomly, with nonzeros on random positions. The data
are Y = DtrueX + U, where the entries of U are statistically independent, Gaussian distributed,
with zero mean. The variance of the additive noise is chosen to have four different values for the
signal-to-noise ratio (SNR): 10 dB, 20 dB, 30 dB and 40 dB. The dictionary sizes are n ∈ {128, 192, 256};
the overcompleteness factor n/m has moderate values, as in most applications.

Some of the input data for Algorithm 1 are constant throughout all the experiments. The number
of signals is N = 4000 and their size is m = 64. The number of iterations is K ∈ {200, 300, 400},
increasing with n. The dictionary size changes are made every c = 5 iterations. The size steps are
δ+ = δ− = 5. The number of size candidates is ncand = 20. All the results are obtained with 50 runs
for the same data, but with different realizations of Dtrue and U.

We report in this section only a few representative results. More results can be found in
Appendix A. Representative Matlab sources are given at www.schur.pub.ro/download/itc-adl.zip.

4.1. Experiments with Known Sparsity Level

In all the experiments reported in this section, ITC-ADL is in possession of the true value of s,
which takes even values from 4 to 12. In the first round of experiments, the dictionary Dtrue has
ntrue = 128 atoms. The size ninit of the initial dictionary takes random values between 80 and 180,
in order to test the robustness of the algorithm to initialization.

Table 1 reports the average, minimum and maximum size n computed by ITC-ADL over the
50 runs. Our algorithm is able to find very good estimates of the size, for all considered noise and
sparsity level values. An important conclusion is that the size of the initial dictionary has no impact on
the results.

We evaluate the performance of the dictionaries given by ITC-ADL on 1000 test signals generated
similar to the training ones. For comparison, we compute the RMSE for two dictionaries: (i) Dtrue, for
which the representations are computed with OMP; and (ii) the dictionary computed by AK-SVD with
the true size n = ntrue and the same number of iterations (K = 200, in this case). We denote RMSEt
and RMSEn the RMSE obtained with these dictionaries. Both approaches have an advantage over ours:
the first has the true dictionary, so it is in fact an oracle; the second uses the same DL algorithm that we
use, but knows the size.

www.schur.pub.ro/download/itc-adl.zip
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Table 1. Minimum (top), average (middle) and maximum (bottom) sizes computed when ntrue = 128.
Left: ERNML1. Right: EBIC.

SNR ( dB) s = 4s = 4s = 4 6 8 10 12
128 128 128 128 128

10 129.02 128.22 128.04 128.12 129.74
143 132 130 130 143
128 128 128 128 128

20 128.20 128.06 128.06 128.18 128.34
130 129 129 131 137
128 128 128 128 128

30 128.18 128.14 128.26 128.24 128.94
129 133 130 131 138
128 128 128 128 128

40 128.18 128.08 128.70 128.78 130.00
129 129 143 132 140

SNR ( dB) s = 4s = 4s = 4 6 8 10 12
128 128 128 128 124

10 128.82 128.24 128.00 128.06 127.86
143 135 128 129 130
128 128 128 128 128

20 128.22 128.14 128.12 128.06 128.30
130 131 132 129 131
128 128 128 128 128

30 128.18 128.10 128.24 128.76 129.18
130 129 132 133 135
128 128 128 128 128

40 128.12 128.36 128.88 129.04 129.08
129 132 133 137 132

Table 2 shows the average value of the ratios RMSE/RMSEt and RMSE/RMSEn. Values below 1
mean that our algorithm is better. Our algorithm always gives worse results than the oracle, which is
expected, but the difference is often very small. Compared with AK-SVD, our algorithm is superior
in all cases, the advantage growing with the SNR. Another conclusion that could be drawn is that
the problem becomes harder as s and the SNR grow. The first part is natural; for the second part,
an explanation can be that, as the SNR grows, there are fewer local minima with values close to the
global one; our algorithm appears to be able to find them, while AK-SVD may be trapped in poor
local minima; running it with several initializations can improve the results.

Table 2. Ratios RMSE/RMSEt and RMSE/RMSEn on test data, when ntrue = 128. Left: ERNML1.
Right: EBIC.

SNR ( dB) s = 4s = 4s = 4 6 8 10 12

10 1.0194 1.0224 1.0258 1.0313 1.0402
0.9482 0.9741 0.9809 0.9883 0.9820

20 1.0181 1.0203 1.0235 1.0256 1.0319
0.7326 0.8360 0.8792 0.9153 0.9231

30 1.0178 1.0310 1.0432 1.0572 1.1006
0.3257 0.4835 0.6283 0.7133 0.7467

40 1.0177 1.0181 1.2080 1.1955 1.3554
0.1516 0.2402 0.5606 0.5114 0.5721

SNR ( dB) s = 4s = 4s = 4 6 8 10 12

10 1.0194 1.0224 1.0257 1.0327 1.0553
0.9482 0.9741 0.9808 0.9896 0.9964

20 1.0190 1.0192 1.0227 1.0296 1.0417
0.7332 0.8352 0.8786 0.9187 0.9318

30 1.0380 1.0228 1.0445 1.0776 1.1427
0.3323 0.4809 0.6310 0.7242 0.7722

40 1.0177 1.0536 1.1560 1.3266 1.5319
0.1516 0.2459 0.5399 0.5857 0.6495

The results for ntrue = 192 are only slightly worse, thus we jump to those for ntrue = 256, shown
in Table 3. The size ninit takes random values between 160 and 360. Now, some of the harder problems
with large sparsity level (s ≥ 10) are no longer well solved: some size estimations are wrong. However,
the good behavior of the RMSE persists: most results are near-oracle and clearly better than AK-SVD.

We can see now some differences between the two ITC: ERNML1 tends to overestimate n,
but hardly ever underestimates it, while EBIC is more prone to underestimation. However,
in most setups, both ITC give sizes that are near from the true one. Regarding the RMSE (see Table 4),
the situation is somewhat reversed: ERNML1 is slightly better than EBIC.
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Table 3. Minimum (top), average (middle) and maximum (bottom) sizes computed when ntrue = 256.
Left: ERNML1. Right: EBIC.

SNR ( dB) s = 4s = 4s = 4 6 8 10 12
256 256 256 254 330

10 258.74 256.88 256.64 346.60 444.28
268 270 261 566 616
255 256 256 256 256

20 259.80 256.54 256.50 256.62 267.36
288 261 260 260 444
256 256 256 256 256

30 258.90 261.98 260.32 269.66 325.76
312 335 357 374 477
256 256 256 256 256

40 267.02 261.50 271.12 304.62 324.72
343 343 357 422 489

SNR ( dB) s = 4s = 4s = 4 666 8 10 12
256 256 222 206 225

10 258.46 256.32 253.40 246.30 308.10
277 260 257 257 386
256 256 256 256 239

20 259.30 256.84 256.36 256.42 256.04
275 261 260 260 273
256 256 256 256 236

30 258.84 261.02 258.12 261.86 263.68
312 329 267 287 291
256 256 256 256 256

40 265.12 260.12 260.80 275.56 268.28
343 336 283 320 322

Table 4. Ratios RMSE/RMSEt and RMSE/RMSEn on test data, when ntrue = 256. Left: ERNML1.
Right: EBIC.

SNR ( dB) s = 4s = 4s = 4 6 8 10 12

10 1.0427 1.0500 1.0617 1.0859 1.4794
0.9430 0.9670 0.9717 0.9835 0.9540

20 1.0400 1.0408 1.0448 1.0508 1.0646
0.7105 0.8184 0.8342 0.8434 0.8792

30 1.0568 1.0482 1.0488 1.0616 1.1677
0.3024 0.4160 0.4996 0.5599 0.7156

40 1.1130 1.0600 1.1090 1.2461 1.3096
0.1147 0.1647 0.2471 0.4346 0.5666

SNR ( dB) s = 4s = 4s = 4 6 8 10 12

10 1.0426 1.0504 1.0905 1.1843 1.5705
0.9429 0.9674 0.9981 1.0723 1.0123

20 1.0385 1.0414 1.0466 1.0563 1.1320
0.7095 0.8189 0.8356 0.8479 0.9375

30 1.0535 1.0466 1.0610 1.0882 1.2282
0.3017 0.4152 0.5066 0.5718 0.7482

40 1.1304 1.0574 1.0790 1.2541 1.2866
0.1164 0.1627 0.2410 0.4363 0.5613

4.2. Execution Times and Discussion of Parameter Values

We present here some characteristics of ITC-ADL based on experimental evidence.
The average running times of ITC-ADL, in the configurations described above, are shown in

Table 5, together with those of AK-SVD. Over the considered n and s values, the ratio between the
execution times of ITC-ADL and AK-SVD varies between 3.34 and 4.12.

Table 5. Average execution times (in seconds) of ITC-ADL (with ERNML1) and AK-SVD.

nnn Algorithm s = 4s = 4s = 4 6 8 10 12

128 ITC-ADL 39.2 52.1 66.6 83.7 104.6
AK-SVD 10.3 14.2 17.9 22.0 26.4

192 ITC-ADL 75.0 101.8 133.2 165.9 212.6
AK-SVD 20.3 28.5 36.3 44.2 52.6

256 ITC-ADL 121.9 162.2 212.1 267.0 374.2
AK-SVD 36.0 48.5 63.0 75.9 90.7

Without reporting any actual times, we note that the ITC and the SNR have almost no influence.
In addition, the execution time is roughly proportional with the number of iterations K and the number
of signals N. The other parameters have obvious influences: more frequent dictionary size changes
(smaller c) increase the time; same effect has a larger number of candidates ncand; the size steps δ+ and
δ− only slightly affect the time. We note that our implementation is not fully optimized, but it is based
on a very efficient implementation of AK-SVD [30].

We chose the parameter values for the experiments reported in the previous section with the
aim to show that a single set of values ensures good results for all considered dictionary sizes and
sparsity levels. In fact, ITC-ADL is quite robust to the parameter values. Nevertheless, fine tuning is
possible when n and s have a more limited range of values. We present below a few results that show
the effect of the parameters on the outcome of ITC-ADL. We considered only the cases n ∈ {128, 256},



Algorithms 2019, 12, 178 8 of 13

s ∈ {6, 10}, SNR= 30 dB; the ITC is ERNML1. Since we have run again the algorithm, some results
may be different from those from the previous section, due to the random factors involved.

We gave the size steps δ+ and δ− values between 2 and 8. For n = 128, the results are very similar.
For n = 256, a trend is (barely) visible in Table 6: larger size steps lead to poorer results. This is natural,
since a large dictionary increase is a perturbing factor when the algorithm is near convergence. On the
other hand, a small size step is not useful in the first iterations of the algorithm; if the initial size
is far from the true one, the convergence can be very slow. Thus, although we have obtained good
results with constant δ+ = δ− = 5, some refinements are certainly possible. It makes sense to decrease
δ+, δ− as the algorithm evolves. This allows fine tuning of the size when the algorithm approaches
convergence.

Table 6. Average dictionary sizes given by ITC-ADL, for n = 256, s = 6, when δ+ = δ− vary.

δ+, δ−δ+, δ−δ+, δ− 2 3 4 5 6 7 8

size 257.90 257.88 257.88 258.16 259.86 258.16 259.24

The number of candidates ncand has more influence on the results but again this is visible especially
for n = 256. Table 7 shows the average dictionary sizes given by ITC-ADL for ncand ∈ {10, 15, 20, 25}.
It is clear that a larger number of candidates is beneficial; since this leads to a larger execution time,
a compromise is necessary. This was our reason for taking ncand = 20. However, for n = 128,
even ncand = 10 seems sufficient, as the sizes (not shown here) are virtually the same for all considered
ncand values.

Table 7. Average dictionary sizes given by ITC-ADL, for n = 256, for several values of ncand.

ncand = 10ncand = 10ncand = 10 15 20 25

s = 6 263.86 258.34 257.30 256.80
s = 10 288.18 286.68 280.66 274.84

We turn now to the parameter c, the number of iterations between size changes. Intuitively, small
values of c lead to better results, but with more computational effort. Table 8 shows the results for
n = 256, for c ∈ {3, 4, 5, 6, 8, 10}. The effect of c is visible for the more difficult problems. For small n
and s, a larger c can give faster good results.

Table 8. Average dictionary sizes given by ITC-ADL, for n = 256, for several values of c.

c = 3c = 3c = 3 4 5 6 8 10

s = 6 257.16 258.04 258.32 256.92 257.28 256.96
s = 10 265.36 273.00 280.36 285.46 282.64 284.02

Finally, we partially justify our choices for the number of iterations. Generally, the rule is simple:
more iterations lead to better results. However, there are many factors that influence the convergence
speed and there are many random elements in the algorithm (the initial dictionary, the added atoms,
the initial size and, of course, the noise). We illustrate in Figure 1 the evolution of the main variables,
the current dictionary size (as given by the ITC) and RMSE (on the training data), for n = 128, s = 10
and 10 runs of ITC-ADL with random initial sizes. The values are shown for iterations that are multiple
of c; the size is constant between them and the RMSE typically decreases. It is visible that, after
100 iterations, the size is close to the true one and the RMSE is at about its final (and almost optimal,
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as we have seen) value. Typically, the size becomes larger than the true one when the RMSE reaches
the lowest value. Then, ITC-ADL gradually trims the dictionary almost without changing the RMSE.
Thus, if our purpose is dictionary learning (and perfect recovery is not sought because there is actually
no true dictionary), the number of iterations can be smaller than for dictionary recovery.
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Figure 1. Evolution of the dictionary size (left) and of the RMSE (right) during 10 runs of ITC-ADL,
with n = 128, s = 10.

4.3. Experiments with Unknown Sparsity Level

Using the same setup as in Section 4.1, we run ITC-ADL with several values of s, not only the true
one, and choose the sparsity level that gives the best ITC value. Otherwise, the algorithm is unchanged
and estimates the dictionary size as usual. Table 9 presents the average values of the sparsity level and
of the dictionary size given by the above procedure for ntrue = 128.

The variance of the estimated s is very low: typically, only two values are obtained. For example,
when s = 8, for SNR = 10 dB, only values of 6 and 7 are obtained; when SNR=40 dB, only values of 8
and 9 are obtained; etc. One can see that the sparsity level estimations are rather accurate; the only
deviation is at low SNR, when s is underestimated. The dictionary size is well estimated, in accordance
with the previous results.

Table 9. Average values of s (top) and n (bottom), when ntrue = 128. Left: ERNML1. Right: EBIC.

SNR ( dB) s = 4s = 4s = 4 6 8 10 12

10 4.00 5.10 6.90 7.88 8.24
128.38 128.14 128.04 128.02 128.04

20 4.00 6.00 8.00 10.00 11.86
128.14 128.02 128.12 128.16 128.00

30 4.02 6.00 8.06 10.18 12.16
128.04 128.14 128.52 128.46 129.16

40 4.04 6.10 8.16 10.42 12.40
128.22 128.72 129.36 132.66 132.52

SNR ( dB) s = 4s = 4s = 4 6 8 10 12

10 3.98 4.64 5.00 6.00 8.00
128.78 128.10 128.10 128.12 127.88

20 4.00 6.00 8.00 9.76 11.10
128.28 128.02 128.10 128.14 128.16

30 4.04 6.00 8.08 10.12 12.30
128.14 128.04 128.56 128.78 129.56

40 4.00 6.04 8.14 10.48 12.60
128.12 128.66 130.18 130.34 132.76

A competing algorithm is Adaptive ITKrM [9] (Matlab sources available at https://www.uibk.ac.
at/mathematik/personal/schnass/code/adl.zip), reported to give very good results in DR problems.
However, it seems that this algorithm needs more signals than ours. In our setup with N = 4000,
A-ITKrM gives very poor results. Table 10 gives results for N = 20,000, where A-ITKrM becomes
competitive. Due to time constraints, the results are averaged over only 20 runs. The table shows
the obtained average sparsity level, dictionary size, and ratio RMSE/RMSEi, where RMSE is the
error of our algorithm (using ERNML1) and RMSEi is the error of A-ITKrM. Since A-ITKrM severely
underestimates s, we have computed RMSEi (and RMSE) using OMP with the true s. Even so, our
algorithm finds a more accurate version of the dictionary. While ITKrM gives very good estimates

https://www.uibk.ac.at/mathematik/personal/schnass/code/adl.zip
https://www.uibk.ac.at/mathematik/personal/schnass/code/adl.zip
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of n and a good approximation of the dictionary, it seems unable to refine the dictionary as well as
our algorithm.

In the current unoptimized implementations, the execution times of ITC-ADL and A-ITKrM are
comparable, our algorithm being faster for small s and slower for large s. Limited trials with N = 50,000
suggest that the above remarks continue to stand true.

Table 10. Results with A-ITKrM: average values of s (top), n (middle) and RMSE/RMSEi (bottom).

SNR ( dB) s = 4s = 4s = 4 6 8 10 12

10
3.00 3.00 3.00 3.00 3.00

128.00 127.85 126.40 123.55 123.20
0.9906 0.9856 0.9545 0.9045 0.8995

20
3.00 4.00 4.00 4.00 4.00

128.00 128.00 128.00 128.00 128.50
0.9454 0.9113 0.8821 0.8544 0.8217

30
3.00 4.00 4.00 4.00 4.00

128.00 128.00 128.00 128.00 128.55
0.6906 0.5830 0.5186 0.4830 0.4564

40
3.00 4.00 4.00 4.00 4.00

128.00 128.00 128.00 128.05 128.45
0.2868 0.2247 0.2234 0.2462 0.3249

5. Conclusions

We present a dictionary learning algorithm that works for unknown dictionary size. Using
specialized Information Theoretic Criteria, based on BIC and RNML, the size is adapted during
the evolution of a standard DL algorithm (AK-SVD in our case). Experimental results show
that the algorithm is able to discover the true size of the dictionary used to generate data and,
somewhat surprisingly, can give better results than AK-SVD run with the true size.

There are several possible directions for future research. Testing ITC-ADL in various applications
is a first aim; they can range from direct applications, such as denoising or missing data
estimation (inpainting), to more complex ones, e.g. classification. We also plan to combine the
ITC idea with other DL algorithms, not only AK-SVD, especially with algorithms for which the
sparsity level is not the same for all signals. Another direction is to find ITC that are suited for other
types of noise, not Gaussian as here, with the final purpose of obtaining a single tool that analyzes
data, finds the appropriate sparse representation model and designs the optimal dictionary.

Author Contributions: Conceptualization, B.D.; methodology, B.D. and C.D.G.; software, B.D. and C.D.G.;
validation, B.D. and C.D.G.; formal analysis, B.D. and C.D.G.; investigation, B.D. and C.D.G.; writing—original
draft preparation, B.D.; writing—review and editing, B.D. and C.D.G.; and visualization, B.D. and C.D.G.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

We present here more numerical results for supporting our algorithm. The setup is that already
described in Section 4.

1. Known sparsity level. For each dictionary size ntrue ∈ {128, 192, 256}, we present three tables
with results obtained with the two criteria, ERNML1 and EBIC. (Some of the tables have already been
presented in the main body of this paper and are only mentioned again here for full reference.) The first
gives the average, minimum and maximum size n computed by ITC-ADL. The second shows RMSE
information on the training data and the third shows RMSE information on test data. These tables
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are as follows: for ntrue = 128, Tables 1, A1 and 2; for ntrue = 192, Tables A2–A4 (the size ninit takes
random values between 120 and 280); and for ntrue = 256, Tables 3, A5 and 4.

2. Unknown sparsity level. Results for ntrue = 192 are given in Table A6.

Table A1. Ratios RMSE/RMSEt and RMSE/RMSEn on the training data, when ntrue = 128.
Left: ERNML1. Right: EBIC.

SNR ( dB) s = 4s = 4s = 4 6 8 10 12

10 0.9798 0.9772 0.9742 0.9701 0.9709
0.9536 0.9758 0.9815 0.9882 0.9844

20 0.9820 0.9815 0.9820 0.9812 0.9837
0.7512 0.8515 0.8874 0.9205 0.9306

30 0.9828 0.9954 1.0035 1.0213 1.0733
0.3473 0.4944 0.6410 0.7268 0.7691

40 0.9829 0.9844 1.1721 1.2104 1.2899
0.1556 0.2464 0.5640 0.5444 0.5843

SNR ( dB) s = 4s = 4s = 4 6 8 10 12

10 0.9800 0.9775 0.9744 0.9726 0.9873
0.9539 0.9760 0.9817 0.9908 1.0011

20 0.9831 0.9810 0.9815 0.9848 0.9941
0.7520 0.8511 0.8870 0.9238 0.9404

30 1.0015 0.9870 1.0061 1.0399 1.1056
0.3543 0.4915 0.6453 0.7375 0.7905

40 0.9837 1.0131 1.1004 1.2865 1.4669
0.1557 0.2505 0.5309 0.5972 0.6738

Table A2. Minimum (top), average (middle) and maximum (bottom) sizes computed when ntrue = 192.
Left: ERNML1. Right: EBIC.

SNR ( dB) s = 4s = 4s = 4 6 8 10 12
192 192 192 191 193

10 193.20 192.52 192.10 192.44 284.18
203 199 195 198 471
192 192 192 192 192

20 193.02 192.38 192.16 192.14 192.10
199 195 194 194 194
192 192 192 192 192

30 192.80 192.38 193.56 194.40 195.94
204 194 202 219 219
192 192 192 192 192

40 195.68 193.92 194.18 199.70 200.78
268 260 217 271 329

SNR ( dB) s = 4s = 4s = 4 6 8 10 12
192 192 192 185 170

10 193.30 192.40 192.02 191.60 190.52
203 201 193 193 200
192 192 192 192 192

20 193.40 192.40 192.20 192.10 192.28
217 195 195 194 195
192 192 192 192 192

30 192.70 192.38 192.86 194.38 195.06
200 194 197 202 211
192 192 192 192 192

40 194.34 193.92 193.98 197.06 199.38
269 260 208 222 230

Table A3. Ratios RMSE/RMSEt and RMSE/RMSEn on the training data, when ntrue = 192.
Left ERNML1. Right: EBIC.

SNR ( dB) s = 4s = 4s = 4 6 8 10 12

10 0.9702 0.9659 0.9604 0.9538 0.9388
0.9541 0.9739 0.9803 0.9818 0.9560

20 0.9764 0.9715 0.9702 0.9694 0.9684
0.7464 0.8375 0.8649 0.8916 0.8764

30 0.9773 0.9826 0.9782 0.9869 0.9768
0.3388 0.4551 0.5476 0.6219 0.6722

40 1.1138 1.0270 1.0029 1.0568 1.0202
0.1525 0.1830 0.3688 0.5038 0.4862

SNR ( dB) s = 4s = 4s = 4 6 8 10 12

10 0.9702 0.9661 0.9611 0.9636 1.0214
0.9542 0.9741 0.9809 0.9920 1.0401

20 0.9750 0.9711 0.9697 0.9704 0.9805
0.7452 0.8371 0.8645 0.8925 0.8872

30 0.9758 0.9727 0.9841 1.0060 1.0483
0.3383 0.4507 0.5516 0.6326 0.7190

40 1.0361 0.9898 1.0243 1.1392 1.1162
0.1447 0.1765 0.3751 0.5360 0.5331

Table A4. Ratios RMSE/RMSEt and RMSE/RMSEn on test data, when ntrue = 192. Left: ERNML1.
Right: EBIC.

SNR ( dB) s = 4s = 4s = 4 6 8 10 12

10 1.0307 1.0359 1.0426 1.0531 1.0994
0.9441 0.9703 0.9780 0.9794 0.9944

20 1.0323 1.0302 1.0344 1.0396 1.0470
0.7156 0.8179 0.8519 0.8825 0.8644

30 1.0307 1.0403 1.0497 1.0624 1.0679
0.3152 0.4260 0.5355 0.6045 0.6787

40 1.1950 1.1187 1.0985 1.2153 1.1240
0.1488 0.1761 0.3760 0.5180 0.4814

SNR ( dB) s = 4s = 4s = 4 6 8 10 12

10 1.0306 1.0358 1.0429 1.0633 1.1467
0.9440 0.9703 0.9783 0.9890 1.0371

20 1.0311 1.0297 1.0339 1.0396 1.0579
0.7148 0.8175 0.8514 0.8825 0.8733

30 1.0306 1.0289 1.0492 1.0781 1.1302
0.3152 0.4214 0.5355 0.6113 0.7179

40 1.1135 1.0603 1.0940 1.2805 1.2214
0.1383 0.1678 0.3725 0.5369 0.5312
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Table A5. Ratios RMSE/RMSEt and RMSE/RMSEn on the training data, when ntrue = 256.
Left: ERNML1. Right: EBIC.

SNR ( dB) s = 4s = 4s = 4 6 8 10 12

10 0.9600 0.9543 0.9464 0.8946 1.0978
0.9543 0.9731 0.9751 0.9363 0.8748

20 0.9644 0.9617 0.9583 0.9555 0.9560
0.7466 0.8394 0.8505 0.8623 0.8897

30 0.9813 0.9645 0.9615 0.9544 1.0171
0.3420 0.4440 0.5221 0.5669 0.6956

40 1.0104 0.9607 0.9248 0.9386 1.0586
0.1253 0.1821 0.2379 0.3860 0.5270

SNR ( dB) s = 4s = 4s = 4 6 8 10 12

10 0.9599 0.9548 0.9717 1.0241 1.2422
0.9542 0.9736 1.0012 1.0716 0.9896

20 0.9635 0.9620 0.9601 0.9612 1.0299
0.7459 0.8397 0.8521 0.8674 0.9616

30 0.9786 0.9669 0.9719 0.9830 1.1147
0.3416 0.4448 0.5287 0.5821 0.7571

40 1.0327 0.9502 0.9468 1.0250 1.1443
0.1278 0.1802 0.2421 0.4177 0.5719

Table A6. Average values of s (top) and n (bottom), when ntrue = 192. Left: ERNML1. Right: EBIC.

SNR ( dB) s = 4s = 4s = 4 6 8 10 12

10 4.00 5.00 6.24 7.28 8.04
194.26 193.22 192.18 192.26 200.42

20 4.00 6.00 8.02 9.98 11.34
193.44 192.40 192.46 192.22 194.66

30 4.10 6.00 8.12 10.20 12.24
193.12 192.48 193.30 196.24 199.38

40 4.00 6.04 8.18 10.58 12.28
192.64 192.72 195.58 201.98 208.30

SNR ( dB) s = 4s = 4s = 4 6 8 10 12

10 3.98 4.20 4.96 6.00 8.00
193.66 192.54 192.60 189.00 179.04

20 4.00 6.00 8.00 9.52 10.84
193.84 192.22 192.18 192.10 192.32

30 4.00 6.06 8.08 10.10 12.00
193.16 192.68 192.84 194.74 195.02

40 4.06 6.06 8.22 10.68 12.16
193.86 193.04 194.40 202.26 201.56
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26. Giurcăneanu, C.; Razavi, S.; Liski, A. Variable selection in linear regression: Several approaches based on
normalized maximum likelihood. Signal Process. 2011, 91, 1671–1692.

27. Akaike, H. Autoregressive model fitting for control. Ann. Inst. Stat. Math. 1971, 23, 163–180.
28. Hannan, E.J.; Quinn, B.G. The Determination of the Order of an Autoregression. J. R. Stat. Soc. Ser. B

(Methodol.) 1979, 41, 190–195.
29. Pati, Y.; Rezaiifar, R.; Krishnaprasad, P. Orthogonal Matching Pursuit: Recursive Function Approximation

with Applications to Wavelet Decomposition. In Proceedings of the 27th Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, USA, 1–3 November 1993; Volume 1, pp. 40–44.

30. Rubinstein, R.; Zibulevsky, M.; Elad, M. Efficient Implementation of the K-SVD Algorithm Using Batch Orthogonal
Matching Pursuit; Technical Report CS-2008-08; Technion University: Haifa, Israel, 2008.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Ingredients
	Information Theoretic Criteria
	Candidate Dictionaries
	DL Algorithm

	Algorithm
	Numerical Results
	Experiments with Known Sparsity Level
	Execution Times and Discussion of Parameter Values
	Experiments with Unknown Sparsity Level

	Conclusions
	
	References

