#
Time-Universal Data Compression^{ †}

^{1}

^{2}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. The Statement of the Problem and Preliminary Example

**Definition**

**1.**

**Comment**

**1**

**Comment**

**2**

## 3. The Time-Universal Code for the Finite Set of Data Compressors

#### 3.1. Theoretical Consideration

**Theorem**

**1.**

#### 3.2. Experiments

## 4. The Time-Universal Code for Stationary Ergodic Sources

**Theorem**

**2.**

## Funding

## Conflicts of Interest

## Appendix A

**Proof**

**of**

**Theorem**

**1.**

**Proof**

**of**

**Theorem**

**2.**

## References

- Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J.
**1948**, 27, 379–423. [Google Scholar] - Fitingof, B.M. Optimal encoding for unknown and changing statistics of messages. Probl. Inform. Transm.
**1966**, 2, 3–11. [Google Scholar] - Kolmogorov, A.N. Three approaches to the quantitative definition of information. Probl. Inform. Transm.
**1965**, 1, 3–11. [Google Scholar] [CrossRef] - Krichevsky, R. A relation between the plausibility of information about a source and encoding redundancy. Probl. Inform. Transm.
**1968**, 4, 48–57. [Google Scholar] - Cleary, J.; Witten, I. Data compression using adaptive coding and partial string matching. IEEE Trans. Commun.
**1984**, 32, 396–402. [Google Scholar] [CrossRef] - Rissanen, J.; Langdon, G.G. Arithmetic coding. IBM J. Res. Dev.
**1979**, 23, 149–162. [Google Scholar] [CrossRef] - Ziv, J.; Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory
**1977**, 23, 337–343. [Google Scholar] [CrossRef] - A Block-Sorting Lossless Data Compression Algorithm. Available online: https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf (accessed on 15 May 2019).
- Ryabko, B.Y. Data compression by means of a “book stack”. Probl. Inf. Transm.
**1980**, 16, 265–269. [Google Scholar] - Bentley, J.; Sleator, D.; Tarjan, R.; Wei, V. A locally adaptive data compression scheme. Commun. ACM
**1986**, 29, 320–330. [Google Scholar] [CrossRef] [Green Version] - Ryabko, B.; Horspool, N.R.; Cormack, G.V.; Sekar, S.; Ahuja, S.B. Technical correspondence. Commun. ACM
**1987**, 30, 792–797. [Google Scholar] - Kieffer, J.C.; Yang, E.H. Grammar-based codes: A new class of universal lossless source codes. IEEE Trans. Inf. Theory
**2000**, 46, 737–754. [Google Scholar] [CrossRef] - Yang, E.H.; Kieffer, J.C. Efficient universal lossless data compression algorithms based on a greedy sequential grammar transform. i. without context models. IEEE Trans. Inf. Theory
**2000**, 46, 755–777. [Google Scholar] [CrossRef] - Drmota, M.; Reznik, Y.A.; Szpankowski, W. Tunstall code, Khodak variations, and random walks. IEEE Trans. Inf. Theory
**2010**, 56, 2928–2937. [Google Scholar] [CrossRef] - Ryabko, B. A fast on-line adaptive code. IEEE Trans. Inf. Theory
**1992**, 28, 1400–1404. [Google Scholar] [CrossRef] - Willems, F.M.J.; Shtarkov, Y.M.; Tjalkens, T.J. The context-tree weighting method: Basic properties. IEEE Trans. Inf. Theory
**1995**, 41, 653–664. [Google Scholar] [CrossRef] - Ryabko, B.; Astola, J.; Malyutov, M. Compression-Based Methods of Statistical Analysis and Prediction of Time Series; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Li, M.; Vitanyi, P. An Introduction to Kolmogorov Complexity and Its Applications, 3rd ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Calude, C.S. Information and Randomness—An Algorithmic Perspective, 2nd ed.; Springer: Berlin, Germany, 2002. [Google Scholar]
- Downey, R.; Hirschfeldt, D.R.; Nies, A.; Terwijn, S.A. Calibrating randomness. Bull. Symb. Log.
**2006**, 12, 411–491. [Google Scholar] [CrossRef] - Hutter, M. Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability; Springer: Berlin, Germany, 2005. [Google Scholar]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley-Interscience: New York, NY, USA, 2006. [Google Scholar]
- Mahoney, M. Data Compression Programs. Available online: http://mattmahoney.net/dc/ (accessed on 15 March 2019).
- Krichevsky, R. Universal Compression and Retrival; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Ryabko, B. Twice-universal coding. Probl. Inf. Transm.
**1984**, 3, 173–177. [Google Scholar]

$\mathbf{File}$ | Length (bites) | Best Compressor | Chosen Compressor | Chosen/Best (Ratio of Length) |
---|---|---|---|---|

BIB | 111,261 | nanozip | lpaq8 | 1.06 |

BOOK1 | 768,771 | nanozip | nanozip | 1 |

BOOK 2 | 610,856 | nanozip | nanozip | 1 |

GEO | 102,400 | nanozip | ccm | 1.07 |

NEWS | 377,109 | nanozip | nanozip | 1 |

OBJ1 | 21,504 | nanozip | tornado | 1.23 |

OBJ2 | 246,814 | nanozip | lpaq8 | 1.08 |

PAPER1 | 53,161 | nanozip | tornado | 1.52 |

PAPER2 | 82,199 | nanozip | tornado | 1.54 |

PIC | 513,216 | zpaq | bbb | 1.25 |

PROGC | 39,611 | nanozip | tornado | 1.42 |

PROGL | 71,646 | nanozip | tornado | 1.44 |

PROGP | 49,379 | lpaq8 | tornado | 1.4 |

TRANS | 93,695 | lpaq8 | lpaq8 | 1 |

$\mathbf{File}$ | Legth | Best Compressor | Chosen Compressor | Chosen/Best (Ratio of Length) |
---|---|---|---|---|

BIB | 111,261 | nanozip | nanozip | 1 |

BOOK1 | 768,771 | nanozip | nanozip | 1 |

BOOK 2 | 610,856 | nanozip | nanozip | 1 |

GEO | 102,400 | nanozip | nanozip | 1 |

NEWS | 377,109 | nanozip | lpq1v2 | 1.14 |

OBJ1 | 21,504 | nanozip | ccm | 1.17 |

OBJ2 | 246,814 | nanozip | nanozip | 1 |

PAPER1 | 53,161 | nanozip | lpaq8 | 1.19 |

PAPER2 | 82,199 | nanozip | nanozip | 1 |

PIC | 513,216 | zpaq | bbb | 1.25 |

PROGC | 39,611 | nanozip | lpaq8 | 1.04 |

PROGL | 71,646 | nanozip | lpaq8 | 1.03 |

PROGP | 49,379 | lpaq8 | lpaq8 | 1 |

TRANS | 93,695 | lpaq8 | lpaq8 | 1 |

Length of File (byte) | Number of Files | Ratio “Chosen Best” | Average “Worst/best” | Average “Chosen/Best” |
---|---|---|---|---|

≤${10}^{5}$ | 1496 | 8% | 112.87% | 103.57% |

${10}^{5}\u2013{10}^{6}$ | 1122 | 45.72% | 131.22% | 102.04% |

${10}^{6}\u2013{10}^{8}$ | 384 | 71% | 147.95% | 100.99% |

Length of File (byte) | Number of Files | Ratio “Chosen Best” | Average “Worst/Best” | Average “Chosen/Best” |
---|---|---|---|---|

≤${10}^{5}$ | 1496 | 16% | 112.87% | 102.14% |

${10}^{5}\u2013{10}^{6}$ | 1122 | 53.63% | 131.22% | 101.33% |

${10}^{6}\u2013{10}^{8}$ | 384 | 73% | 147.95% | 100.84% |

Length of File (byte) | Number of Files | Ratio “Chosen Best” | Average “Worst/Best” | Average “Chosen/Best” |
---|---|---|---|---|

≤${10}^{5}$ | 1496 | 14% | 112.87% | 102.48% |

${10}^{5}\u2013{10}^{6}$ | 1122 | 54.9% | 131.22% | 101.92% |

${10}^{6}\u2013{10}^{8}$ | 384 | 73% | 147.95% | 100.86% |

Length of File (byte) | Number of Files | Ratio “Chosen Best” | Average “Worst/Best” | Average “Chosen/Best” |
---|---|---|---|---|

≤${10}^{5}$ | 1496 | 10% | 112.87% | 103.12% |

${10}^{5}\u2013{10}^{6}$ | 1122 | 44.69% | 131.22% | 102.54% |

${10}^{6}\u2013{10}^{8}$ | 384 | 72% | 147.95% | 100.88% |

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ryabko, B.
Time-Universal Data Compression. *Algorithms* **2019**, *12*, 116.
https://doi.org/10.3390/a12060116

**AMA Style**

Ryabko B.
Time-Universal Data Compression. *Algorithms*. 2019; 12(6):116.
https://doi.org/10.3390/a12060116

**Chicago/Turabian Style**

Ryabko, Boris.
2019. "Time-Universal Data Compression" *Algorithms* 12, no. 6: 116.
https://doi.org/10.3390/a12060116