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Abstract: Multiagent systems can be seen as an approach to software engineering for the design
and development of complex, distributed software. Generally speaking, multiagent systems provide
two main abstractions for modularizing the software: the agents and the environment where
agents operate. In this paper, we argue that also the social relationships among the agents should
be expressed explicitly and become first-class objects both at design- and at development-time.
In particular, we propose to represent social relationships as commitments that are reified as resources
in the agents’ environment and can be directly manipulated by the agents via standard operations. We
demonstrate that this view induces an agent programming schema that is substantially independent
of the actual agent platform, provided that commitments are available as explained. The paper
exemplifies the schema on two agent platforms, JADE and JaCaMo, where commitments are made
available via the 2COMM library.

Keywords: social commitments; agents and artifacts; agent-oriented software engineering

1. Introduction and Motivation

Multiagent Systems (MAS) are a preferred choice for building complex systems where the
autonomy of each component is a major requirement. Agent-oriented software engineers can choose
from a substantial number of agent platforms (see, e.g., [1] for an overview). Tools like JADE [2],
TuCSoN [3], DESIRE [4], and JaCaMo [5] all provide coordination mechanisms and communication
infrastructures, but in our opinion, they lack abstractions that allow a clear and explicit modeling
of interaction. Basically, the way in which agents interact is spread across and “hard-coded” into
agent implementations. This choice overly ties agent implementations with a negative impact on
software reuse. A clear separation of the agents from the specification of their coordination would bring
advantages both on the design and on the implementation of MAS by bringing in a greater decoupling.
Our claim is that an explicit representation of the social relationships among agents is beneficial since
it improves code modularity and flexibility in the interaction. We practically demonstrate these
advantages when social relationships are modeled as social commitments [6] and reified as resources in
the environment. A commitment is a promise, or contract, that an agent (debtor) makes to another one
(creditor). Commitments have a normative power since they induce an obligation upon the debtor to
bring about a condition, when a specific context holds true. A peculiarity of commitments is that they
can only be created by their debtor. Thus, by properly selecting the terms of the contract, an agent can
create a commitment so as to entice the cooperation of another agent.

This paper significantly extends and is complementary to the work presented in [7]. The main
focus, here, is on the definition of a conceptual architecture for modeling multiagent interactions,
which encompasses the notion of social relationship as a first-class entity. Social relationships,
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captured by social commitments, are made available to the agents as artifacts, that the agents can
directly manipulate instead of passing through interaction protocols. Despite relying on the 2COMM
infrastructure, which is used here to exemplify the feasibility of the approach, the discussion is abstract
and aims at providing a general model that can be used by the systems’ designers to program agent
interaction. As distinct from previous work, like [8], the attention is placed on the characterization
of the key components of the conceptual architecture and on how they can provide a guideline for
the development of the individual agents. It is not focused on the programming aspects related to the
development of an infrastructure, supporting the picture above (as the previous work was).

One of the paper’s major contributions lies in the definition of a schema, rooted in the mentioned
architecture, for programming the way in which agents create and manage their interactions with
others. We show how the modeling of interaction is a good starting point in the development of
a distributed system when it comes to programming the agents. To this end, we rely on social
commitments [9]. In particular, we show how, by relying on reified commitments, it is possible
to devise schemas for programming agents based upon handling the agents’ mutual engagements.
Notably, such schemas are independent of any specific agent platform because they only depend on
the standardized lifecycle of commitments. Two programming schemas are introduced for helping
the programmer: entice (used to obtain the cooperation of another agent by creating commitments)
and cooperate (used to properly handle commitment state changes). The 2COMM [8] tool is used to
exemplify the implementation of such a platform by building artifacts that incorporate commitments
in a way that is not bound to any agent platform. Indeed, for using 2COMM within a specific agent
platform, it is sufficient to realize a dedicated connector. So far, two connectors make 2COMM
available to JADE and JaCaMo agents.

Relying on artifacts has the advantage of transforming social relationships and coordination
schemas into resources, and this allows agents to recognize, accept, manipulate, reason on them,
and decide whether to conform to them dynamically (a basis for coordination [10]). In order to
turn the social relationships into reified resources, we rely on the Agents and Artifacts meta-model
(A&A) [11,12], which provides abstractions for environments and artifacts that can be acted upon,
observed, perceived, notified, and so on. 2COMM adopts the abstraction of artifact to construct
commitment artifacts that realize a form of mediated, programmable communication.

Finally, we resort to a novel logistics scenario to explain the practical use of the two patters,
showing how the interactions among a number of agents can be implemented in a uniform way both
for JADE and for JaCaMo agents.

Organization

The paper is organized as follows. After a brief positioning regarding the state-of-the-art and
a short recall about social commitments, reported in Section 3, Section 4 presents the conceptual
architecture for an agent platform supporting commitments and general programming schemas for
agents, grounded in the described architecture. The 2COMM middleware is introduced as a possible
practical realization of the conceptual architecture in Section 5, where the general programming
schema is applied in two existing agent platforms: JADE and JaCaMo. Section 6 exemplifies the agent
programming schema in a non-trivial logistic scenario in both agent platforms used as a reference.

2. Related Works

Coordination is a critical aspect of multiagent systems, and not surprisingly, many initiatives
exist in the literature that aim at modeling it (see, e.g., [13,14]). A fundamental approach for modeling
coordination is based on message protocols. For instance, the well-known Contract Net Protocol
(CNP) [15] has been developed to specify problem-solving communication and control for a group
of individuals in a distributed setting. A disadvantage of message protocols, however, is that
the interaction logic is intermingled with the agent control logic. This lack of concern separation
hampers software modularity and reuse. As advocated by Philippsen [16] in his survey on Concurrent
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Object-Oriented Languages (COOLs), for promoting software modularity, coordination should be
implemented on the side of the callee. Namely, the coordination should be implemented outside the
agents, in a class/resource that is accessed concurrently by the agents being coordinated.

This limitation of message protocols has led many researchers in the field to look at agent
organizations as a promising way to model coordination. Intuitively, an organization establishes a
society of agents that is characterized by a set of organizational goals and a set of norms. Agents,
playing one or more roles, should accomplish the societal goals respecting the norms. Electronic
institutions [17,18], similarly to organizations, use norms for regulating the agents’ interactions.
Differently from agents, however, electronic institutions have no goals of their own and can be
considered as a sort of monitor controlling the agents’ behaviors. For example, the abstract architecture
of e-institutions envisioned by Ameli [19,20] places a middleware, made of governors and staff agents,
between participating agents and an agent communication infrastructure. The environment is nothing
agents can sense and act upon, but rather, it is a conceptual one. Agents communicate with each other
by means of speech acts, and behind the scene, the middleware mediates such communication thanks
to a body of norms and laws.

Organizations add to the picture the notion of organizational goal, distributing it through the roles
that make up the organization [21]. Among the current proposals, the organizational infrastructure
in [22], as well as JaCaMo are based on Moise+, which allows both for the enforcement and the
regimentation of the rules of the organization. This is done by defining a set of conditions to be
achieved and the roles that are permitted or obliged to perform them. Nevertheless, as already pointed
out in [23], very few agent frameworks address interaction as a first-class entity. An exception is
represented by the interaction component in [24,25] for the JaCaMo platform. The interaction component
enables both agent-to-agent and agent-to-environment interaction, providing guidelines of how a
given organizational goal should be achieved, with a mapping from organizational roles to interaction
roles. Guidelines are encoded in an automaton-like shape, where states represent protocol steps, and
transitions between states are associated with (undirected) obligations: the execution of such steps
creates obligations on some agents in the system, which can concern actions performed by the agents in
the environment, messages that an agent sends to another agent, and events that an agent can perceive
(i.e., events emitted from objects in the environment). The specification of interaction via automata,
however, shows a rigidity that prevents agents from taking advantage of the opportunities and of
handling exceptions in dynamic and uncertain multiagent environments [26,27]. Agents are, in fact,
confined to the execution sequences provided by the automaton.

In contrast to this approach, since the seminal papers by Yolum and Singh [26,28],
commitment-based protocols have been raising much attention (see, e.g., [29,30]). Protocol actions
affect the state of the system, which consists both of the state of the world and also of the commitments
that agents have made to each other. Commitments motivate agents to perform their next actions. This
happens because agents want to comply with the protocol and provide what was promised to the other
parties. Another key feature of commitments is their declarative nature, which easily accommodates the
contractual relationships among the partners rather than strictly encoding the order in which messages
should be exchanged. Whatever action agents decide to perform is acceptable as far as they accomplish
their commitments, satisfying the expectations they have on one another. The JaCaMo+ proposal [23]
relies on commitments to model explicitly the relationships among the agents as first-class elements of
an agent organization. In this paper, we build upon the experience of JaCaMo+ and discuss how the
commitment-based approach can be made independent of any agent platform.

3. Social Relationships as Commitments

We propose to program the interaction between agents by explicitly representing the social
relationships among them. In our view, social relationships should become resources that are reified as
part of the environment; they should also be subject to social control, thus acquiring a normative and
regulative value. For this reason, we rely on the notion of social commitment. A social commitment [9],
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represented as C(x, y, p, q), captures the fact that an agent x (debtor) commits towards an agent
y (creditor) to bring about a consequent condition q when an antecedent condition p will hold.
Antecedent and consequent conditions are generally expressed in precedence logic [31], an event-based
linear temporal logic for modeling web services’ composition. It deals with occurrences of events
along runs (i.e., sequence of instanced events). Event occurrences are assumed to be non-repeating
and persistent: once an event has occurred, it has occurred for the whole execution. The logic has three
operators: “∨” (choice), “∧” (co-occurrence), and “·” (before). The before operator allows constraining
the order with which two events must occur; e.g., a · b means that a must occur before b, but the two
events do not need to occur one immediately after the other.

Commitments are proactively created by debtors, manifesting the agent capacity to take
responsibilities towards bringing about some conditions autonomously. Moreover, commitments have
a standardized lifecycle, formalized in [32] and summarized in Figure 1. As soon as a commitment is
created, it is active. Active commitments can further be in two sub-states: conditional when neither the
antecedent, nor the consequent have occurred, and detached as soon as the antecedent becomes true.
A commitment is violated either when its antecedent is true, but its consequent becomes false or when it
is canceled by the debtor when detached. Conversely, it is satisfied when the consequent occurs and the
engagement is accomplished. It is expired when it is no longer in effect; i.e., if the antecedent condition
becomes false. Finally, a commitment becomes terminated when the creditor releases the debtor from it
or when it is canceled, being still conditional. Social commitments can be manipulated by the agents
through some standard operations: namely, create, cancel, release, discharge, assign, and delegate [9]. Create
instantiates a commitment, changing its status from null to active. Only the debtor of a commitment
can create it. Conversely, cancel revokes the commitment, setting its status to terminated or violated,
depending on whether the previous status was conditional or detached, respectively. Again, only the
debtor can cancel a commitment. The rationale is that a commitment debtor is allowed to change its
mind about the accomplishment of the consequent only until the antecedent has not occurred, yet.
Release, in turn, allows the creditor (and only the creditor) to terminate an active commitment. Release
does not mean success or failure of the given commitment, but simply eliminates the expectation
put on the debtor. Discharge satisfies the commitment. In accordance with [9], we assume that this
operation is performed concurrently with the actions that lead to the consequent occurrence. Delegate
changes the debtor of a given commitment and can be performed only by the new debtor. Assign,
finally, transfers the commitment to another creditor and can be performed only by the actual one.
An active commitment can be further suspended, i.e., put in the pending status, by means of the suspend
operation. Conversely, reactivate sets a pending commitment as active, again.

Expired Null Pending

Conditional Detached

Terminated Satisfied Violated

Active

create suspendreactivateantecedent_fail

antecedent

cancel ∨
consequent_failconsequentcancel release

Figure 1. Commitment life cycle [32].

Since a commitment can only be taken autonomously by a debtor towards a creditor on its own
initiative, the agents’ autonomy is preserved, and this aspect is fundamental in order to harmonize
deliberation with goal achievement. An agent will create engagements towards other agents in an
attempt to achieve its goals. Moreover, since commitments concern the observable behavior of the
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agents, they acquire a regulative value: debtors are expected to satisfy their engagements in order to
avoid a norm violation. More concretely, commitments foster cooperation between agents. On the
one hand, debtors are expected to behave so as to satisfy their detached commitments. On the other
hand, a creditor in a commitment that is interested in its consequent condition, will act so as to bring
about the antecedent condition, thus detaching the very same commitment, and by this very act claim,
the consequent achievement. In this sense, commitments allow realizing a relational representation of
interaction, where agents, by their own actions, directly create (normative) binds with others and use
them to coordinate their activities. Commitment-based approaches generally assume a social state to be
available and inspectable by all the agents involved in an interaction. Such a social state is composed of
all the commitments created during an interaction together with their states, according to the life-cycle
described above. By relying on the social state, an agent can deliberate to create further commitments
or to bring about a condition involved in some existing one.

By means of commitments, thus, social relationships become first-class entities that are created
and manipulated by the agents as resources, made available in their environment. It is, therefore,
necessary to provide the agents the means to create, manipulate, observe, monitor, reason, and
deliberate upon these social relationships. To this end, we rely on the well-known agents and artifacts
meta-model [11,12]. Following this perspective, an artifact is a computational, programmable system
resource that can be observed and manipulated by agents, residing at the same abstraction level.
Artifacts are typically used to model the environment in which agents are situated and on which
they act. Furthermore, for their very nature, artifacts can encode a programmable and observable
middleware that can be used as a means of communication and coordination between agents.

We propose to define dedicated commitment artifacts, embodied in the environment in which agents
are situated, to reify the sets of social relationships that can be created during an interaction, available
to agents as resources. Agents can then use these artifacts to coordinate and interact in a way that
depends on their objectives and on the binds created with other agents. We interpret the usage of an
artifact by an agent as the explicit acceptance of the implications of the social commitment the artifact
reifies. This allows the interacting parties to perform practical reasoning, based on social expectations:
a debtor of a commitment is expected to behave so as to satisfy the consequent commitment conditions;
otherwise, a violation will be raised. Similarly, an agent could create a commitment to foster another
agent to bring about a condition otherwise unachievable.

Example 1. A Logistics Scenario

We present a use case inspired by a logistic scenario to show how commitments can be used in
practice to support the interaction between agents. Let us consider a setting in which a seller agent
sells its products online and ships them to a customer agent. In our scenario, sketched in Figure 2,
the two agents, seller and customer, are geographically far from each other, so they need to rely on
multiple couriers for the shipment of the goods from their original location A to their destination
D. The route is divided into three parts. The first portion, from A to B, is covered by two different
trucks trk1 and trk2. The second portion, from B to C, instead, is covered only by a plane pln1. Finally,
the last portion, from C to D, is served again by two trucks trk3 and trk4. A first way to model the
relationships among all these agents is to consider the following set of commitments.

c1 : C(seller, customer, pay(500, seller), at(goods, D))
c2 : C(trk1, seller, pay(50, trk1) ∧ at(goods, A), at(goods, B))
c3 : C(pln1, seller, pay(200, pln1) ∧ at(goods, B), at(goods, D))
c4 : C(trk3, pln1, pay(50, trk3) ∧ at(goods, C), at(goods, D))

Commitment c1 represents the offer that seller proposes to customer: if customer pays 500 Euros
for some goods, seller will deliver the bought goods at customer’s place D. Since seller cannot directly
deliver the goods, however, it creates commitment c1 only after having inspected the environment
(i.e., the social state) and having observed the commitments c2 and c3. With the former, the seller gets
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a means for moving the goods from A to B by using trk1. With the latter, instead, the seller has an
agreement with pln1 to ship goods from B to D. In these two commitments, the seller plays the creditor
role, and hence, it can detach them (by paying the asked amount) only after the customer has detached
c1 by paying for the goods. The last commitment, c4, encodes an agreement between pln1 and trk3 for
the shipping of goods from C to D, but the seller does not need to know how pln1 will satisfy c3. From
the seller’s perspective, in fact, it is sufficient to know that pln1 has taken on a commitment to ship the
goods directly to the customer. Of course, pln1 creates c3 only after c4 has been created.

This scenario, despite being very simple, encompasses several alternative solutions, each
consisting of a different set of commitments that agents create to entice the others. To keep the
discussion simple, here we introduce a first, plain solution, whereas in Section 6, we will discuss
alternative execution paths and demonstrate the flexibility we get when commitments are available
as resources.Version April 4, 2019 submitted to Algorithms 5 of 23
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Figure 2. The logistic scenario.

agents, they acquire a regulative value: debtors are expected to satisfy their engagements in order to168

avoid a norm violation. More concretely, commitments foster cooperation between agents. On the169

one hand, debtors are expected to behave so as to satisfy their detached commitments. On the other170

hand, a creditor in a commitment, that is interested in its consequent condition, will act so as to bring171

about the antecedent condition, thus detaching the very same commitment and by this very act claim172

the consequent achievement. In this sense, commitments allow realizing a relational representation of173

interaction, where agents, by their own actions, directly create (normative) binds with others, and use174

them to coordinate their activities. Commitment-based approaches generally assume a social state to be175

available and inspectable by all the agents involved in an interaction. Such social state is composed of176

all the commitments created during an interaction together with their states, according to the life-cycle177

described above. By relying on the social state, an agent can deliberate to create further commitments,178

or to bring about a condition involved in some existing one.179

By means of commitments, thus, social relationships become first-class entities that are created and180

manipulated by the agents as resources, made available in their environment. It is, therefore, necessary181

to provide the agents the means to create, manipulate, observe, monitor, reason, and deliberate upon182

these social relationships. To this end, we rely on the well-known Agents & Artifacts meta-model183

[11,12]. Following this perspective, an artifact is a computational, programmable system resource,184

that can be observed and manipulated by agents, residing at the same abstraction level. Artifacts185

are typically used to model the environment in which agents are situated and on which they act.186

Furthermore, for their very nature, artifacts can encode a programmable and observable middleware187

that can be used as a means of communication and coordination between agents.188

We propose to define dedicated commitment artifacts, embodied in the environment in which agents189

are situated, to reify the sets of social relationships that can be created during an interaction, available190

to agents as resources. Agents can then use these artifacts to coordinate and interact in a way that191

depends on their objectives and on the binds created with other agents. We interpret the usage of an192

artifact by an agent as the explicit acceptance of the implications of the social commitment the artifact193

reifies. This allows the interacting parties to perform practical reasoning, based on social expectations: a194

debtors of a commitment is expected to behave so as to satisfy the commitment consequent conditions;195

otherwise, a violation will be raised. Similarly, an agent could create a commitment to foster another196

agent to bring about a condition otherwise unachievable.197

Example 1. A Logistics Scenario.198

We present a use case inspired to a logistic scenario to show how commitments can be used in199

practice to support the interaction between agents. Let’s consider a setting in which a seller agent sells200

its products online, and ships them to a customer agent. In our scenario, sketched in Figure 2, the two201

agents, seller and customer, are geographically far from each other, so, they need to rely on multiple202

couriers for the shipment of the goods from their original location A to their destination D. The route203

is divided into three parts. The first portion, from A to B is covered by two different trucks trk1 and204

Figure 2. The logistic scenario.

4. A Conceptual Schema for Programming Agents with Social Relationships

We believe that social relationships should be considered as first-class entities of any agent
programming platform. When social relationships are directly available as programming constructs to
agents and programmers, in fact, the resulting system enjoys some important software engineering
properties. First, it is possible to standardize the agent programming activity by following a general
schema that is independent of the specific agent platform at hand. In this section, we focus on the
general schema, while its practical use is exemplified in the next sections. In particular, we focus on
social relationships that can be seen as commitments and reify them as computational resources that
can be directly used by agents.

The conceptual architecture we propose is shown in Figure 3 where, to emphasize the generality
of the programming schema, we abstract from any actual implementation and hence represent only
classes without denoting fields and methods. The architecture encompasses both the classes that
regard the agent being implemented (in yellow) and the classes through which commitments are made
available (in blue). The rationale is that the programmer should be able to implement the agent code
by only implementing the yellow classes, using the objects provided by the underlying commitment
platform (in blue).

We first explain the classes and relations concerning the commitment platform. Workspace
abstracts the part of environment that is of interest for the agent at hand. The workspace will
collect relevant pieces of information and resources such as events (see Event) and commitments (see
Commitment). In particular, some events represent the occurrence of commitment state changes—for
instance, the satisfaction of a commitment or its detachment—and, thus, they are relevant for some
agent in the system. Such events belong to the class social (see the specialization of Event by Social
Event). Notice that an actual implementation of Workspace could maintain references of various
types of resources, but in this conceptual architecture, we emphasize only those domain-independent
classes that are essential for the reification of commitments and for the implementation of the agents.
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The class Commitment abstracts the reification of the social relationships into a resource that can be
directly manipulated by the agents. In fact, by inspecting the Workspace, the agents can determine the
set of possible commitments together with their current states. Agents who are debtors or creditors
of a commitment can also operate upon them directly through commitment operations. This is
made possible by the class Role, whose instances amount either to the debtors or the creditors of
commitment instances. Commitments are also characterized by antecedent and consequent conditions,
which are both abstracted by class Condition. Note that Condition is in relation to Event because the
satisfaction or violation of a condition is seen as an event occurring in the workspace. In particular,
thanks to the specialization Social Event, it is possible to specify commitments, whose antecedent or
consequent conditions include operations on commitments. This allows the specification of nested
commitments as commitments whose antecedent or consequent conditions amount to the creation of
another commitment. All the explained classes represent the concepts that should be implemented by
a platform providing social commitments as programming constructs. Their actual implementation,
however, could require much more concrete classes. As an exemplification, in the following section,
we will sketch the specific case of the 2COMM library, and we will show how the very same platform
can be interfaced with the JADE and with the JaCaMo agent programming platforms.Version April 4, 2019 submitted to Algorithms 6 of 23
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Concerning the agent classes (in yellow in Figure 3), an Agent has at least one Goal that it wants
to achieve, and it is equipped with at least one Social Behavior. This is a behavior that brings about a
Condition that occurs as antecedent or consequent of some commitment; the resulting commitment state
change amounts to a Social Event, which may, in turn, activate other social behaviors. Agents can also
access Workspaces by means of the roles they play. This feature is exploited to allow agents to obtain the
cooperation of other agents for pursuing their goals. The process relies on the use of commitments as a
means to express promises the help seeker will make to those accepting to help it.
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4.1. Programming Schema for Help-Seeking Agents

The need for cooperation justifies a general programming schema for agents that use social
relationships (i.e., commitments), for having their goals satisfied by other agents. The aim of the
schema is, thus, to implement one (or more) social behaviors that allows an agent ag to achieve a goal
G by cooperating with other agents. The schema consists of the following cases:

1. Entice:

• Intent: Finding the cooperation of another agent by making an offer.
• Applicability: When, by inspecting the workspace, the agent does not discover cooperation

offers by other agents that support the achievement of its goal adequately, then the agent
creates an offer itself.

• Implementation: Implement a behavior that creates a commitment C(ag, other, G, q), where ag
is the help-seeking agent, other is another agent in the system, and q is a condition that ag
can bring about, either directly or via the cooperation with others.

2. Cooperate:

• Intent: contributing to a collaboration by making a commitment progress towards
satisfaction.

• Applicability: when the agent is either the debtor or the creditor of an active commitment.
• Implementation:

– When ag is the creditor: implement a behavior that is triggered by the creation of a
commitment c : C(other, ag, p, G) and that brings about p, so as to detach c.

– When ag is the debtor: implement a behavior that is triggered by the detachment of a
commitment c : C(ag, other, G, q) and that brings about q so as to satisfy c.

Note that the Cooperate schema could be generalized to capture the whole standard lifecycle
of a commitment. For instance, a creditor agent could also implement a behavior for releasing a
commitment or when a commitment is violated, but these are choices that are driven by a local
decision strategy of the agent.

Example 2. A Logistics Scenario (Continued)

Let us explain how the schema is applied to the previously-introduced logistic scenario. For the
purpose of generality, we use an abstract language based on ECA rules (Event, Condition, Action), for
expressing the agents’ behaviors. Intuitively, an ECA rule has the following syntax: event : condition←
action. The event denotes the trigger for activating such a rule; in general, it is a goal that the agent
wants to achieve or an event that must be properly treated by the agent. The condition is a contextual
circumstance that must hold for the rule to be actually fired. Finally, the action is a course of operations
that modify the environment so as to obtain a desired effect. In Section 4, we will show how these
abstract behaviors can be implemented in the JADE and JaCaMo platforms.

Let us take the seller’s perspective, who wants to get some money by selling goods. It can do so
by exploiting the Entice schema, in such a way to create a commitment c1 : C(seller, customer, pay(500,
seller), at(goods, D)) to make an offer to a potential customer. This could be captured by the ECA rule:

ON need_money IF have_goods_to_sell
DO create (c1 : C(seller, customer, pay(500, seller), at(goods, D)))

The use of the entice schema is strictly connected to the use of the Cooperate one, which allows
tackling the relevant commitment state changes. Let us assume that seller is only interested in a change
from conditional to detached. The ECA rule would be:
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ON detached(c1) IF true DO bring_goods_at_D.

The triggering event is the detachment of commitment c1, that is customer has paid for the goods.
The contextual condition is true, meaning that the agent is always eager to react to such an event
(but domain-dependent conditions could be specified). The action bring_goods_at_D stands for a plan
for delivering the goods to the customer. That is, the effect of the plan would be at(goods, D), which
satisfies the commitment. Such a plan is not trivial since it requires the cooperation of other agents,
that is modeled by commitments c2, c3, and c4 that are assumed to exist already.

Let us now take the customer’s perspective, who has two choices. First, the customer can accept
an offer by detaching the conditional commitment c1. Thus, customer applies the Cooperate schema as
creditor and detaches an existing commitment; the ECA rule is as follows:

ON create(c1 : C(seller, customer, pay(500, seller), at(goods, D)))

IF have_enough_money DO pay(500, seller).

Namely, the triggering event is the creation of commitment c1; the condition is having enough
money for the goods; while the action is the payment, which will detach the commitment.

The second option of customer is to make a counteroffer to the seller by creating a new
commitment. In such a case, customer will apply first the Entice schema and then the Cooperate
one as the debtor similarly to the implementation of the seller. This second alternative available to
the customer is detailed in Section 6 together with a sketch of the implementation of the Jadeand
JaCaMo agents.

5. 2COMM: An Infrastructure for Programming Social Relationships

We have claimed that an agent-based framework should provide an explicit representation of the
social relationships created between the agents as first-class entities and that these relationships should
be used directly for programming the agent behaviors. 2COMM [8] is a middleware that fills such a gap
by reifying social commitments as artifacts available in the environment. Currently, 2COMM supports
social relationship-based agent programming for JADE and JaCaMo agents through two dedicated
connectors. JADE [2] is an agent platform that supplies standard agent services, i.e., message passing,
distributed containers, naming and yellow pages services, and agent mobility. JaCaMo [5], in turn, is a
platform integrating three other frameworks: Jason [33] for programming agents, CArtAgO [34] for
programming artifact-based environments, and Moise [35] as a support to the realization of multiagent
organizations. The loose coupling between the agent-programming dimension and the interaction
component makes the development of new connectors for other agent platforms straightforward.

2COMM relies on CArtAgO for the implementation of a (distributed) social state. Specifically,
CArtAgO provides a way to define and organize workspaces, which are logical groups of artifacts,
which can be joined by agents at runtime. The CArtAgO API allows programming artifacts, regardless
of the agent programming language or the agent framework used. This is possible by means of the
agent body metaphor: CArtAgO provides a native agent entity, which acts as a “proxy” in the artifacts
workspace. An agent developed in a given agent programming platform is the “mind” that uses the
CArtAgO agent entity as a “body” to interact with artifacts. An agent, in particular, acts upon an
artifact by executing public operations, which can be equipped with guards; i.e., conditions that must
hold for operations in order to produce their effects. An artifact provides also some observable properties
that can be perceived by the agents focusing on it and encode the artifact’s current state. Observable
properties can change over time as a result of the operations occurring inside the artifact.

By means of CArtAgO, 2COMM reifies social commitments as a special class of commitment
artifacts. Each commitment artifact provides two roles that agents can enact, corresponding to the debtor
and to the creditor of the commitment maintained by the artifact. Roles can be seen as proxies that
allow agents to operate on the corresponding commitment artifact. For instance, by adopting the debtor
role, an agent will be able to perform the artifact operations to create the corresponding commitment or
to cancel it. Roles are linked to agents of the specific platform via dedicated connector classes. 2COMM
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provides the classes for representing commitments, maintained into commitment artifacts, as well as
roles. Moreover, the infrastructure automatically handles the commitment progressions according to
the events occurring in the environment. In particular, events that are relevant for the progression of
commitments are encoded as social facts. 2COMM maintains a trace of all the social facts asserted in a
given interaction and updates the involved commitments accordingly.

Agent programming with 2COMM amounts, at its core, to realizing a classical “sense-plan-act
cycle”, whose phases can be renamed “observe the workspace”, “activate behaviors according to the
entice/cooperate schemas”, and “schedule behavior execution”. In the following, we will sketch how
these three steps are practically carried out in the two agent platforms, JADE and JaCaMo.

5.1. Programming JADE Agents with 2COMM

Broadly speaking, a JADE agent can be seen as a set of behaviors that can be executed when
needed. In this sense, a behavior (or a set of behaviors) represents a strategy to achieve one of
the agent’s goals. In order to use 2COMM, a JADE agent has to perceive the 2COMM workspace.
Observing the workspace, however, does not require the agent to proactively sense it because agents
can register to the commitment artifacts of interest and then will be notified by these artifacts whenever
a social event occurs. Agent programmers, thus, have to implement the behaviors either by adopting
the Entice schema and then taking the initiative of creating a commitment or by adopting the Cooperate
schema and then reacting to the social events that are relevant to their agents; that is, the social events
the agent at hand is expected to handle.

The Entice schema is implemented by a behavior that, inside its action() method, includes the
execution of a create() operation on some commitment artifacts. The effect of such an operation is to
bring the commitment state from null to active (specifically, conditional). Of course, this change
of state is automatically notified by 2COMM to all the agents that have focused on that commitment
artifact. As concerns the Cooperate schema, the agent programmer implements a behavior reacting
to each event of interest by exploiting the handleEvent() method that allows the programmer to add
one (or more) behavior(s) to the agent depending on the event intercepted from 2COMM, and on
which of the two sub-cases of the Cooperate schema is needed. For instance, if the social event is the
detachment of a commitment involving the agent as debtor, handleEvent() activates a behavior that
will satisfy the very same commitment. The behavior body could encompass operations upon the
environment (which, in turn, will make commitments evolve) or could also involve the creation of
additional commitments. Conversely, if the social event is the creation of a commitment involving the
agent as creditor, handleEvent() triggers a behavior designed to detach such a commitment, being the
agent interested in the consequent condition. Summing up, by means of handleEvent(), the occurrence
of a social event relevant for the agent activates a corresponding behavior, properly implemented by
the agent programmer.

The following pseudo-code outlines the implementation of a JADE agent that follows the Entice
and Cooperate schema.

1 public c l a s s MyBehavior extends SomeJadeBehavior implements CommitmentObserver {
2 public void a c t i o n ( ) {
3 A r t i f a c t I d a r t = Role . c r e a t e A r t i f a c t ( myCommitmentArtifactName ,
4 MyCommitmentArtifactC1 . c l a s s ) ;
5 myRole = ( SomeRole ) ( Role . enact ( MyArtifact .ROLE_NAME, ar t ,
6 new JadeBehaviorPlayer ( this , myAgent . getAID ( ) ) ) ) ;
7 myRole . s tar tObserv ing ( t h i s ) ;
8 // Ent i ce schema : add behavior ( s ) to c r e a t e commitment C1
9 // ECA: ON goal_to_achieve IF local_condition THEN create(C1)

10 myAgent . addBehavior (new MyEnticeBehaviorForCommitmentC1 ( ) ) ;
11 // Ent i ce schema : add behavior ( s ) to c r e a t e commitment C2
12 . . .
13 }
14 public void handleEvent ( Soc ia lEvent e , Object . . . args ) {
15 i f ( e . getElementChanged ( ) . getElType ( ) == SocialStateElementType .COMMITMENT) {
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16 Commitment c = ( Commitment ) e . getElementChanged ( ) ;
17 // Cooperate schema as debtor of c
18 // ECA: ON detacted(c) IF local_condition DO consequent .
19 i f ( c . getDebtor ( ) . equals ( myRole ) && c . getConsequent ( ) . equals ( . . . ) &&
20 c . g e t L i f e C y c l e S t a t u s ( ) == DETACHED) {
21 // add behavior ( s ) to s a t i s f y c
22 myAgent . addBehavior (new MySatisfyBehavour ( ) ) ;
23 }
24 // Cooperate schema as c r e d i t o r of c
25 // ECA: ON create(c) ∨ conditional(c) IF consequent interesting DO antecedent .
26 \medskip
27 e lse i f ( c . ge tCredi tor ( ) . equals ( myRole ) && c . getAntecedent ( ) . equals ( . . . ) &&
28 c . g e t L i f e C y c l e S t a t u s ( ) == CONDITIONAL) {
29 // add behavior ( s ) to detach c
30 myAgent . addBehavior (new MyDetachBehavour ( ) ) ;
31 }
32 }
33 }
34 . . .
35 }

Summing up, the basic schema for implementing a JADE agent using social commitments requires
two steps. First, apply the Entice schema within the agent method action() by allocating a commitment
artifact (Line 3) and then adding to the agent a behavior for creating the commitment in such an
artifact (Line 10). The Entice schema is therefore replicated for each commitment the agent intends to
create. Second, apply the Cooperate schema within the method handleEvent(): for each relevant event e
intercepted by handleEvent() and related to a specific commitment c, implement either the debtor or
the creditor case depending on the role played by the agent in c.

5.2. Programming JaCaMo Agents with 2COMM

The JaCaMo framework adopts Jason as the agent programming language. Jason is implemented
in Java and extends the agent programming language AgentSpeak(L). Jason agents have a BDI
architecture including a belief base and a plan library storing the set of plans available to the agent
for execution. Furthermore, it is possible to specify achievement (operator “!”) and test (operator “?”)
goals. A plan has the structure triggering_event : 〈context〉 ← 〈body〉. triggering_event denotes the
event the plan handles (a belief/goal addition or deletion), while context specifies the circumstances in
which the plan could be used, and body expresses the course of action that should be taken. In JaCaMo,
Jason agents can natively perceive and act upon artifacts programmed in CArtAgO. More precisely,
when an agent focuses on an artifact, the artifact’s observable properties are automatically mapped to
beliefs in the agent’s belief base. At the same time, in the plans’ bodies, operations on artifacts can
be specified. Commitment artifacts allow the agent to perceive commitment by representing them as
observable properties and to act upon it by providing standard operations for their manipulation.

During execution, the agent infrastructure performs the sense-plan-act cycle that allows agents
to evaluate which plans can be triggered for execution each time an event occurs. In this setting,
social events generated by commitment artifacts during an interaction can be modeled as regular
Jason events, mapped from the artifacts’ observable properties to the agent beliefs. The adoption
of commitment artifacts that notify the occurrence of social events to focusing agents allows plan
specifications whose triggering events involve social events (e.g., commitment creation). For example,
this is the case that deals with commitment addition:

+cc(Debtor, Creditor, Antecedent, Consequent, Status) :
〈context〉 ← 〈body〉.

The plan is triggered when a commitment that unifies with the plan head appears in the social
state with the specified status. Contextual conditions must hold, as well. The syntax is the standard for
Jason plans. Debtor and Creditor are to be substituted by the proper role identifiers.
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The Entice and Cooperate schemas are easily implemented by defining a set of Jason plans.
In particular, the Entice schema is implemented by a plan whose body includes the creation of a
specific commitment (this requires the invocation of a create operation on the right commitment
artifact). The Cooperate schema, in turn, is realized through the definition of plans whose triggering
events match with the social events that are relevant for the agent. In particular, an agent should be
equipped with at least one plan to deal with the detachment of the commitments involving the agent
itself as debtor. The plan body is the expected to include the operations over the environment needed
to lead the commitment to satisfaction. Note that this does not mean that the agent is required to
directly perform the actions causing the consequent condition to hold. The agent could, in fact, rely on
the collaboration with another agent. The following pseudo-code shows a prototype implementation
for a JaCaMo agent:

1 // Ent i ce schema : c r e a t e a commitment c to get a goal
2 // ECA: ON goal_to_achieve IF local_condition THEN create(C1)
3 +! goal
4 : contex t
5 <− createMyCommitment . // Execute c r e a t e operat ion on commitment a r t i f a c t
6

7 // Cooperate schema as debtor : plan r e a c t i n g to the detachment of a commitment
8 // ECA: ON detacted(c) IF local_condition DO consequent .
9 +cc ( My_Role_Id , Creditor , Antecedent , Consequent , "DETACHED" )

10 : enactment_id ( My_Role_Id ) & . . .
11 <− . . . plan to achieve Consequent . . .
12

13 // Cooperate schema as c r e d i t o r : plan r e a c t i n g to commitment c r e a t i o n
14 // ECA: ON create(c) ∨ conditional(c) IF consequent interesting DO antecedent .
15 +cc ( Debtor , My_Role_Id , Antecedent , Consequent , "CONDITIONAL" )
16 : enactment_id ( My_Role_Id ) & . . .
17 <− . . . plan to achieve Antecedent . . .
18 . . .

6. Implementing the Logistics Scenario

The explicit representation of social relationships by means of social commitments, reified in
the environment as resources made accessible to the agents, provides a programming schema and
an execution infrastructure for building agents with a uniform implementation of social behaviors.
On this foundation, agents can be developed by programming how they should manipulate these
relationships (e.g., create them) and react to relevant changes in them. In this section, we show how the
conceptual schema presented above can be applied to the use case inspired from the logistics planning
domain introduced in Section 3 to support the realization of interaction between agents in a distributed
setting. We discuss two implementations, one in JADE and one in JaCaMo, both relying on 2COMM
for the realization of the interaction layer, to show the generality and uniformity of the approach.

6.1. Modeling the Environment

Recalling Section 3, the interaction between the different agents in the scenario can be modeled by
the following set of commitments:

c1 : C(seller, customer, pay(500, seller), at(goods, D))
c2 : C(trk1, seller, pay(50, trk1) ∧ at(goods, A), at(goods, B))
c3 : C(pln1, seller, pay(200, pln1) ∧ at(goods, B), at(goods, D))
c4 : C(trk3, pln1, pay(50, trk3) ∧ at(goods, C), at(goods, D))

For each commitment, a corresponding commitment artifact, embodied in the environment, is
defined in 2COMM. The following piece of code shows an excerpt of the artifact that maintains c1:
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1 public c l a s s C1 extends CommitmentArtifact {
2

3 private RoleId debtor ;
4 private RoleId c r e d i t o r ;
5 private Commitment c ;
6

7 s t a t i c {
8 addEnabledRole ( "debtorC1" , DebtorC1 . c l a s s ) ;
9 addEnabledRole ( "debtorC1" , CreditorC1 . c l a s s ) ;

10 }
11

12 // Credi tor and debtor r o l e enactment methods f o r JADE and JaCaMo
13 @OPERATION
14 protected void enact ( S t r i n g roleName , I P l a y e r p , OpFeedbackParam<Role > r ) { . . . }
15 @OPERATION
16 protected void enact ( S t r i n g roleName ) { . . . }
17

18 // Commitment manipulation operat ions
19 @OPERATION public void createC1 ( ) {
20 RoleId agent = getRoleIdByRoleName ( getCurrentOpAgentId ( ) . getAgentName ( ) ) ;
21 i f ( ! agent . equals ( debtor ) ) {
22 f a i l e d ( "Only the debtor can create a commitment" ) ;
23 }
24 c = new Commitment ( debtor , c r e d i t o r ,
25 new Fact ( "pay" , "500" , debtor . t o S t r i n g ( ) ) , new Fact ( "at" , "pkg" , "D" ) )
26 createCommitment ( c ) ;
27 }
28 @OPERATION public void re leaseC1 ( ) {
29 RoleId agent = getRoleIdByRoleName ( getCurrentOpAgentId ( ) . getAgentName ( ) ) ;
30 i f ( ! agent . equals ( c r e d i t o r ) ) {
31 f a i l e d ( "Only the creditor can release a commitment" ) ;
32 }
33 releaseCommitment ( c ) ;
34 }
35 @OPERATION public void cancelC1 ( ) {
36 RoleId agent = getRoleIdByRoleName ( getCurrentOpAgentId ( ) . getAgentName ( ) ) ;
37 i f ( ! agent . equals ( debtor ) ) {
38 f a i l e d ( "Only the debtor can cancel a commitment" ) ;
39 }
40 cancelCommitment ( c ) ;
41 }
42

43 //Fact a s s e r t i o n operat ions
44 @OPERATION public void asser tPay ( S t r i n g pred , S t r i n g who) {
45 a s s e r t F a c t (new Fact ( "pay" , pred , who ) ) ;
46 }
47 @OPERATION public void a s s e r t A t ( S t r i n g what , S t r i n g where ) {
48 a s s e r t F a c t (new Fact ( "at" , what , where ) ) ;
49 }
50

51 // Debtor r o l e c l a s s
52 public c l a s s DebtorC1 extends CommitmentRole {
53 @RoleAction public void createC1 ( ) {
54 t r y {
55 doAction ( t h i s . g e t A r t i f a c t I d ( ) , new Op( "createC1" ) ) ;
56 } catch ( Act ionFai ledExcept ion | CartagoException e ) { . . . }
57 }
58 @RoleAction public void cancelC1 ( ) { . . . }
59 . . .
60 }
61

62 // Credi tor r o l e c l a s s
63 public c l a s s CreditorC1 extends CommitmentRole {
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64 @RoleAction public void re leaseC1 ( ) {
65 t r y {
66 doAction ( t h i s . g e t A r t i f a c t I d ( ) , new Op( "releaseC1" ) ) ;
67 } catch ( Act ionFai ledExcept ion | CartagoException e ) { . . . }
68 }
69 . . .
70 }
71 . . .
72 }

The commitment artifact includes enact methods for JADE and JaCaMo agents (omitted for
simplicity), which allow the agents to adopt the debtor and creditor roles of the commitment.
Role enactment enables the execution of the commitment operations made available by the artifact.
In particular, the artifact provides two debtor-dedicated operations (see Lines 19 and 35) to create and
cancel the commitment and one creditor-dedicated operation to release it (see Line 28). When such
operations are executed, the 2COMM infrastructure takes care of updating the commitment state and
the artifact observable state. Similarly, agents observing the artifact are notified about the occurrence of
the social event resulting from the execution of the operation (e.g., the commitment creation). As inner
classes, at Lines 52 and 63, the artifact provides two commitment roles amounting to the debtor
and creditor, through which, upon enactment, the agents can execute the allowed operations on the
artifact. Finally, the artifact provides two operations to assert facts that are relevant for the commitment
progression. Intuitively, a fact records the occurrence of a (social) event. Generally speaking, this type
of operation is used by the 2COMM infrastructure for propagating the effects of operations on the
environment to all the existing (commitment) artifacts. When a fact is asserted into a commitment
artifact, the infrastructure automatically updates the commitment state, if needed. In this example, the
two facts that can be asserted trace a payment and the delivery of goods at a specific location. The
artifacts reifying c2, c3, and c4 are similar to the one presented above, and thus, they are not discussed
in further detail.

For the sake of completeness, we exemplify also a standard CArtAgO artifact used to model part
of the environment. In particular, we sketch the Logistics artifact that keeps track of the current
position of the shipped goods and provides to the agents the operations to pay a given amount of
money to another agent and to move the goods from one location to another one. Events resulting from
the execution of such operations are then propagated to commitment artifacts trough the assertion of
the corresponding facts.

1 public c l a s s L o g i s t i c s extends A r t i f a c t {
2

3 private S t r i n g packageName ;
4 private Location currentLocat ion ;
5

6 private enum Location { A, B , C, D }
7

8 s t a t i c { addEnabledRole ( "logisticRole" , L o g i s t i c R o l e . c l a s s ) ; }
9

10 @OPERATION public void i n i t ( S t r i n g packageName ) {
11 t h i s . packageName = packageName ;
12 defineObsProperty ( "packageName" , packageName ) ;
13 }
14 @OPERATION public void pay ( i n t what , S t r i n g who) {
15 defineObsProperty ( "pay" , what , who ) ;
16 setChanged ( ) ;
17 not i fyObservers ( . . . ) ;
18 }
19 @OPERATION public void move( S t r i n g pkg , S t r i n g where ) {
20 i f ( ! packageName . equals ( pkg ) ) {
21 f a i l e d ( "Wrong package name" ) ;
22 } e lse i f ( where . equals ( "A" ) ) {
23 currentLocat ion = Locat ion .A;
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24 defineObsProperty ( "currentLocation" , Locat ion .A. t o S t r i n g ( ) ) ;
25 setChanged ( ) ;
26 not i fyObservers ( . . . ) ;
27 } e lse i f ( where . equals ( "B" ) ) { . . . }
28 . . .
29 }
30 . . .
31 }

6.2. Programming the Agents

Let us now focus on the programming of agents to see how the schema presented in Section 4 can
be applied to develop JADE and JaCaMo agents in a uniform way.

6.2.1. JADE Agents

As discussed above, the implementation of a JADE agent driven by the social relationships
requires implementing an agent behavior where to the action() and handleEvent() methods are applied
the Entice and Cooperate schemas, respectively. As an illustration, the following piece of code shows an
excerpt of agent trk1, involved as debtor in c2.

1 public c l a s s Trk1 extends Agent {
2

3 DebtorC2 roleC2 ;
4 L o g i s t i c R o l e logRole ;
5

6 protected void setup ( ) { addBehavior (new Trk1Behavior ( ) ) ; }
7

8 public c l a s s Trk1Behavior {
9 @Override public void a c t i o n ( ) {

10 // Ent i ce schema :
11 // ECA: ON need_money IF can_deliver_ f rom_A_to_B
12 // DO create (c2 : C(trk1, seller, pay(50, trk1) ∧ at(goods, A), at(goods, B)))
13 A r t i f a c t I d log = Role . c r e a t e A r t i f a c t ( "log" , L o g i s t i c s . c l a s s ) ;
14 A r t i f a c t I d c2 = Role . c r e a t e A r t i f a c t ( "c2" , C2 . c l a s s ) ;
15 roleC2 = ( DebtorC2 ) ( Role . enact ( "debtorC2" , c2 ,
16 new JadeBehaviorPlayer (new Behavior [ ] { t h i s } , myAgent . getAID ( ) ) ) ) ;
17 roleC2 . s tar tObserving ( t h i s ) ;
18 logRole = ( L o g i s t i c R o l e ) ( Role . enact ( "logRole" , log ,
19 new JadeBehaviorPlayer (new Behavior [ ] { t h i s } , myAgent . getAID ( ) ) ) ) ;
20 logRole . s tar tObserv ing ( t h i s ) ;
21 roleC2 . createC2 ( ) ;
22 }
23 @Override public void handleEvent ( Soc ia lEvent e , Object . . . args ) {
24 // Cooperate schema as debtor :
25 // ECA: ON detached(c2) IF true DO deliver_goods_at_B
26 i f ( e . getElementChanged ( ) . getElType ( ) == SocialStateElementType .COMMITMENT) {
27 Commitment c = ( Commitment ) e . getElementChanged ( ) ;
28 i f ( c . getDebtor ( ) . t o S t r i n g ( ) . equals ( roleC2 . t o S t r i n g ( ) ) &&
29 c . getAntecedent ( ) . equals (new CompositeExpression ( LogicalOperatorType .AND,
30 new Fact ( "at" ,"goods" ,"A" ) ,
31 new Fact ( "pay" , "50" , c . getDebtor ( ) . t o S t r i n g ( ) ) ) ) &&
32 c . getConsequent ( ) . equals (new Fact ( "at" , "goods" , "B" ) ) &&
33 c . g e t L i f e C y c l e S t a t u s ( ) == L i f e C y c l e S t a t e .DETACHED) {
34 myAgent . addBehavior ( i S a t i s f y C 2 ( ) ) ;
35 }
36 }
37 }
38

39 @Override public Behavior i S a t i s f y C 2 ( ) { return new Sat i s fyC2 ( ) ; }
40

41 public c l a s s Sat i s fyC2 extends OneShotBehavior {
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42 @Override public void a c t i o n ( ) { logRole . move( "goods" , "B" ) ; }
43 }
44 }
45 }

The agent has a behavior Trk1Behavior that is activated as soon as the agent starts the execution.
After having adopted the debtor role in the artifact managing c3 (Line 16), the agent immediately
creates the commitment (Line 21). This part of the behavior realizes the Entice schema. The same
behavior also implements a handleEvent method that realizes the Cooperate schema (see Line 23).
In particular, the method handles the social event arisen from the detachment of the previously-created
commitment. In that case, a new behavior is added to the agent’s behavior repository (Line 34). The
behavior includes the execution of the actions needed to bring the commitment to satisfaction. In this
case, the agent simply has to move the goods to B (Line 42). The two behaviors described above
completely characterize the trk1 agent.

The other agents have the same structure, and their code, for brevity, is not reported here.
However, it is possible to make some considerations. The customer agent, being only a creditor of one
commitment, does not have any behavior implementing the entice schema. Instead, if interested in the
consequent condition of c1, the agent’s designer could implement the cooperate schema by defining
a suitable handleEvent() to detach it, once created by seller. In this case, the method would amount
to the activation of a behavior leading to the payment of 500 Euros to the seller. It is interesting to
point out that the entice schema could be triggered by the occurrence of a social event, as well. This
holds, for instance, for the creation of c3 by pln1 and of c1 by seller. Since the plane has to rely on the
collaboration of trk3 to bring about the consequent condition of c3, it is reasonable to assume that it
will create its commitment only after the creation of c4. Instead, pln1’s behavior implementing the
cooperate schema for c3 will include both the movement of the goods from B to C and the detachment
of c4 trough a payment of 50 Euros to trk3 for the final part. Similarly, seller will create c1 only as a
consequence of the creation of c2 and c3. The shape of these commitments creates a chain of cooperation
between the agents. In order to satisfy c1, once detached, seller has to act, in turn, to detach c2 and c3.
In the same way, in order to satisfy c3, pln1 has to detach c4. Only if every agent properly handles the
social events related to its commitments, thereby following the two proposed schemas, the interaction
will succeed, and the customer will receive the goods for which it has paid.

6.2.2. JaCaMo Agents

As shown in Section 5.2, the Entice and Cooperate schemas can be implemented in a Jason agent by
defining a set of plans that, respectively, create commitments and react to social events. The following
piece of code shows an excerpt of the trk1 agent, implemented in Jason:

1 ! s t a r t .
2 // Ent i ce schema :
3 // ECA: ON need_money IF can_deliver_ f rom_A_to_B
4 // DO create (c2 : C(trk1, seller, pay(50, trk1) ∧ at(goods, A), at(goods, B)))
5 +! s t a r t
6 : focused ( _ , c2 , C2ArtId ) &
7 <− enact ( "debtorC2" ) [ a r t i f a c t _ i d ( C2ArtId ) ] ;
8 createC2 .
9 //Cooperate schema as debtor :

10 // ECA: ON detached(c2) IF true DO deliver_goods_at_B
11 +cc ( MyId , _ , "(at(goods,A) AND pay(50,trk1))" ,"at(pkg,B)" ,"DETACHED" )
12 : focused ( _ , log , LogArtId ) &
13 <− move( "goods" ,"B" ) [ a r t i f a c t _ i d ( LogArtId ) ] .

The first plan (Line 5) is triggered as soon the execution starts. This plan implements the entice
schema for c2. After enacting the debtor role in the artifact, the agent creates the commitment
representing its offer. The second plan (Line 11) is an example of the Cooperate schema in the debtor
case; it is in fact triggered when commitment c2 is detached. The body of the plan, just like the
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analogous behavior in JADE, contains the operations to be performed over the environment to satisfy
the detached commitment. In this case, the only operation to be performed is to move the goods to B.

As an example of the Cooperate schema in the creditor case, let us consider the customer agent that
accepts an offer made by seller by detaching commitment c1:

1 //Cooperate schema as c r e d i t o r :
2 // ECA: ON conditional(c1) IF have_goods_at_D DO pay_ f or_goods
3 +cc ( _ , MyId , "pay500(s)" ,"at(goods, D)" ,"CONDITIONAL" )
4 : enactment_id (MyId , c1 , C1ArtId )
5 <− pay ( 5 0 0 , "seller" ) [ a r t i f a c t _ i d ( C1ArtId ) ] .

Of course, whenever an agent is involved in a commitment, either as debtor or creditor, the programmer
has to pay attention in implementing at least the plans (or behaviors) that comply with the two
proposed schemas. For instance, seller is involved in many commitments (i.e., c1, c2, and c3), and
hence, the programmer has to implement the plans that handle the progression of each of these
commitments, by applying the Entice or Cooperate schema as necessary.

6.3. A More Complex Scenario

An interaction devised in terms of social relationships explicitly created among the different
actors enables a form of flexibility that neither message-based protocols, nor interaction components
can obtain. These two approaches are basically prescriptive: they describe a specific sequence of steps
through which an interaction can correctly evolve. In real-world cases, however, there exist alternative
paths that could bring the same result. Prescriptive approaches either ignore these alternatives or
encode them by making the resulting system potentially very complex or rigid. Interactions defined in
terms of sets of social commitments that can be created and manipulated by agents do not impose any
strict ordering of the messages (or actions). It follows that agents generally have greater flexibility in
deciding how to operate.

As an illustration, let us consider a scenario in which the customer agent is not happy with the
offer made by the seller with the creation of c1. More in detail, let us assume that the customer is willing
to pay at most 450 Euros for the goods and that it would like to pay only after the delivery. It could,
then, make a counteroffer to seller through the creation of an additional commitment. Additionally,
customer could decide to release c1 (despite not being obliged to do so), to make clear that the original
offer made by seller is unacceptable for it. In order to still get a good return from the sale, seller could
try to negotiate with the couriers to have better prices for the shipments. Upon the negotiation phase,
seller could decide to accept or reject the counteroffer. For instance, it could negotiate with truck trk2
the transportation of the goods from A to B for only 20 Euros (instead of 50, as asked by trk2). Similarly,
seller could decide to rely on the plane only for the route from B to C (provided that pln1 offers that
kind of service, as well) and then negotiate a cheaper price for B− C with trk4. If these negotiations
will be concluded positively, a new set of commitments will be created as shown in the following:

c5 : C(customer, seller, at(pkg, D), pay(450, seller))
c6 : C(seller, trk2, c7, pay(20, trk2))
c7 : C(trk2, seller, pay(20, trk2) ∧ at(goods, A), at(goods, B))
c8 : C(pln1, seller, pay(100, pln1) ∧ at(goods, B), at(goods, C))
c9 : C(seller, trk2, c10, pay(50, trk4))
c10 : C(trk4, seller, pay(50, trk4) ∧ at(goods, C), at(goods, D))

c5 encodes the counteroffer made by customer to seller. c6 and c9 represent the offers made by the
seller to trk2 and trk4 related to A− B and C− D. These two commitments contain, as antecedent
conditions, two additional commitments: c7 and c10, respectively. The meaning of such notation is that
the creation of c7 and c10 leads to the detachment of c6 and c9, respectively. Should trk2 decide that
the offer made by seller is acceptable, it could create c7 committing to offer its services at the agreed
prices. The seller would then be asked to pay, lest it violates c6. The same holds for trk4. c8, finally,
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encodes the second type of service offered by pln1, namely the ability to bring the goods only from B
to C upon payment of 100 Euros.

Depending on which commitments in the set {c1, . . . , c10} are created and on how they progress
(i.e., they could be detached, released, or even canceled), the interaction takes very different shapes.
For instance, trk2 and trk4 could decide to refuse (or ignore) the offer made by seller, forcing it to refuse
the counteroffer made by the customer. The customer, as a consequence, could then decide to accept
the original offer or to give up. Still, the seller could decide to accept the counteroffer and then still
rely on trk1 and pln1 for the shipment, thereby making a lower profit, but making the customer happy.
A commitment-based representation of social relationships, reified in the environment as resources,
provides a uniform and comprehensive representation of all these alternative paths. Furthermore,
the Entice and Cooperate schemas provide a structured guideline to develop agents able to properly
manipulate commitments and to react to the corresponding relevant social events.

6.4. Remarks

2COMM provides JADE and JaCaMo agents with an explicit representation of social relationships
(i.e., commitments) that agents can directly manipulate. We have seen that a first positive consequence
is that agents can be programmed by following a uniform schema that is agent-platform independent.
This is not, however, the unique advantage that one gains when 2COMM is integrated within an agent
platform. Table 1 synthesizes a comparison between JADE and JaCaMo, highlighting aspects that are
improved or added by an explicit representation of social relationships as commitments.

Table 1. Comparison among JADE, JaCaMo, and improvements provided by an explicit representation
of social relationships.

JADE JADE +
2COMM

JaCaMo JaCaMo +
2COMM

Programmable interaction means X X X X

Notification of social relationships of interaction X X X X

Interaction/agent logic decoupling X X X X

Expected behaviors reasoning X X X X

Definition of structured schemas for interaction X X X X

Runtime interaction monitoring X X X X

Agent programming aware of social relationships X X X X

Programmable interaction means: 2COMM reifies social commitments as artifacts embodied in
the environment, in particular as commitment artifacts. This significantly improves JADE, where
programmable interaction means are missing. On the other hand, JaCaMo already integrates the
CArtAgO component and, hence, already includes programmable artifacts that can be used to mediate
the interaction among the agents.

Notification of social relationships of interaction: Commitment artifacts specialize CArtAgO artifacts
because they implement the commitment lifecycle. Any change of state in the artifact, thus, corresponds
to a change in the interaction state. For this reason, we can state that 2COMM enables a form of
automatic notification about social relationships that is not provided either by JADE or by JaCaMo.

Interaction/agent logic decoupling: In JADE and JaCaMo, no specific abstractions are used for
modeling and implementing the interaction logic. In JADE, agents interact by exchanging messages.
In JaCaMo, agents can modify an artifact for communicating with others. In both cases, however, the
semantics of the message or of the artifact operation must be encoded within the interacting agents. In
2COMM, instead, the semantics of the interaction is given in terms of commitments. Therefore, when
an agent acts upon the environment (e.g., pays for some goods), the meaning, and implications, of such
an action is modeled via a state change occurring in a specific commitment. It follows that the logic of
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the interaction is not spread inside the agent code, but within the commitment artifacts. The 2COMM
agents need just to possess the proper behaviors/plans for handling the commitment lifecycle.

Expected behaviors reasoning: As we have said, commitments have a normative power since they
allow an agent to create an expectation about the behavior of others. The debtor of a commitment
is expected by the creditor to bring about the consequent condition when the commitment will be
detached. The debtor, in turns, creates a commitment because it anticipates that the creditor will be
interested in the consequent condition and hence will be moved to detach the commitment. This
mechanism of expectations is at the basis of the general schema of agent programming that we have
proposed. Neither JADE nor JaCaMo can rely upon an analogous mechanism.

Definition of structured schemas for interaction: As pointed out above, expectations allow us to define
a general schema for programming agents that is independent of the agent-platform since it only
depends on the lifecycle of commitments.

Runtime interaction monitoring: Although we have not discussed this aspect in detail, 2COMM
facilitates the implementation of monitors that supervise the whole interaction occurring in the system.
It would be sufficient, in fact, to have an agent monitoring each commitment artifact of a workspace
and hence capturing every change of state in the commitments. Of course, this is a direct consequence
of having social relationships explicitly modeled as first-class elements and not implicitly modeled via
message passing as in JADE. In JaCaMo, a monitor could also be implemented as an observer of the
artifacts in the environment.

Agent programming aware of social relationships: The proposed programming schema guides a
programmer in developing an agent that is aware and compliant with its engagements. In particular,
the Cooperate schema helps a programmer identify what social events are relevant for the agent being
implement and what is expected of the agent given its engagements.

7. Discussion and Conclusions

In this work, we have presented a general schema for programming socially-responsive agents.
We have argued how, when agents can directly manipulate their engagements via commitments,
it is possible to gain some software engineering advantages, such as modularity and flexibility. We
have demonstrated this in practice by showing how agents can be programmed uniformly in two
substantially different platforms: JADE and JaCaMo. The core of the proposal relies on the 2COMM
infrastructure, which allows agents to interact by following an accepted set of regulations, with a
self-governance approach. Self-governance mechanisms rely on the reification of commitments. These
are, in all respects, resources that are made available to stakeholders and that are realized by means
of artifacts. The proposal is characterized, on the one hand, by the flexibility and the openness that
are typical of MAS and, on the other, by the modularity and the compositionality that are typical
requirements of the methodologies for design and development. One of the strong points of the
proposal is the decoupling between the design of the agents and the design of the interaction, which
builds on the decoupling between computation and coordination done by coordination models, like
tuple spaces. This is a difference with respect to JADE or JaCaMo where no decoupling occurs: a
schema of interaction is projected into a set of JADE behaviors or Jason plans, one for each role. Binding
the interaction to ad hoc behaviors/plans does not allow having a global view of the protocol and
complicates its maintenance.

2COMM supports programming JADE and Jason agents, by following a uniform approach.
Agents’ programming can leverage the general schema we have presented here, which complements
the methodology introduced in [36]. It also simplifies the interaction of different agent platforms thanks
to its connectors, which make protocol artifacts accessible and, thus, allow mediated communication
between agents that belong to different platforms. This feature fulfills the purpose of supporting the
development of heterogeneous and open agent systems. Therefore, for instance, 2COMM enables the
interaction of JADE agents with JaCaMo agents in a transparent and seamless way: it is not necessary
to adapt an agent implementation to the platforms on which the other agents of the system run. As
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concerns implementation, connectors bridge between CArtAgO and the used agent platforms. Any
agent can take part in the interaction sessions with others simply by using a commitment artifact. Note
that Jason (which is part of JaCaMo) allows changing the communication infrastructure, switching to
that of JADE; however, this choice is to be done a priori and has an impact on the design. 2COMM
does not impose any choice a priori, guaranteeing the interaction between any pair of agent platforms
for which a 2COMM connector exists.

2COMM complements the obligation-based specification of organizations, specifically suiting
those situations where interaction is not subject to an organizational guideline, like in the case when
interaction is among agents and each agent decides what is best for itself or when guidelines amount to
declarative, under-specified constraints that still leave agents the freedom to make strategic decisions
on their behavior. In this case, interaction strongly relies on the two basic notions of goal and of
engagement. For a thorough discussion of the differences between our proposal and organizational
or normative approaches, please check [37]. Testing 2COMM with Jason and JADE proved that
programming agents starting from their desired interaction can be a valuable starting point, which
can be extended towards a methodology useful for open and heterogeneous scenarios. We intend
to explore this direction by adding connectors for different agent platforms. The implementation
of a scenario like the logistic one serves the purpose of showing the validity and suitability of the
approach from a conceptual standpoint. Indeed, it provides a proof of concept to highlight the benefits
coming from the development of socially-responsive agents in a realistic use case. On the other hand,
the scalability of the approach strongly depends on the underlying infrastructure. We have shown
how a relational representation of interaction induces a programming schema that can support the
development of a system encompassing multiple agents. Nonetheless, in order to be used in any
real-world scenario, it is mandatory that the underlying programming infrastructure is carefully
engineered with particular attention on the features of the given application domain.

Recently, we developed on top of 2COMM a commitment-based typing system [38] for JADE
agents. Such typing includes a notion of compatibility, based on subtyping, which allows for the safe
substitution of agents into roles along an interaction that is ruled by a commitment-based protocol.
Type checking can be done dynamically when an agent enacts a role.

Although this is outside the scope of this paper, the reification of social commitments as resources
in the environment paves the way for the realization of a runtime interaction monitoring system, as
already pointed out in the previous section. In this sense, the conceptual architecture outlined in this
paper could serve as a basis for the identification of undesirable interaction patterns (e.g., an agent with
conflicting commitments). A possible extension of this work could involve the definition of proper
metrics to be included in a monitor, following the line drawn in [39].

As a final remark, it would be interesting to relate the proposal to works aimed at systematizing
approaches to multiagent system modeling, like [40], which describes a meta-model for agent modeling
approaches. To this aim, however, it would first be necessary to encompass into the meta-model also
methodologies that are typical of commitment-based approaches, like [41,42].
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