
algorithms

Article

Bamboo Garden Trimming Problem:
Priority Schedulings †

Mattia D’Emidio 1,* , Gabriele Di Stefano 1 and Alfredo Navarra 2

1 Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila;
67100 L’Aquila, Italy; gabriele.distefano@univaq.it

2 Department of Mathematics and Computer Science, University of Perugia, 06123 Perugia, Italy;
alfredo.navarra@unipg.it

* Correspondence: mattia.demidio@univaq.it; Tel.: +39-0862-43-4466
† This paper is an extended version of our paper published in the 45th International Conference on Current

Trends in Theory and Practice of Computer Science (SOFSEM), Nový Smokovec, Slovakia, 27–30 January 2019.

Received: 18 January 2019; Accepted: 11 April 2019; Published: 13 April 2019
����������
�������

Abstract: The paper deals with the Bamboo Garden Trimming (BGT) problem introduced in [Gąsieniec
et al., SOFSEM’17]. The problem is difficult to solved due to its close relationship to Pinwheel
scheduling. The garden with n bamboos is an analogue of a system of n machines that have to be
attended (e.g., serviced) with different frequencies. During each day, bamboo bi grows an extra
height hi, for i = 1, . . . , n and, on the conclusion of the day, at most one bamboo has its entire
height cut.The goal is to design a perpetual schedule of cuts to keep the height of the tallest ever
bamboo as low as possible. The contribution in this paper is twofold, and is both theoretical and
experimental. In particular, the focus is on understanding what has been called priority schedulings,
i.e., cutting strategies where priority is given to bamboos whose current height is above a threshold
greater than or equal to H = ∑n

i=1 hi. Value H represents the total daily growth of the system and
it is known that one cannot keep bamboos in the garden below this threshold indefinitely. As the
first result, it is proved that, for any distribution of integer growth rates h1, . . . , hn and any priority
scheduling, the system stabilises in a fixed cycle of cuts. Then, the focus is on the so-called ReduceMax

strategy, a greedy priority scheduling that each day cuts the tallest bamboo, regardless of the growth
rates distribution. ReduceMax is known to provide a O(log n)-approximation, with respect to the
lower bound H. One of the main results achieved is that, if ReduceMax stabilises in a round-robin type
cycle, then it guarantees 2-approximation. Furthermore, preliminary results are provided relating
the structure of the input instance, in terms of growth rates, and the behavior of ReduceMax when
applied to such inputs. Finally, a conjecture that ReduceMax is 2-approximating for the BGT problem
is claimed, hence an extended experimental evaluation was conducted to support the conjecture
and to compare ReduceMax with other relevant scheduling algorithms. The obtained results show
that ReduceMax: (i) provides 2-approximation in all considered inputs; and (ii) always outperforms
other considered strategies, even those for which better worst case approximation guarantees have
been proven.

Keywords: bamboo garden trimming; periodic scheduling; approximation algorithms; perpetual
testing; experimental evaluation

1. Introduction

This paper deals with a perpetual scheduling problem in which n machines, denoted later as
bamboos, need to be attended with possibly known and likely different frequencies. In other words,
some machines may have to be attended more often than others. This problem was proposed and

Algorithms 2019, 12, 74; doi:10.3390/a12040074 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-7833-9520
https://orcid.org/0000-0001-8547-5934
http://dx.doi.org/10.3390/a12040074
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/12/4/74?type=check_update&version=2

Algorithms 2019, 12, 74 2 of 23

studied by [1] under the name of Bamboo Garden Trimming (BGT) problem. Given is a collection
(garden) of n bamboos b1, b2, . . . , bn along with respective daily growth rates h1, h2, . . . , hn greater
than 0. The authors of [1] assumed that, initially, the height of each bamboo is set to zero, whereas in
this paper bamboos are allowed to start with arbitrary heights.

The robotic gardener maintaining the garden trims one bamboo per day to height zero according
to some predefined schedule. The main goal in BGT is to design perpetual schedules of cuts which
keep the height of the tallest ever bamboo as low as possible. The main constraints are that the
gardener is allowed to cut exactly one (of their choice) bamboo at the end of each day and is not
allowed to attend the garden at any other times. Once the gardener has decided which bamboo to trim
at the end of the current day (which corresponds to one round in the schedule), the action of actual
trimming is instantaneous. Different variants of the problem have been defined [1], but, in its “easiest”
representation, all data are available to the gardener, i.e., one knows how many bamboos form the
garden and for each bamboo what is the daily growth rate. Hence, one may think about trimming
strategies that consider all the data, or simply choosing the bamboo to be trimmed according with the
current status of the garden.

The problem reveals a combinatorial beauty, also related to the easiness of its definition that
rapidly allows to start thinking about trimming strategies. As a first thought, it usually appears
surprising that that the problem comes out to be of difficult resolution. This further motivates the
design of different and efficient trimming strategies, varying on the usage of the available data.
Moreover, the interest to this problem comes from its close relation with fundamental scheduling
problems, e.g., Pinwheel scheduling.

The Pinwheel problem [2] is defined as follows. Given a set V = f1, f2, . . ., fn of positive integers
called Pinwheel frequencies, one is asked to create an infinite sequence S of indices drawn from the set
1, 2, . . ., n, such that, any sub-sequence of fi ∈ V consecutive elements in S includes at least one index i.
The density of set V is defined as D = ∑n

i=1
1
fi

and it is known that instances having density D > 1
cannot be scheduled. An example of input instance for the Pinwheel problem is shown in Figure 1.

Figure 1. An example of input instance for the Pinwheel problem where V = (2, 4, 7) and hence
D = 1/2 + 1/4 + 1/7 ≈ 0.89.

In [2], it has been shown that Pinwheel is NP-hard assuming succinct representation of the
problem, whereas it can be efficiently solved when the Pinwheel frequencies are powers of 2 and the
density is at most 1 [1,3]. In [1], a 2-approximation algorithm for BGT, based on the resolution of the
Pinwheel problem in the special case where frequencies are powers of 2 and the density is at most 1,
has been introduced. In more details, given an instance of BGT with rates {h1, h2, . . . , hn}, one can
create a parametrical instance I(δ) of Pinwheel with frequencies

fi =

⌊
(1 + δ)

H
hi

⌋
, for i = 1, 2, . . . , n and for any δ > 0

Algorithms 2019, 12, 74 3 of 23

and prove that a (feasible) solution to I(δ) implies a (1 + δ)-approximation schedule for the original
BGT instance. In particular, one can set δ = 1 and round frequencies to closest power of two to obtain
an instance of Pinwheel having power of two frequencies and density D ≤ 1, that can be scheduled
efficiently by a greedy algorithm. We refer the interested reader to [1,3] for more details on the proofs.

Furthermore, a 4-approximation and an O(log n)-approximation algorithms have been provided,
in the case the gardener exploits only partial knowledge of the input instance. In detail, to achieve the
4-approximation, it is sufficient to know for any couple of bamboos which one is associated with the
highest growth rate, without knowing the exact rates. To achieve the O(log n)-approximation, instead,
no knowledge about growth rates is assumed. Here, the interest is more related to this last setting,
with the aim to improve the approximation ratio to a constant.

1.1. Related Work

The BGT problem, while of independent combinatorial interest, originates from perpetual testing
of virtual machines in cloud systems [4]. In such systems, the frequency in which virtual machines are
tested for undesirable symptoms varies depending on the importance of dedicated cloud operational
mechanisms. The BGT problem considered here is also a close relative of several classical algorithmic
problems which focus on monitoring including Graph Exploration [5–8], Art Gallery Problem [9] and
its dynamic extension k-Watchmen Problem [10]. In the work on Patrolling [11,12], the studies focus
on monitoring a set of points with the same frequency of attendance, whereas in [13], the frequency
may vary.

In this paper, similarly to [1], the focus is on the case where each bamboo has its own attendance factor,
which makes it related to periodic scheduling [14], several variants of Pinwheel related problems [2,15–17]
including periodic Pinwheel problem [18,19] and Pinwheel scheduling [20], as well as the concept of
P-fairness in sharing multiple copies of some resource among various tasks [21,22]. It is worth pointing
out here that the intractability of BGT results from the hardness of Pinwheel scheduling proved in [23].

Of course, the relevance of a new variant of scheduling is of main interest to the algorithmic
community as scheduling issues represent fundamental primitives in many contexts. To this respect,
it is worth citinh the close relation of the proposed BGT problem with the work done on similar settings
in [24,25]. The main difference basically resides in the objective function. In fact, in [24,25], the aim
is to minimise the long-run average height of the bamboos, whereas in BGT the aim concerns the
minimisation of the maximum height ever reached by the bamboos.

In related research on minimising the maximum occupancy of a buffer in a system of n buffers,
the usual setting is a game between the player and the adversary [26–28]. The adversary decides how
a fixed total increase of data in each round is distributed among the buffers and tries to maximise the
maximum occupancy of a buffer. The player decides which buffer (or buffers) should be emptied next
and tries to minimise the maximum buffer size. The upper bounds developed in this more general
context can be translated into upper bounds for the BGT problem. However, here the aim is to derive
tighter bounds for the case where the knowledge of growth rates is not exploited, hence adopting
strategies able to deal with input data being either partially or entirely unknown.

Probably the most natural algorithm to keep the elevation of the bamboo garden low is the
greedy approach of always cutting the currently tallest bamboo. This method, which is agnostic with
respect to growth rates, was first coined in [4] under the name of ReduceMax and further studied
in [1]. This strategy was also considered independently (and under a different name) in the adversarial
setting of buffer minimisation problems [27]. Another method studied in [1] is the ReduceFastest2

approach, in which the fastest growing bamboo is cut but only among those having height above the
threshold 2H, where

H =
n

∑
i=1

hi.

Value H represents the total daily growth of the system of bamboos and it is known [1] that
one cannot keep bamboos below this threshold level. From [1], it is known that ReduceFastest2

Algorithms 2019, 12, 74 4 of 23

provides a constant approximation to BGT, i.e., none of the bamboos grows above height 4H.
However, its applicability depends on the knowledge of value H and at least an ordering of the
bamboos with respect to their growth rates. More interestingly, ReduceMax does not require such a
knowledge but surprisingly it is not well understood. While there are insights that it should perform
better than ReduceFastest2, the only upper bound known for the maximum height of bamboos is
O(H · log n) [1].

1.2. Achieved Results

In this paper, the main contribution is twofold, and it refers to both theoretical and experimental
studies on the BGT problem. In particular, the focus is on better understanding of what are called
priority schedulings that operate on any “reasonable”, i.e., involving all bamboos, strategy of cuts in
which priority is given to bamboos with the current height above a threshold greater than or equal to H.
Both ReduceMax and ReduceFastest2 fall into the priority category. Moreover, one further requirement
is that scheduling strategies must be fully deterministic. Hence, in the case of ties, i.e., when two
or more bamboos are eligible to be cut with respect to the considered strategy, the bamboo with the
biggest index is selected.

As the first result, it is proved that, for any distribution of integer growth rates h1, . . . , hn, and any
priority scheduling, the system stabilises in a fixed cycle of cuts, eventually. However, the time
needed to converge depends on the initial heights of bamboos. Then, it is shown that,
whenever ReduceMax stabilises in a round-robin type cycle, it guarantees 2-approximation for BGT.
Finally, extended experiments are conducted to compare ReduceMax with other strategies, including
ReduceFastest2. Note that the work in [4] contains some experiments on ReduceMax, focusing only on
selected distributions of bamboo growth rates. In contrast, here the focus is on all possible distributions
of bounded size. The experiments show ReduceMax being 2-approximating in all considered instances,
and provide evidence that ReduceMax outperforms all other tested strategies. Consequently, we
conjecture the following.

Conjecture 1. Algorithm ReduceMax is 2-approximating for the BGT problem.

Note that, the results presented in this paper have appeared in a preliminary form in [29].

2. Notation

Given is a collection {b1, b2, . . . , bn} of n bamboos (i.e., a garden) along with respective daily
growth rates h1, h2, · · · , hn. It is assumed that each hi is a positive integer, for any 1 ≤ i ≤ n,
and call a configuration Ct the sequence (`t

1, `t
2, . . . , `t

n) of the bamboos’ heights at a given day t.
Any configuration Ct = (`t

1, `t
2, . . . , `t

n) is determined by a growth mechanism applied on its predecessor
Ct−1 = (`t−1

1 , `t−1
2 , . . . , `t−1

n), i.e., for any 1 ≤ i ≤ n, it holds `t
i = `t−1

i + hi. The only exception to
this behavior is what is called a trimming operation. In particular, a bamboo bi is said to be trimmed
(equivalently cut) at a given day t if the height `t

i is reduced to zero and hence, trivially, `t+1
i = hi.

For the sake of simplicity, in what follows the term t is omitted from all notations when the number
of the day is clear from the context. Finally, given a configuration C, let V(C) denote the volume of
configuration C, which is the sum of all bamboos’ heights in C, i.e.,

V(C) =
n

∑
i=1

`i.

An input instance I to the BGT problem is a set of growth rates {hi}1≤i≤n, complemented by
the initial configuration C0. The interest is in the design of perpetual schedules of cuts, which allow
keeping the tallest bamboo in the garden as low as possible. In particular, it is assumed that at most
one trimming operation can take place every day. Therefore, the aim at designing an algorithm A that,
for a given input instance I, computes a perpetual schedule A(I) = (i1, i2, . . .), i.e., a sequence of indices

Algorithms 2019, 12, 74 5 of 23

ij ∈ {0, 1, 2, . . . , n} that determines, for any day t > 0, the bamboo to be trimmed, unless ij = 0 when
no bamboo is cut. In other words, a schedule of this kind defines an ordered sequence of trimming
operations on the bamboos. In what follows, an algorithm determining perpetual schedules is called a
perpetual scheduling, or simply scheduling algorithm.

Given an input instance I and a perpetual scheduling S , an execution E(I,S) is the sequence
(C0, C1, . . .) obtained by applying the schedule computed by S on C0. Moreover, given an execution
E and a configuration C, let M(E) (M(C), respectively) denote the maximum height reached by a
bamboo in E (C, respectively). Finally, let H = ∑n

i=1 hi denote the sum of the growth rates. It is
known that no algorithm can compute a schedule that keeps the heights of all the bamboos below H
indefinitely (i.e., such that M(E) < H) [1].

3. Theoretical Results

In this section, first a formal definition of priority schedulings along with the analysis of their
performance (see Section 3.1) are introduced. Then, the focus is on the strategy ReduceMax and on
showing that it provides 2-approximation for BGT under specific assumptions (see Section 3.2).

3.1. Priority Schedulings

Let C be the set of any configuration of n bamboos.

Definition 1. An oblivious scheduling σ : C → {0, 1, . . . , n} is a function which for any configuration of
heights in C returns an index i of the bamboo to be cut, and i = 0 means that none of the bamboos is scheduled to
be cut.

In other words, in oblivious schedulings the next cut is solely based on the current configuration,
without exploiting any knowledge about past cuts.

Definition 2. A configuration C = (`1, `2, . . . , `n) is said to be ordered whenever i < j implies hi ≥ hj.

The above implies the order of the sequence in C reflects a non-increasing ordering of the growth
rates, i.e., `1 is the height of the bamboo with the biggest growth rate.

Definition 3. An ordered oblivious scheduling σ : O → {0, 1, . . . , n} is an oblivious scheduling where
O ⊂ C is the set of ordered configurations in C.

Definition 4. Given a threshold τ ≥ H and any (ordered) configuration C ∈ C, let L be the set of indices
of all bamboos whose height is strictly greater than τ. An oblivious scheduling στ is a (ordered) τ-priority
scheduling if and only if L 6= ∅ implies στ(C) ∈ L.

In the remainder of the paper, a (ordered) τ-priority scheduling is simply referred to as a priority
scheduling when the ordering and the value of τ are either clear from the context or irrelevant.
Clearly, ReduceFastest2 is an ordered 2H-priority scheduling, as it cuts only bamboos above threshold
2H on the basis of the ordering of the growth rates. For ReduceMax, instead, it can be proved it
is a priority scheduling regardless of the ordering of the bamboos’ growth rates. This means it
can be applied to a wider range of input configurations, not only to ordered ones, as required by
ReduceFastest2.

Fact 1. ReduceMax is a priority scheduling.

Proof. Given any threshold τ ≥ H (as required by Definition 4) each day ReduceMax cuts the tallest
bamboo. This includes also the case when there are bamboos taller than τ. This in turn means that
ReduceMax gives priority to bamboos higher than τ, if any.

Algorithms 2019, 12, 74 6 of 23

The next lemma gives an upper bound on the volume the garden may reach in a priority
scheduling. This is useful to prove that any priority scheduling stabilises into a cycle of finite length.

Lemma 1 (Upper Bound on Volume). Given a τ-priority scheduling στ and an input I, there exists a time t,
such that, for any t′ > t, it holds V(Ct′) ≤ nτ, where Ct′ ∈ E(I, στ).

Proof. First, assume that M(E(I, στ)) > τ, as otherwise V(C) ≤ nτ, for each C ∈ E(I, στ), and the
lemma holds. If it is also assumed M(C0) > τ then it is possible to prove that, within finite time,
a configuration C with M(C) ≤ τ is reached by applying στ . In particular, note that for as long as there
are bamboos having height greater than τ, the total volume decreases each day, being τ ≥ H, of at
least 1. Thus, there must exist a time t when eventually M(Ct) ≤ τ, since the volume cannot decrease
indefinitely. At this time, it holds V(Ct) ≤ nτ.

Therefore, let t′ > t be the first day after time t such that Ct′ has a bamboo having height greater
than τ. Clearly, V(Ct′) < V(Ct′−1)− τ + H, as στ cuts a bamboo with height greater than τ and, at the
end of the day, all bamboos grow by H in total. Moreover, by hypothesis V(Ct′−1) ≤ nτ, since `i ≤ τ,
for each `i ∈ Ct′−1. Hence,

V(Ct′) < (n− 1)τ + H ≤ nτ

as H ≤ τ. Now, by focussing on V(Ct′+1), since in Ct′ the scheduling algorithm cuts a bamboo having
height bigger than τ, and since the sum of daily growths is exactly H, it follows that V(Ct′+1) < V(Ct′).
This is actually true for any following configuration until day t′′ where `i ≤ τ for any `i ∈ Ct′′ .
Notice that in t′′, the same set of hypotheses as of day t hold, then by repeating the reasoning,
the claim follows.

By Lemma 1, the next corollary can be obtained, which guarantees that any priority scheduling
stabilises into a cycle of finite length, i.e., that the sequence of cuts becomes periodic.

Corollary 1 (Existence of a Cycle). Given a τ-priority scheduling στ and an input I, there exist two days t
and t′, where t < t′, Ct = Ct′ , and Ct, Ct′ ∈ E(I, στ).

Proof. The claim follows from Lemma 1, since the number of configurations having volume at most
nτ is finite.

By the above corollary, it follows that any priority scheduling stabilises in a cycle, eventually.
In fact, by Definition 1, a priority scheduling (which is an oblivious scheduling) computes the
same trimming operation if the same configuration shows up again. It is worth reminding that,
in the case of ties, the bamboo having the biggest index is cut. In this paper, the focus is on the
properties of such cycles, as they represent the perpetual trimming process that have to be executed
indefinitely. Hence, the trend will be to disregard configurations preceding LE where, given an
execution E, LE denotes its periodic part (i.e., the sequence of configurations in the cycle). In particular,
to better characterise such cycles, the next notation is introduced:

• LE = (C1 = Ct′ , C2 = Ct′+1, C3, . . . , CλE), where Ct′ is the first configuration belonging to LE,
reached from C0, and λE = |LE| is the length of the cycle, i.e., the number of configurations in LE.

• lt is the height of the bamboo cut in Ct ∈ LE. It is assumed lt = 0 if no bamboo is cut.
• ci is the number of times bamboo bi is cut in LE, for each i = 1, . . . , n, which is equal to the number

of relative maximum heights reached by bi in the cycle.

• mj
i is the relative maximum height reached by bi in the cycle just before the jth cut, for i = 1, . . . , n

and j = 1, . . . , ci. Note that, by definition, during day t, lt = mj
i for some values of i and j.

• Mi =
cj

∑
j=1

mj
i is the sum of the relative maximum heights reached by bi.

Algorithms 2019, 12, 74 7 of 23

The next lemma provides a very useful property of the cuts that are performed within a cycle
of a priority scheduling. In particular, it can be shown that the average value of heights reached by
bamboos in LE, just before a cut, is always H. As shown below, the lemma is exploited to prove that
within some specific circumstances ReduceMax is a 2-approximation algorithm.

Lemma 2 (On Average Height of Cuts within a Cycle). Given an execution E of a priority scheduling,

then 1
λE

λE
∑

t=1
lt = H.

Proof. Let ∆t
V = V(Ct)−V(Ct−1) be the change of the volume from Ct−1 to Ct, for any t = 1, . . . λE.

C0 ≡ CλE , since cycle LE exists by Corollary 1. Thus, it holds ∆t
V = H − lt, because at day t the

bamboo of height lt is cut and all bamboos grow by H in total. Now, since
λE
∑

t=1
∆t

V must be equal to

zero, as configurations in LE come periodically, then:

λE

∑
t=1

∆t
V =

λE

∑
t=1

(H − lt) = λE · H −
λE

∑
t=1

lt = 0.

Therefore, it is obtained that
λE

∑
t=1

lt = λE · H

and the claim holds.

The next lemma as well as the subsequent corollary are not exploited in the rest of the paper as the
focus is on analysing the performance of ReduceMax. However, such results constitute interesting and
elegant properties characterising general priority schedulings, hence they are worth being reported.
In particular, in what follows, the length of LE is characterised in terms of the maximum height reached
by any bamboo having growth rate equal to hi.

Lemma 3 (Characterisation of λE). Given an execution E of a priority scheduling and an index i ∈
{1, 2, . . . , n}, then

λE =
Mi
hi

.

Proof. Let pj
i = mj

i/hi. The value of pj
i is an integer representing the number of days between the jth

cut of bi and the previous one. Then,

Mi =

cj

∑
j=1

mj
i =

cj

∑
j=1

hi · p
j
i = hi ·

cj

∑
j=1

pj
i = hi · λE.

An immediate consequence is the following corollary.

Corollary 2 (Properties of Rates and Maximum Heights). Given an execution E of a priority scheduling,
and two indices i, j ∈ {1, 2, . . . , n}, then:

Mi
Mj

=
hi
hj

.

3.2. ReduceMax Scheduling

In this section, the focus is on ReduceMax. The aim is to show that ReduceMax performs better
than an O(log n)-approximation algorithm. Actually, the approximation ratio is improved only for

Algorithms 2019, 12, 74 8 of 23

a specific set of input instances, by also exploiting some results achieved for priority schedulings.
The results contained in this section constitute a path toward a partial achievement of the aim, leading
to a 2-approximation ratio for ReduceMax when confined to some specific instances. By Fact 1, it en
shown above that ReduceMax is a priority scheduling, regardless of the chosen threshold τ ≥ H
required by Definition 4. It follows that ReduceMax inherits all results obtained in the previous section
for priority schedulings. In particular, given an execution E obtained by applying ReduceMax, let lt be

the height of the bamboo cut in Ct ∈ LE, i.e., lt = M(Ct), and let ME = 1
λE

λE
∑

t=1
lt denote the average of

the maximum heights reached by bamboos in LE. Then, for ReduceMax, Lemma 2 can be reformulated
as follows.

Corollary 3 (On Average Height of Cuts of ReduceMax). Let E be an execution of ReduceMax.
Then, ME = H.

A natural intuitive property is provided in the next lemma.

Lemma 4 (On the Amounts of Cuts within a Cycle). Let E be an execution of ReduceMax. For any two
indices i, j ∈ {1, 2, . . . , n} such that hi ≥ hj, it holds ci ≥ cj.

Proof. By contradiction, assume that ci < cj. Then, in cycle LE there must be at least two cuts of bj
between two consecutive cuts of bi. However, since hi ≥ hj, bj after the first cut will grow less than bi
and it will never reach bi before its second cut, which is a contradiction.

A direct consequence of Lemma 4 is that, if two bamboos exhibit the same growth rate, they also
have the same number of cuts in the cycle.

Corollary 4 (Sufficient Condition for Same Number of Cuts). If E is an execution of ReduceMax, hi = hj
implies ci = cj.

Let mi = max{mj
i : j = 1, 2, . . . , ci} be the maximum height reached by bamboo bi in a cycle LE

of ReduceMax. The next result shows that ci = 1 suffices to guarantee mi < 2H. Basically, the next
lemma guarantees that the approximation factor of ReduceMax reduces from O(log n) [1] to 2 if all
bamboos are cut only once within the cycle, i.e., when the cycle of ReduceMax is equivalent to the
round-robin strategy.

Lemma 5 (Sufficient Condition for Bounded Maximum). Let E be an execution of ReduceMax. Then,

ci = 1 for some i ∈ {1, 2, . . . , n} =⇒ mi < 2H.

Proof. First, notice that ci = 1 suffices to immediately obtain mi = λE · hi. Moreover, by Corollary 3 it

holds ME = H, i.e., that λE · H −
λE
∑

t=1
lt = 0.

Now, it is known that bi is cut only once and, as LE is periodic, C1 is equal to the configuration
where the height of bamboo bi is hi. Thus, each term lt is trivially lower bounded by the height of

bamboo bi at day t, i.e., lt ≥ t · hi. Hence, λE · H −
λE
∑

t=1
t · hi ≥ 0. Therefore, it holds that

λE · H ≥
λE

∑
t=1

t · hi ≥
λE · (λE + 1)

2
· hi

which implies
λ2

E
2
· hi +

λE
2
· hi − λE · H ≤ 0

Algorithms 2019, 12, 74 9 of 23

that is
λE · hi + hi − 2 · H ≤ 0.

This in turn implies
λE · hi < 2H

and hence mi < 2H.

If ci = 1, for some i = 1, 2, . . . n, then similar to the proof of Lemma 5, a limit on the value of λE
can be obtained, as summarised by the following corollary.

Corollary 5 (Sufficient Condition for Bounded Length of Cycles). Let E be an execution of
ReduceMax. Then,

ci = 1 for some i ∈ {1, 2, . . . , n} =⇒ λE ≤
2 · H

hi
− 1.

Given the above results, and an execution E, configurations where the bamboo having the largest
growth rate, e.g., bm, such that cm = 1, are now characterised. By Lemma 4, cm = 1 directly implies
ci = 1 for all i = 1, 2, . . . n.

To this aim, given the set of growth rates h1, h2, · · · , hn, the next notation is used, by: (i) h(k),
k ∈ [1, n], its kth order statistic, that is the kth smallest value in an ordered view of the set (e.g., h(1)
denotes the smallest rate while h(n) denotes the largest one); and (ii) b(k), k ∈ [1, n], the bamboo
associated with h(k). Moreover, given an execution E, c(k) (m(k), respectively), k ∈ [1, n], denote the
number of times bamboo b(k) is cut (the maximum height reached by b(k), respectively) in LE. The next
result can be now proved.

Lemma 6 (Characterising Configurations Having c(n) = 1). Given an input I, let E be an execution of
ReduceMax. Then:

c(n) = 1 ⇐⇒
h(k)

h(k+1)
≥ 1− 1

n
where k ∈ {1, 2, n− 1}.

Proof. (=⇒) Since c(n) = 1, by Lemma 4, it is known that ci = 1 for any i = 1, 2, . . . n and then
λE = n. Hence, the maximum height reached by bamboo b(n) is m(n) = n · h(n), at day n. This means
that there exists a bamboo bi 6= b(n), such that, at day n− 1, bamboo bi has length larger than b(n),
i.e., mi = n · hi ≥ (n− 1) · h(n). Consequently, given h(n) ≥ h(n−1) ≥ hi, it follows that n · h(n−1) ≥
(n− 1) · h(n) and hence:

h(n−1)

h(n)
≥ n− 1

n

By the same reasoning as above, when bamboo b(n−1) reaches its maximum length m(n−1) =

h(n−1) · n, there must exist another bamboo bj, such that bj 6= b(n), bj 6= b(n−1) and mj = n · hj ≥
(n− 1) · h(n−1). Given that h(n) ≥ h(n−1) ≥ h(n−2) ≥ hj, it follows that n · h(n−2) ≥ (n− 1) · h(n−1)
and hence:

h(n−2)

h(n−1)
≥ n− 1

n
.

In general, the above reasoning can be iterated up to n times to obtain:

h(k)
h(k+1)

≥ n− 1
n

= 1− 1
n

Algorithms 2019, 12, 74 10 of 23

and the first implication of the claim follows.
(⇐=) By construction, it is possible to build LE = (C1, C2, . . . , Cn) of an execution E such that

ci = 1 for each i = 1, 2, . . . n. Now, let

C1 = (1 · h(n), 2 · h(n−1), . . . , (n− 1) · h(2), n · h(1)).

Since
h(k)

h(k+1)
≥ 1− 1

n

for any k ∈ {1, 2, n− 1}, it follows that

(k + 1) · h(k) ≥ k · h(k+1)

for each k ∈ {1, 2, n− 1}. In fact, it holds

(k + 1) · h(k) ≥ (k + 1) ·
(

1− 1
n

)
· h(k+1) = (k + 1) · h(k+1) −

k + 1
n
· h(k+1) ≥ k · h(k+1).

Then, in C1, bamboo b(1) is cut and the resulting configuration is

C2 = (2 · h(n), 3 · h(n−1), . . . , n · h(2), 1 · h(1)).

By a simple algebraic manipulation, it is possible to infer that in C2 the maximal bamboo height is
n · h(2), and hence bamboo b(2) is cut.

In general, for t = 1, 2, . . . , n, it holds

Ct = (t · h(n), (t + 1) · h(n−1), . . . , n · h(t), 1 · h(t−1), 2 · h(t−2), . . . , (t− 1) · h(1))

and, in Ct, the resulting bamboo that is cut is b(t), having height n · h(t). In fact, in Ct, the height of
bamboo b(t) is straightforwardly larger than that of any bamboo b(i) for i < t. For i > t, instead,
since the height of bamboo b(i) is (t + i) · h(i), it follows, by a similar argument as above, that (t + i) ·
h(i) ≥ (t + i− 1) · h(i+1), hence b(t) is the bamboo exhibiting the maximal height in Ct.

When t = n, it is possible to observe that Ct = (n · h(n), 1 · h(n−1), 2 · h(n−2), . . . , (n− 1) · h(1)),
where clearly b(n) has the maximal height and it is cut, leading to a new configuration which coincides
with C1.

Reminding that, when dealing with ReduceMax, it is not required to have bamboos ordered
according to their growth rates, in what follows, executions having c(n) = 1 are considered as
minimum-cycle executions, since c(n) = 1 implies that ci = 1 for any bamboo bi, and then the execution
exhibits a minimum-length cycle, that is λE = n. Note that λE cannot be smaller than n, as each
bamboo must be cut at least once. These observations are summarised in the next corollary.

Corollary 6 (Characterisation of Minimum-cycle Executions). Let E be an execution of ReduceMax. Then,

c(n) = 1 ⇐⇒ λE = n.

Finally, the next corollary can be also obtained for minimum-cycle executions of ReduceMax.

Corollary 7 (On the Maximum Height in Minimum-cycle Executions). Let E be an execution of
ReduceMax. If E is a minimum-cycle execution, then M(LE) < 2H.

Proof. In a minimum-cycle execution, the maximum height reached by a bamboo bi is exactly mi =

nhi. Hence, the maximum height reached during an execution by any bamboo is due to h(n) and,

Algorithms 2019, 12, 74 11 of 23

in particular, is given by M(LE) = m(n) = n · h(n). Hence, the thesis is an immediate consequence of
Lemma 5, as c(n) = 1.

Corollary 7 is of particular interest, since by Conjecture 1 it has been essentially stated that
M(E) < 2H for all the executions E obtained via ReduceMax. Hence, Corollary 7 represents a partial
proof to the conjecture, holding for the case of minimum-cycle executions. In the next section,
the validity of the posed conjecture on a large set of inputs is experimentally evaluated.

Clearly, minimum-cycle executions are desirable as they guarantee M(E) < 2H. However, from a
practical view point, round-robin schedulers are not always the most desirable solutions as different
properties and requirements might be involved. In particular, the following result provides a sufficient
condition for non-minimum cycle executions.

Theorem 1 (Sufficient Condition for Non-minimum-cycle Executions). Given an input I, let E be an
execution obtained via ReduceMax. Then, E is not a minimum-cycle execution if

h(1)
h(n)

> e

where e is Euler’s number.

Proof. By contradiction, assume that
h(1)
h(n)

> e holds in E and that c(n) = 1, i.e., E is a minimum-cycle

execution. Then, by Lemma 6, it holds

h(i)
h(i+1)

≥ 1− 1
n

, i ∈ {1, 2, n− 1}

which implies

h(i+1)

h(i)
≤ 1

1− 1
n
=

(
1 +

1
n− 1

)

and hence

h(n)
h(1)

=
h(n)

h(n−1)
·

h(n−1)

h(n−2)
·

h(n−2)

h(n−3)
· · ·

h(3)
h(2)
·

h(2)
h(1)
≤
(

1 +
1

n− 1

)n−1
.

Moreover, it holds that
(

1 + 1
n−1

)n−1
is an increasing function of n. Therefore, since

lim
n→∞

(
1 +

1
n− 1

)n−1
= e

it follows that
h(n)
h(1)
≤
(

1 +
1

n− 1

)n−1
≤ e

which is clearly a contradiction.

4. Experimental Results

In what follows, an extensive experimental evaluation of four priority scheduling strategies is
provided. As already pointed out, a requirement for the scheduling strategies is to be fully deterministic.
Hence, in the case of ties, that is when two or more bamboos are eligible to be cut with respect to the
considered strategy, the bamboo having the biggest index is selected. The considered strategies are:

Algorithms 2019, 12, 74 12 of 23

• ReduceMax (RMax, for short): This is the heuristic which performance is the most relevant to the
experiments. In particular, in [1], based on [27], a O(log n)-approximation guarantee has been
established. However, the interest is in determining whether such a bound is tight in practice,
i.e., whether the logarithmic factor is an accurate estimation. The strategy works in a greedy
fashion by cutting each day the tallest bamboo.

• ReduceFastest2 (RFast2, for short): This is another greedy strategy introduced in [1].
It guarantees 4-approximation. However, this method requires ordering the input configurations
according to the non-increasing order of the bamboos’ growth rates. In fact, each day it cuts
the fastest growing bamboo (the one having the biggest hi) among those whose height exceeds
threshold 2H. If none of the bamboos is taller than 2H, no cuts are performed.

• ReduceFastest1 (RFast1, for short): This is a variant of RFast2, introduced here for the first
time, obtained by decreasing the threshold from 2H to H, and by allowing the cut of the fastest
growing bamboo also below the threshold. Basically, if none of the bamboos has reached height H,
the fastest growing bamboo is cut. This is a natural extension of RFast2, and the aim of defining
it is to check whether there are chances to obtain better performance with respect to RFast2 and
RMax. Note that RFast1 is an ordered H-priority scheduling.

• ReduceMin (RMin, for short): This priority algorithm cuts each day the shortest bamboo,
giving priorities to those above H. The aim of defining this strategy is to evaluate performance of
counter-intuitive methods, i.e., to see whether even in an adversarial approach one may obtain
acceptable performances. RMin is a H-priority scheduling.

To evaluate the behaviour of the scheduling strategies, all above mentioned scheduling algorithms
have been implemented in C++. Moreover, it has been implemented a simulation framework for both
generating input instances of the problem and measuring the performance, with respect to different
metrics of interest, of the approaches on said instances. Different types of experiments have been
performed, with varying values of n and H and different distribution of growth rates, which are
described in the following sections.

All sources were compiled with GNU g++ version 7.3.0 (O3 optimisation level) under Ubuntu
Linux (Kernel 4.15.0-38). All testswere executed on a workstation equipped with an Intel©Xeon©CPU
E5-2643 v33.40GHz CPU and 128 GB of RAM.

Notice that, for a fair comparison with respect to [1], in the experiments, it was assumed that the
heights of all bamboos are initially null, that is C0 = (0, 0, . . . , 0). Moreover, as the experiments
involved ordered priority schedulings (namely RFast1 and RFast2), without loss of generality,
ordered configurations were considered.

4.1. Fixed H Experimentation

In the first set of experiments, parameter H was fixed and all possible input instances of n bamboos
were considered whose growth rates sum up to H. Such instances were generated by considering,
for a given H ∈ N, all integer partitions of H. Hence, clearly, the resulting n was in {1, 2, . . . , H},
where for n = 1 there was only one bamboo having growth rate equal to H while for n = H all
bamboos had unitary growth rate (e.g., for H = 3, we had instances [3], [2, 1] and [1, 1, 1]). Note that,
for H, values in the set {5, 10, 15, 20, 25, 30, 35} were selected. This choice was dictated by the fact
that the number of integer partitions, and therefore instances to consider, grows very quickly as H
increases and hence too large values of H induce a computationally prohibitive number of simulations.
In particular, it is known that the number of integer partitions p(k) of a natural number k grows

asymptotically as p(k) ≈ 1
4k
√

3
eπ
√

2k
3 as k approaches infinity [30]. For instance, p(100) = 190,569,292

while p(1000) ≈ 2.41 · 1031. Figure 2b provides an overview of the total number of inputs considered in
this experiment. However, the trend of the obtained results does not seem to be affected for H growing.

Algorithms 2019, 12, 74 13 of 23

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
n

0

2000

4000

6000

8000

10000

f
r
e
q
u
e
n
c
y

(a)

5 10 15 20 25 30 35
H

0

20000

40000

60000

f
r
e
q
u
e
n
c
y

(b)

Figure 2. (a) Distribution of instances with respect to n for all partitions of integer H ∈
{5, 10, 15, 20, 25, 30, 35}; and (b) distribution of instances with respect to H for all partitions of integer
H ∈ {5, 10, 15, 20, 25, 30, 35}.

The results of the application of all the considered scheduling algorithms, on instances induced
by the integer partitions H = 30 (H = 35, respectively) are shown in Figure 3 (Figure 4, respectively).
Panels on the left side show how the maximum M(E), obtained for all configurations and strategies,
varies as a function of n (see Figures 3a,c and 4a,c, respectively). Reference lines 2H and 4H are plotted
to emphasise performance of the strategies in terms of M(E). Panels on the right instead, instead,
show how the achieved maximum value of λE changes as a function of n, given that all strategies are
guaranteed to stabilise into cycles.

Note that the maximum measured value is reported as it is possible to have many instances
having the same n. Notice also that the results for H ∈ {5, 10, 15, 20, 25} lead to similar considerations
with respect to those provided below, hence they have been omitted.

5 10 15 20 25 30
n

50

100

150

200

250

m
ax

E
M

(E
)

RMin

RMax

RFast2

RFast1

2H

4H

(a)

5 10 15 20 25 30
n

101

103

105

m
ax

E
λ
E

RMin

RMax

RFast2

RFast1

(b)

5 10 15 20 25 30
n

30

40

50

60

m
ax

E
M

(E
)

RMax

RFast1

2H

(c)

5 10 15 20 25 30
n

100

101

102

103

104

m
ax

E
λ
E

RMax

RFast1

(d)

Figure 3. Experiments conducted on all possible ordered instances obtained by setting H = 30 and
hence considering n varying in {1, 2, . . . , 30}. Panels (a,c) refer to maximum M(E), whereas panels
(b,d) refer to maximum λE. Panels (c,d) show strategies that, experimentally, exhibit 2-approximation.

Algorithms 2019, 12, 74 14 of 23

An alternative view of the results of the experiments for H = 35 is given in Figure 5 where it
is shown how the obtained values of M(E) and λE are distributed over the considered instances.
In detail, each value on the x-axis in these diagrams simply represents one instance, to which the
corresponding values of M(E) and λE has been associated on the y-axis. Instances are sorted on the
x-axis in non-decreasing order according to their values on the y-axis to highlight the amount of inputs
providing a same value of M(E) and λE. This information is condensed in Figure 4 where n is on the
x-axis and the maximum values are plot only for each set of instances sharing the same value of n.

On the Maximum Height. The main and the most interesting outcome of this experiment is that,
notwithstanding the O(log n) approximation factor [1], RMax exhibits properties of a 2-approximation,
which can be observed as M(E) < 2H. This supports the conjecture on the worst case approximation
factor that has been proved so far being an over estimation of the true approximation upper
bound. Another rather surprising evidence is that also RFast1 is always below 2H in terms of
M(E). This suggests that, for this strategy as well there could be a way to prove the worst case
2-approximation. However, RFast1 seems to follow an asymptotic trend toward 2H as n increases
while a slowly decreasing trend for RMax when n increases can be observed.

5 10 15 20 25 30 35
n

100

200

300

m
ax

E
M

(E
)

RMin

RMax

RFast2

RFast1

2H

4H

(a)

5 10 15 20 25 30 35
n

101

103

105

107

m
ax

E
λ
E

RMin

RMax

RFast2

RFast1

(b)

5 10 15 20 25 30 35
n

40

50

60

70

m
ax

E
M

(E
)

RMax

RFast1

2H

(c)

5 10 15 20 25 30 35
n

100

101

102

103

104

105

m
ax

E
λ
E

RMax

RFast1

(d)

Figure 4. Experiments conducted on all possible ordered instances obtained by setting H = 35 and
hence considering n varying in {1, 2, . . . , 35}. Panels (a,c) refer to maximum M(E), whereas panels
(b,d) refer to maximum λE. Panels (c,d) show strategies that, experimentally, exhibit 2-approximation.

Concerning RFast2, from [1] it is known that M(E) is guaranteed to be below 4H and this is
confirmed by the performed tests. Nonetheless, it can be observed that M(E) is always above 2H,
which is expected since no actions are performed by RFast2 when there are no bamboos having height
above 2H. However, the strategy exhibits a rather uniform behaviour, with M(E) stabilising toward
threshold 3H without ever overpassing it. This suggests that perhaps also the bound of 4H guaranteed
for RFast2 is an overestimation of the true bound. Finally, regarding RMin, for low/high values of n
(see Figures 3a and 4a), it provides smaller values of M(E) with respect to RFast2, whereas for higher
values of H its performance gets worse in the opposite sense. However, there no evidence of RMin

Algorithms 2019, 12, 74 15 of 23

exhibiting a constant approximation, with values of M(E) varying quite a lot with n. As a final remark,
in Figure 5a, it can be observed that, for all strategies, values of maximum M(E) tend to have small
variance among all instances having a same H, with curves assuming rather similar (flat) trends, and
values always being very close to the average. The only exception is algorithm RMin, whose values of
M(E) are quite different across instances having a same H. Moreover, RMax achieves values of M(E)
that are far better than all other strategies, including RFast1, being below 2H and, in some cases, below
3
2 H. This is even more evident in Figures 3c and 4c where the focus is restricted on RMax and RFast1,
i.e., on experiments where M(E) is observed to be always below 2H. Finally, a global view supporting
the conclusions with respect to the performance of the strategies in terms of M(E) is given in the
scatterplot chart of Figure 6a where all obtained values of M(E) for all strategies and for all values of
H are reported and compared.

0 5000 10000 15000

100

200

300

M
E

RMin

RMax

RFast2

RFast1

2H

4H

(a)

0 5000 10000 15000

101

103

105

107

λ
E

RMin

RMax

RFast2

RFast1

(b)

Figure 5. Distribution of values of: M(E) (a); and λE (b) exhibited by all algorithms on instances
induced by all partitions of H = 35. Instances are sorted by non-decreasing values of: M(E) (a);
and λE (b). To magnify the differences, the y-axis in (b) is log-scaled.

On the Length of the Cycle. In Figures 3b and 4b, the maximum λE exhibited by all strategies is reported.
Such values can be considered as proxy of the complexity of the periodic part of each execution, as
higher values of λE correspond to larger spaces of configurations that are explored by the strategies.
This translates to higher variance in terms of height and volume, which can be seen as an undesired
behaviour. Moreover, there might be also a relationship between such length and the quality of the
provided factor of approximation, and it would be worth studying such relationship to define new
bounds on this factor.

In more details, the data show a very big gap between the results obtained by RMax, RFast1, and
those measured for RFast2, RMin, with the latter two tending to exhibit larger values with respect to
the former two. In particular, as shown in Figure 4b, when n = 18, RMin cyclic part takes around 107

steps, whereas the worst case for RFast2 is obtained for n = 19, with around 105 steps. Instead, RMax
and RFast1 behave rather differently with respect to other strategies, exhibiting lower values of λE
(e.g., up to around 3 orders of magnitude lower when n = 21).

This may be to more accurate arguments about changes in the volume of the garden, to be
exploited in proofs of constant approximation. Different considerations can be done by observing
Figure 5b. In particular, the largest values of λE are achieved in the great majority of the cases by
RFast2 while RMax and RFast1 result to be the best strategies also in this sense.

Algorithms 2019, 12, 74 16 of 23

5 10 15 20 25 30 35
H

0

100

200

300

M
(E

)

RMin

RMax

RFast2

RFast1

(a)

5 10 15 20 25 30 35
H

100

101

102

103

104

105

λ
E

RMin

RMax

RFast2

RFast1

(b)

5 10 15 20 25 30 35
H

100

102

104

D
a
y
s

t
o

S
t
a
b
il

is
e

RMin

RMax

RFast2

RFast1

(c)

Figure 6. Distribution of values of: M(E) (a); λE (b); and number of days before stabilisation (c) as a
function of H, for all considered strategies and instances.

4.2. Fixed n Experimentation

In this section, the results of further experimentation are reported where parameter n is fixed and
all possible instances with H ≥ n are considered, when H ∈ {5, 10, 15, 20, 25, 30, 35}. For example,
when n = 15, then H can assume values 15, 20 and 25. Instances are again chosen among all the
integer partitions of specific values of H. Figure 2 provides an overview of the total number of inputs
considered in this experiment, as a function of n and H, respectively.

The results of this experiment are summarised in Figures 7 and 8 where the results of application of
all considered algorithms on instances with n = 10 and n = 15, respectively, are shown. In particular,
the maximum values of M(E) and λE obtained by all strategies as a function of H are reported.
Reference lines 2H and 4H are again used to highlight the quality in terms of M(E) obtained by the
different algorithms. Note that graphs for other possible values of n (e.g., n = 20) are omitted since
they lead to similar considerations with respect to those that follow.

Algorithms 2019, 12, 74 17 of 23

5 10 15 20 25 30 35
H

0

100

200

300
m

ax
E
M

(E
)

RMin

RMax

RFast2

RFast1

2H

4H

(a)

10 15 20 25 30 35
H

101

102

103

104

105

m
ax

E
λ
E

RMin

RMax

RFast2

RFast1

(b)

10 15 20 25 30 35
H

20

40

60

m
ax

E
M

(E
)

RMax

RFast1

2H

(c)

10 15 20 25 30 35
H

101

102

103

m
ax

E
λ
E

RMax

RFast1

(d)

Figure 7. How maximum M(E) (a,c) and maximum λE (b,d) change as a function of H when instances
are induced by all partitions of H ∈ {10, 15, 20, 25, 30, 35} having cardinality n = 10. Panels (c,d) show
strategies that, experimentally, exhibit 2-approximation.

On the Maximum Height. As already observed above, in this experiment, it was also possible to notice
that RMax and RFast1 exhibit values of M(E) that are always below 2H (see Figures 7 and 8). Moreover,
again, RMax seems to be the best strategy, achieving values of maximum M(E) that are below 2H and
better than all other scheduling strategies, including RFast1. This is again more evident if the attention
is restricted to RMax and RFast1 only (see Figure 7). Furthermore, the experiments confirm also the
theoretical bound of RFast2, with bamboos never exceeding 4H. Moreover, all strategies exhibit a
trend of M(E) with respect to H that looks linear, with the only exception of RMin, where the curve
looks slightly super-linear.

On the Length of the Cycle. In Figures 7b and 8b, the maximum λE obtained by all strategies in this
setting is reported. The results confirm the trend observed in the case of fixed H. However, here it can
be seen how RMin starts growing significantly faster for values of H that are greater than 20. Shortest
cycles are obtained by RMax and ReduceFastest1. Still, the length of the cycle seems dependent on the
way ties among bamboos are resolved (see Figure 7d). For the sake of completeness, in Figures 9–12,
the entire executions of the scheduling strategies are plotted on four sample instances whose size
(i.e., n or H) is larger than all others considered in this paper, namely having:

• n = 30 bamboos with H ∈ {70, 100}; and
• n = 10 with H ∈ {40, 200}.

Algorithms 2019, 12, 74 18 of 23

5 10 15 20 25 30 35
H

0

100

200

300
m

ax
E
M

(E
)

RMin

RMax

RFast2

RFast1

2H

4H

(a)

15 20 25 30 35
H

101

102

103

104

105

106

m
ax

E
λ
E

RMin

RMax

RFast2

RFast1

(b)

15 20 25 30 35
H

20

40

60

m
ax

E
M

(E
)

RMax

RFast1

2H

(c)

15 20 25 30 35
H

102

103

104

m
ax

E
λ
E

RMax

RFast1

(d)

Figure 8. How maximum M(E) (a) and maximum λE (b) change as a function of H when instances
are induced by all partitions of H ∈ {15, 20, 25, 30, 35} having cardinality n = 15. Panels (c,d) show
strategies that, experimentally, exhibit 2-approximation.

0 10000 20000 30000
days

0

200

400

600

m
ax

n i=
1
`t i

RMin

2H

4H

M(E)

cycle starts
λE∑
t=1

lt

λE
= H

(a)

0 100 200 300 400
days

50

100

150

200

250

m
ax

n i=
1
`t i

RMax

2H

4H

M(E)

cycle starts
λE∑
t=1

lt

λE
= H

(b)

Figure 9. Cont.

Algorithms 2019, 12, 74 19 of 23

0 10000 20000 30000 40000 50000
days

50

100

150

200

250
m

ax
n i=

1
`t i

RFast2

2H

4H

M(E)

cycle starts
λE∑
t=1

lt

λE
= H

(c)

0 5000 10000 15000 20000 25000
days

50

100

150

200

250

m
ax

n i=
1
`t i

RFast1

2H

4H

M(E)

cycle starts
λE∑
t=1

lt

λE
= H

(d)

Figure 9. Snapshot of the evolution of maximum heights when strategies: RMin (a); RMax (b); RFast2 (c);
and RFast1 (d) are applied on an instance having n = 30 and H = 70. (in details, structured as follows
[20; 11; 8; 5; 1]). On the x-axis the consecutive days
are reported while on the y-axis the maximum height on the corresponding day is plot. The vertical line

shows the beginning of the periodic phase while the horizontal lines show, respectively, (
λE

∑
t=1

lt)/λE

(i.e., H), 2H, 4H, and M(E) over the entire execution.

0 2500 5000 7500 10000
days

0

500

1000

1500

2000

m
ax

n i=
1
`t i

RMin

2H

4H

M(E)

cycle starts
λE∑
t=1

lt

λE
= H

(a)

0 200 400 600 800 1000
days

100

200

300

400

m
ax

n i=
1
`t i

RMax

2H

4H

M(E)

cycle starts
λE∑
t=1

lt

λE
= H

(b)

0 2500 5000 7500 10000 12500
days

100

200

300

400

m
ax

n i=
1
`t i

RFast2

2H

4H

M(E)

cycle starts
λE∑
t=1

lt

λE
= H

(c)

0 500 1000 1500 2000 2500
days

100

200

300

400

m
ax

n i=
1
`t i

RFast1

2H

4H

M(E)

cycle starts
λE∑
t=1

lt

λE
= H

(d)

Figure 10. Snapshot of the evolution of maximum heights when strategies: RMin (a); RMax (b);
RFast2 (c); and RFast1 (d) are applied on an instance having n = 30 and H = 100 (in details, structured
as follows [70; 2; 1]). Data are plotted as in
Figure 9.

Algorithms 2019, 12, 74 20 of 23

0 2000 4000 6000 8000 10000
days

50

100

150
m

ax
n i=

1
`t i

RMin

2H

4H

M(E)

cycle starts
λE∑
t=1

lt

λE
= H

(a)

0 50 100 150 200
days

50

100

150

m
ax

n i=
1
`t i

RMax

2H

4H

M(E)

cycle starts
λE∑
t=1

lt

λE
= H

(b)

0 2000 4000 6000
days

50

100

150

m
ax

n i=
1
`t i

RFast2

2H

4H

M(E)

cycle starts
λE∑
t=1

lt

λE
= H

(c)

0 50 100 150
days

50

100

150

m
ax

n i=
1
`t i

RFast1

2H

4H

M(E)

cycle starts
λE∑
t=1

lt

λE
= H

(d)

Figure 11. Snapshot of the evolution of maximum heights when strategies: RMin (a); RMax (b);
RFast2 (c); and RFast1 (d) are applied on an instance having n = 10 and H = 40 (in details, structured
as follows [15; 13; 4; 2; 1; 1; 1; 1; 1; 1]). Data are plotted as in Figure 9.

This is done to highlight how each algorithm stabilises and how values of M(E) evolve both
before the cyclic part starts (i.e., during the transient phase) and during such periodic part.

In particular, the height as a function of increasing values of days is shown and both the length of
the periodic part and the number of days before each algorithm stabilises are highlighted. The data
lead essentially to two major observations:

• (i) Some strategies exhibit a very small variance in terms of height (e.g., RMax) with respect to
others (e.g., RMin).

• (ii) Some strategies (e.g., RMax) are able to stabilise very quickly to a cycle, which is a clearly
desirable behaviour in a stabilisation perspective. On top of that, they also exhibit a small λE.

To support these observations, an aggregated view of all the measures of M(E) and λE are shown,
for all instances and strategies, as a function of H (see Figure 6a,b). Jointly, the distribution of the length
of the transient phases, i.e., the number of days before each algorithm stabilises into the periodic part
is reported (see Figure 6c). Furthermore, the panels suggest that the structure of the instances affects
somehow the behaviour of the scheduling algorithms and the corresponding schedules. In more details,
heterogeneous distributions of rates seem to be associated with higher values of M(E), λE and number
of days before stabilisation while more evenly distributed rates tend to induce the opposite behavior.
Finally, it is worth remarking on the successful verification that all the (priority) strategies investigated
clearly do not violate the results of Section 3.1. Moreover, on the basis of the experimental results and
in accordance to the special cases studied in Corollary 7, it is worth reporting again Conjecture 1 to
emphasise and confirm the arisen intuition:

Conjecture 1. Algorithm ReduceMax is 2-approximating for the BGT problem.

Algorithms 2019, 12, 74 21 of 23

Further considerations for the other heuristics might be deducted, as for instance also
ReduceFastest1 seems to guarantee an approximation ratio of 2. However, as for ReduceFastest2,
it relies on the ordering of the bamboos with respect to the growth rates.

0 20000 40000 60000
days

200

400

600

800

m
ax

n i=
1
`t i

RMin

2H

4H

M(E)

cycle starts
λE∑
t=1

lt

λE
= H

(a)

0 200 400 600 800
days

200

400

600

800

m
ax

n i=
1
`t i

RMax

2H

4H

M(E)

cycle starts
λE∑
t=1

lt

λE
= H

(b)

0 10000 20000 30000 40000
days

200

400

600

800

m
ax

n i=
1
`t i

RFast2

2H

4H

M(E)

cycle starts
λE∑
t=1

lt

λE
= H

(c)

0 500 1000 1500 2000
days

200

400

600

800

m
ax

n i=
1
`t i

RFast1

2H

4H

M(E)

cycle starts
λE∑
t=1

lt

λE
= H

(d)

Figure 12. Snapshot of the evolution of maximum heights when strategies: RMin (a); RMax (b);
RFast2 (c); and RFast1 (d) are applied on an instance having n = 10 and H = 200 (in details, structured
as follows [61; 30; 27; 26; 13; 11; 10; 10; 9; 3]). Data are plotted as in Figure 9.

5. Conclusions

The BGT problem has been investigated to establish whether constant approximation deterministic
algorithms can be designed. A new class of scheduling strategies called priority schedulings have
been defined and theoretical results on such methods have been provided. In particular, it has been
proved that any priority scheduling eventually brings the system to perpetually repeated sequences
of configurations. In addition, ReduceMax has been deeply analysed. This is a priority scheduling for
which a conjecture of 2-approximation has been claimed. Extensive experimentation was conducted to
confirm the intuitions and to show that ReduceMax outperforms any other known strategy, including
the 4-approximation ReduceFastest2 which, unlike ReduceMax, relies on the knowledge of an ordering
on the rates. In terms of knowledge required by the cutting strategies, a research direction that surely
deserves further investigation is that of considering the more realistic scenario where the input data
are not entirely known, i.e., to tackle the problem from an online algorithms perspective. With respect
to problem in its formulation, instead, it would be interesting to study variants of the model where,
for example: (i) the aim is optimising other metrics of interest; and (ii) the gardener is allowed to
perform different types of trimming operations. Finally, it would be worth studying how the results
provided in this paper can translate to the continuous version of the problem [1].

Author Contributions: All authors have equally contributed to this work.

Funding: This work has been partially supported by the European project “Geospatial based Environment for
Optimisation Systems Addressing Fire Emergencies” (GEO-SAFE), contract no. H2020-691161 and by the Italian
National Group for Scientific Computation GNCS-INdAM.

Conflicts of Interest: The authors declare no conflict of interest.

Algorithms 2019, 12, 74 22 of 23

References

1. Gąsieniec, L.; Klasing, R.; Levcopoulos, C.; Lingas, A.; Min, J.; Radzik, T. Bamboo Garden Trimming
Problem (Perpetual Maintenance of Machines with Different Attendance Urgency Factors). In SOFSEM
2017: Theory and Practice of Computer Science, Proceedings of the 43rd International Conference on Current Trends
in Theory and Practice of Computer Science, Limerick, Ireland, 16–20 January 2017; Lecture Notes in Computer
Science; Springer: Berlin, Germany, 2017; Volume 10139, pp. 229–240.

2. Holte, R.; Mok, A.; Rosier, L.; Tulchinsky, I.; Varvel, D. The pinwheel: A real-time scheduling
problem. In Proceedings of the 22nd Annual Hawaii International Conference on System Sciences,
Kailua-Kona, HI, USA, 3–6 January 1989; Volume 2, pp. 693–702.

3. Fishburn, P.C.; Lagarias, J.C. Pinwheel Scheduling: Achievable Densities. Algorithmica 2002, 34, 14–38.
[CrossRef]

4. Alshamrani, S.; Kowalski, D.R.; G.ąsieniec, L. How Reduce Max Algorithm Behaves with Symptoms
Appearance on Virtual Machines in Clouds. In Proceedings of the 2015 International Conference on Cloud
Computing (ICCC), Riyadh, Saudi Arabia, 26–29 April 2015; pp. 1703–1710.

5. Gąsieniec, L.; Klasing, R.; Martin, R.; Navarra, A.; Zhang, X. Fast periodic graph exploration with constant
memory. J. Comput. Syst. Sci. 2008, 74, 802–822, [CrossRef]

6. Kosowski, A.; Navarra, A. Graph Decomposition for Memoryless Periodic Exploration. Algorithmica 2012,
63, 26–38. [CrossRef]

7. D’Emidio, M.; Di Stefano, G.; Frigioni, D.; Navarra, A. Characterizing the computational power of mobile
robots on graphs and implications for the Euclidean plane. Inf. Comput 2018, 263 57–74. [CrossRef]

8. D’Emidio, M.; Frigioni, D.; Navarra, A. Explore and repair graphs with black holes using mobile entities.
Theor. Comput. Sci. 2015, 605, 129–145. [CrossRef]

9. Ntafos, S. On gallery watchmen in grids. Inf. Process. Lett. 1986, 23, 9–102. [CrossRef]
10. Urrutia, J. Art gallery and illumination problems. In Handbook of Computational Geometry; Elsevier: Amsterdam,

The Netherlands, 2000; pp. 973–1027.
11. Collins, A.; Czyzowicz, J.; Gąsieniec, L.; Kosowski, A.; Kranakis, E.; Krizanc, D.; Martin, R.; Morales Ponce,

O. Optimal Patrolling of Fragmented Boundaries. In Proceedings of the 25th Annual ACM Symposium on
Parallelism in Algorithms and Architectures, Montréal, QC, Canada, 23–25 July 2013; ACM: New York, NY,
USA, 2013; pp. 241–250.

12. Czyzowicz, J.; Gąsieniec, L.; Kosowski, A.; Kranakis, E. Boundary Patrolling by Mobile Agents with
Distinct Maximal Speeds. In Algorithms—ESA 2011, Proceedings of the 19th Annual European Symposium,
Saarbrücken, Germany, 5–9 September 2011; Lecture Notes in Computer Science; Springer: Berlin, Germany,
2011; Volume 6942, pp. 701–712.

13. Chuangpishit, H.; Czyzowicz, J.; Gąsieniec, L.; Georgiou, K.; Jurdzinski, T.; Kranakis, E. Patrolling a
Path Connecting a Set of Points with Unbalanced Frequencies of Visits. In SOFSEM 2018: Theory and
Practice of Computer Science, Proceedings of the 44th International Conference on Current Trends in Theory and
Practice of Computer Science, Krems, Austria, 29 January–2 February 2018; Lecture Notes in Computer Science;
Springer: Berlin, Germany, 2018; Volume 10706, pp. 367–380.

14. Serafini, P.; Ukovich, W. A Mathematical Model for Periodic Scheduling Problems. SIAM J. Discret. Math.
1989, 2, 550–581. [CrossRef]

15. Chan, M.Y.; Chin, F.Y.L. General schedulers for the pinwheel problem based on double-integer reduction.
IEEE Trans. Comput. 1992, 41, 755–768. [CrossRef]

16. Chan, M.Y.; Chin, F.Y.L. Schedulers for larger classes of pinwheel instances. Algorithmica 1993, 9, 425–462.
[CrossRef]

17. Hsueh, C.; Lin, K. An Optimal Pinwheel Scheduler Using the Single-number Reduction Technique.
In Proceedings of the 17th IEEE Real-Time Systems Symposium, Washington, DC, USA, 4–6 December 1996;
pp. 196–205.

18. Holte, R.; Rosier, L.; Tulchinsky, I.; Varvel, D. Pinwheel scheduling with two distinct numbers. Theor. Comput.
Sci. 1992, 100, 105–135. [CrossRef]

19. Lin, S.S.; Lin, K.J. A Pinwheel Scheduler for Three Distinct Numbers with a Tight Schedulability Bound.
Algorithmica 1997, 19, 411–426. [CrossRef]

http://dx.doi.org/10.1007/s00453-002-0938-9
http://dx.doi.org/10.1016/j.jcss.2007.09.004
http://dx.doi.org/10.1007/s00453-011-9518-1
http://dx.doi.org/10.1016/j.ic.2018.09.010
http://dx.doi.org/10.1016/j.tcs.2015.09.002
http://dx.doi.org/10.1016/0020-0190(86)90050-5
http://dx.doi.org/10.1137/0402049
http://dx.doi.org/10.1109/12.144627
http://dx.doi.org/10.1007/BF01187034
http://dx.doi.org/10.1016/0304-3975(92)90365-M
http://dx.doi.org/10.1007/PL00009181

Algorithms 2019, 12, 74 23 of 23

20. Romer, T.H.; Rosier, L.E. An algorithm reminiscent of euclidean-gcd for computing a function related to
pinwheel scheduling. Algorithmica 1997, 17, 1–10. [CrossRef]

21. Baruah, S.K.; Lin, S.-S. Pfair scheduling of generalized pinwheel task systems. IEEE Trans. Comput.
1998, 47, 812–816. [CrossRef]

22. Baruah, S.K.; Cohen, N.K.; Plaxton, C.G.; Varvel, D.A. Proportionate progress: A notion of fairness in
resource allocation. Algorithmica 1996, 15, 600–625. [CrossRef]

23. Mok, A.; Rosier, L.; Tulchinski, I.; Varvel, D. Algorithms and complexity of the periodic maintenance problem.
Microprocess. Microprogram. 1989, 27, 657–664. [CrossRef]

24. Anily, S.; Glass, C.A.; Hassin, R. The scheduling of maintenance service. Discret. Appl. Math. 1998, 82, 27–42.
[CrossRef]

25. Anily, S.; Glass, C.A.; Hassin, R. Scheduling maintenance services to three machines. Ann. Oper. Res.
1999, 86, 375–391. [CrossRef]

26. Bender, M.A.; Fekete,S.P.; Kröller, A.; Mitchell, J.S.B.; Liberatore, V.; Polishchuk, V.;Suomela, J. The Minimum
Backlog Problem. Theor. Comput. Sci. 2015, 605, 51–61. [CrossRef]

27. Bodlaender, M.H.L.; Hurkens, C.A.J.; Kusters, V.J.J.; Staals, F.; Woeginger, G.J.; Zantema, H. Cinderella versus
the Wicked Stepmother. In TCS 2012: Theoretical Computer Science, Proceedings of the IFIP Theoretical Computer
Science Conference, Amsterdam, The Netherlands, 26–28 September 2012; Lecture Notes in Computer Science;
Springer: Berlin, Germany, 2012, Volume 6942, pp. 57–71.

28. Chrobak, M.; Csirik, J.; Imreh, C.; Noga, J.; Sgall, J.; Woeginger, G.J. The Buffer Minimization Problem for
Multiprocessor Scheduling with Conflicts. In Automata, Languages and Programming, Proceedings of the 28th
International Colloquium on Automata, Languages, and Programming, Crete, Greece, 8–12 July 2001; Lecture Notes
in Computer Science; Springer: Berlin, Germany, 2001, Volume 2076, pp. 862–874.

29. D’Emidio, M.; Di Stefano, G.; Navarra, A. Priority Scheduling in the Bamboo Garden Trimming Problem.
In SOFSEM 2019: Theory and Practice of Computer Science, Proceedings of the 45th International Conference
on Current Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia, 27–30 January 2019;
Lecture Notes in Computer Science; Springer: Berlin, Germany, 2019; Volume 11376; pp. 136–149.

30. Hardy, G.H.; Ramanujan, S. Asymptotic formulas in combinatorial analysis. Proc. Lond. Math. Soc.
1918, 17, 75–115. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF02523234
http://dx.doi.org/10.1109/12.709381
http://dx.doi.org/10.1007/BF01940883
http://dx.doi.org/10.1016/0165-6074(89)90128-2
http://dx.doi.org/10.1016/S0166-218X(97)00119-4
http://dx.doi.org/10.1023/A:1018971222185
http://dx.doi.org/10.1016/j.tcs.2015.08.027
http://dx.doi.org/10.1112/plms/s2-17.1.75
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Achieved Results

	Notation
	Theoretical Results
	Priority Schedulings
	ReduceMax Scheduling

	Experimental Results
	Fixed H Experimentation
	Fixed n Experimentation

	Conclusions
	References

