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Abstract: To address the problem of unclear images affected by occlusion from fog, we propose an
improved Retinex image enhancement algorithm based on the Gaussian pyramid transformation.
Our algorithm features bilateral filtering as a replacement for the Gaussian function used in the
original Retinex algorithm. Operation of the technique is as follows. To begin, we deduced the
mathematical model for an improved bilateral filtering function based on the spatial domain kernel
function and the pixel difference parameter. The input RGB image was subsequently converted into
the Hue Saturation Intensity (HSI) color space, where the reflection component of the intensity channel
was extracted to obtain an image whose edges were retained and are not affected by changes in
brightness. Following reconversion to the RGB color space, color images of this reflection component
were obtained at different resolutions using Gaussian pyramid down-sampling. Each of these images
was then processed using the improved Retinex algorithm to improve the contrast of the final image,
which was reconstructed using the Laplace algorithm. Results from experiments show that the
proposed algorithm can enhance image contrast effectively, and the color of the processed image is in
line with what would be perceived by a human observer.
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1. Introduction

With the development of intelligent monitoring technology, a large number of cameras have
been deployed in intelligent cars, traffic monitoring, and military investigation. However, weather
conditions have a great influence on the quality of video images. In particular, some foggy weather
may need image enhancement rather than proceeding to the next step such as image monitoring [1–3].
The scattering of atmospheric particles in the fog introduces defects such as uneven exposure, low
contrast, and serious color distortion in images captured by a Charge-coupled Device(CCD) camera.
Since it is not possible to engineer these devices to eliminate the influence of atmospheric scattering
due to the physical limitations of CCD sensors, the development of algorithms that reduce the effect of
fluctuations in incident light—to improve the quality of images—is of great significance.

Retinex theory was originally developed by Edwin Land as a model for explaining human
color perception [4–6]. Jobson et al. [7,8] subsequently extended this theory into a general-purpose
image enhancement algorithm to address problems caused by changing the lighting and atmospheric
conditions inherent to the process of acquiring images of Earth from space. The single-scale Retinex
(SSR) algorithm provides the dynamic range compression, color constancy, and sharpening that are
required to alleviate these problems. In essence, based on convolution with a Gaussian function with a
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specific scale factor, it operates by separating incident light components from reflected light components
to improve the contrast in an image. As such, it is suitable for processing multispectral satellite imagery,
and applicable in diverse areas such as aerospace exploration [9], aviation safety [10,11], medical
radiography [12], underwater photography [13,14], forensic investigations [15], and general-purpose
photography [16,17].

Several improvements have been made to the SSR algorithm since its initial development, in
order to achieve a balance between dynamic range compression and tonal rendition. As the SSR’s
image enhancement effect depends on the scale factor of the Gaussian function, the multi-scale Retinex
(MSR) algorithm [8] was developed to combine dynamic range compression, color consistency, and
tonal rendition, producing images that compare favorably with human visual perception. Here, the
input image is processed using three different scale factors (small, intermediate, and large), to ensure
that the color fidelity and resolution of the image are retained. In the multi-scale Retinex with color
restoration (MSRCR) algorithm, a supplementary color restoration process is included with the MSR
algorithm to compensate for the color desaturation inherent in its operation. The resulting algorithm
yields images with good color rendition even for severe gray-world violations. In Refs. [18] and [19],
a different image enhancement framework based on the Retinex algorithm was proposed, in which the
Gaussian filter (GSF) used in the traditional Retinex algorithm is replaced with a region covariance filter
(RCF). In contrast to GSFs, for each pixel, the output of an RCF depends on the covariance between
local image features. Therefore, an RCF is self-adapting to different pixels in an image, and it can
thus estimate the nature of incident illumination more accurately than a GSF. Because of its ability to
enhance contrast, eliminate noise, and enhance details in an image, the RCF–Retinex algorithm can be
considered to have the best overall performance of the Retinex-based enhancement methods. Zhang
et al. [20] proposed a mixed multi-Retinex method combined with fractional differentiation that can
adjust its ambient illumination processing capacity. Hence, the dynamic range of an image captured in
low light conditions can be modified to reduce noise caused by poor lighting and enhance the quality
of nighttime images. A new technique, similar to conventional enhancement methods in which the
illumination component of the processed image is manipulated, was introduced in [21]. The technique
makes use of an augmented Lagrange multiplier based algorithm for optimization of simultaneous
estimation of a smoothed illumination component and the reflectance component of the image.

While Retinex-based algorithms are able to enhance most images adequately, the output image can
sometimes be optimized through visual analysis, depending on the user’s experience. As previously
stated, with traditional Retinex methods, the image enhancement effect depends on the scale factor of
the Gaussian function, leading to some limitations. Hence, we propose an improved Retinex image
enhancement algorithm based on Gaussian pyramid transformation with bilateral filtering to eliminate
the impact of outliers in the histogram of the image and further improve its contrast, thus improving
the overall visual performance of the Retinex algorithm.

The rest of the paper is structured as follows. The improved Retinex model is briefly described in
Section 2. Details of the improved bilateral filtering function are discussed in Section 3. An overview
of the Gaussian–Laplacian multi-scale pyramid algorithm is given in Section 4. Analysis of the results
of experiments is given in Section 5, and conclusions are presented in Section 6.

2. Improved Retinex Model

2.1. Single-Scale Retinex Model

The SSR model is a color constant visual image enhancement method based on Land’s theory
of human visual perception. In this model, the color of an object is considered to be fixed, while the
corresponding image obtained by the camera is composed of a low-frequency incident light component
and a high-frequency component resulting from the reflections of light on the surface of the object,
as shown in Figure 1.



Algorithms 2019, 12, 258 3 of 14

Algorithms 2019, 12, x FOR PEER REVIEW 3 of 15 

 
Figure 1. Image capture principle according to Retinex theory. 

For a given image, the relationship between incident and reflected light components can be 
expressed as  

),(),(),( yxRyxLyxS ⋅= , (1) 

where ),( yxS , ),( yxR , and ),( yxL denote the full color component, the reflected light 
component, and the incident light component of a given image, respectively. 

The principle of traditional Retinex image enhancement is to remove or reduce the impact of 
incident light components on an image by deconstructing this into separate incident and reflection 
components. The contrast of the reflection image is consequently enhanced, the texture information 
of the image is compressed within a certain range, and at the same time, the basic tone of the original 
image is retained. For ease of calculation, logarithms of both sides of (1) are taken, yielding the 
following: 

)),(ln()),(ln()),(ln( yxRyxLyxS += . (2) 

The mathematical form of the reflection component of the image can be obtained by 
rearranging (2) as follows: 

)),(ln()),(ln()),(ln( yxLyxSyxR iii −=  (3) 

where ),( yxSi , ),( yxRi , and ),( yxLi denote the color component, the reflection component, and 
the incident light component of the i -th color channel, respectively.  

Inspection of (3) shows that the reflection component of the image can be obtained by deducing 
the incident light component. Hence, the accuracy of incident light estimation directly affects the fog 
removal effect. Since L is low-frequency information, a Gaussian convolution function can be used 
to better estimate the incident light component from the image, i.e., 

),(*),(),( yxSyxGyxL = , (4) 

where ∗ represents the convolution operation, G(x,y) is a Gaussian function, defined as 

)
2

exp(
2
1),( 2

22

2 σπσ
yxyxG +−= , and σ is the standard deviation of the Gaussian function, also 

known as the scale factor. 

2.2. HSI Color Space 

The HSI color space is an alternative to the RGB color space that better reflects human 
perception of color information. With this model, color is encoded using three different attributes: 
Hue, saturation, and intensity. Here, hue and saturation are related to human perception of color, 
while, in contrast, intensity reflects the apparent brightness of an image, determined by the lighting 
conditions. Intensity is calculated as follows:  

( , ) ( , ) ( , )( , ) 3
R x y G x y B x yI x y + +=  (5) 

Figure 1. Image capture principle according to Retinex theory.

For a given image, the relationship between incident and reflected light components can be
expressed as

S(x, y) = L(x, y) ·R(x, y), (1)

where S(x, y), R(x, y), and L(x, y) denote the full color component, the reflected light component, and
the incident light component of a given image, respectively.

The principle of traditional Retinex image enhancement is to remove or reduce the impact of
incident light components on an image by deconstructing this into separate incident and reflection
components. The contrast of the reflection image is consequently enhanced, the texture information of
the image is compressed within a certain range, and at the same time, the basic tone of the original image
is retained. For ease of calculation, logarithms of both sides of (1) are taken, yielding the following:

ln(S(x, y)) = ln(L(x, y)) + ln(R(x, y)). (2)

The mathematical form of the reflection component of the image can be obtained by rearranging
(2) as follows:

ln(Ri(x, y)) = ln(Si(x, y)) − ln(Li(x, y)) (3)

where Si(x, y), Ri(x, y), and Li(x, y) denote the color component, the reflection component, and the
incident light component of the i-th color channel, respectively.

Inspection of (3) shows that the reflection component of the image can be obtained by deducing
the incident light component. Hence, the accuracy of incident light estimation directly affects the fog
removal effect. Since L is low-frequency information, a Gaussian convolution function can be used to
better estimate the incident light component from the image, i.e.,

L(x, y) = G(x, y) ∗ S(x, y), (4)

where ∗ represents the convolution operation, G(x,y) is a Gaussian function, defined as G(x, y) =
1

2πσ2 exp(− x2+y2

2σ2 ), and σ is the standard deviation of the Gaussian function, also known as the
scale factor.

2.2. HSI Color Space

The HSI color space is an alternative to the RGB color space that better reflects human perception
of color information. With this model, color is encoded using three different attributes: Hue, saturation,
and intensity. Here, hue and saturation are related to human perception of color, while, in contrast,
intensity reflects the apparent brightness of an image, determined by the lighting conditions. Intensity
is calculated as follows:

I(x, y) =
R(x, y) + G(x, y) + B(x, y)

3
(5)

where R, G, and B are the red, green, and blue components of an RGB-encoded image, respectively.
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2.3. The Improved Retinex Algorithm

The dependence of the SSR’s enhancement effect on the Gaussian scale factor, σ, can be illustrated
as follows. When the value of σ is large, the color fidelity of the processed image is good. However,
details in the image become difficult to identify. Conversely, when this value is reduced such that the
details are highlighted after enhancement, the color fidelity of the processed image is poor. In particular,
in areas where the local color changes significantly, there is a “halo” effect after SSR enhancement
(Figure 2b).
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To address the defects of a traditional Retinex algorithm, we proposed the use of Gaussian
pyramid transformation and an improved bilateral filtering function that increases edge retention
and improves noise removal to replace the Gaussian filter function. The mathematical model for this
improved bilateral filter function is deduced by improving the spatial kernel function and using a
rotating window function to determine the pixel difference scale parameters.

The operation of our technique proceeds as follows. The color space of the image is transformed
from RGB to HSI in order to separate brightness from color information. Improved bilateral filtering of
Retinex enhancement is subsequently performed on the intensity component of the HSI image in order
to obtain a reflection image whose edges are maintained and are unaffected by changes in brightness.
This enhanced image is then returned to the RGB color space, following which a Gaussian–Laplacian
pyramid is generated by successively applying a Gaussian filter to an input image and scaling down
the resolution of the resulting image. Finally, sub-images in the pyramid are enhanced using the
improved Retinex algorithm for multi-scale processing before Laplacian reconstruction is applied to
complete image enhancement. A flowchart detailing the operation of this improved Retinex algorithm
is shown in Figure 3.
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3. Improved Bilateral Filtering Function

3.1. Traditional Bilateral Filtering Functions

In a traditional Retinex algorithm, the central-surround filter function is typically a Gaussian
function. Hence, once operation of the algorithm is complete, the edges of the image are blurred, and
details in the image disappear. To address this, in our algorithm we have adopted a bilateral filter [22]
as an “edge maintenance–noise reduction” filter, which is defined mathematically as

f ′(i, j) =

∑
(m,n)∈Ωp,i, j

wd(m, n)wr(m, n) f (m, n)∑
(m,n)∈Ωp,i, j

wd(m, n)wr(m, n)
, (6)

where

wd(m, n) = exp(−
(i−m)2 + ( j− n)2

2σ2
d

) (7)

wr(m, n) = exp(−
( f (i, j) − f (m, n))2

2σ2
r

). (8)

f (m, n) and f ′(i, j) are respectively the input and filtered images, wd and ws are kernel functions in
the space and range domains, and σd and σr are spatial distance and pixel difference scale parameters,
respectively. In addition, Ωp,i, j is the set of pixel points in the input image, with (i, j) defined as the
center and 2p + 1 as the radius, and p is the radius of the filter. With this algorithm, a larger filter radius
corresponds to a larger filter interval. However, calculation is made correspondingly more complex.

From (6), (7), and (8), it can be noted that the efficiency of a bilateral filter is determined by σd and
σr. Experimentation has revealed [23] that increasing the value of σd leads to a blurrier image after
filtering. Similarly, increasing the value of σr increases the size of the 2p + 1 pixel interval and reduces
the correlation between pixels. In typical situations, the values of these two parameters are manually
adjusted according to the requirements of the particular application. Hence, in this paper, we propose
an adaptive adjustment method for selecting the values of σd and σr.

3.2. Improved Spatial Domain Kernel Function

To improve the efficiency of the wd kernel function, we considered the influence of different pixels
on noise smoothing. In the spatial domain, the 2p + 1 filter window parameter is set with (i, j) defined
as the central filter point. Inspection of (7) shows that pixels located closer to the central filter point
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have a greater influence on noise smoothing in the spatial domain. Hence, to address this, we defined
our improved spatial domain kernel function as follows:

wd(m, n) = (1−

√
(i−m)2 + ( j− n)2

2p + 1
) · exp(−

(i−m)2 + ( j− n)2

2σ2
d

) (9)

where the spatial distance difference scale parameter is defined as σd =
p
2 , since 95% of possible

outcomes from the Gaussian function are concentrated in the [−2σd, 2σd] range. Thus, in essence, σd is
a spatial standard deviation, and after the experiment, we chose p = 5.

3.3. Improved Selection of Pixel Difference Scale Parameters

In the Ωp,i, j point set, which is used as a sample to find the standard deviation (σn) of pixel
intensities in an image, the gray value of each pixel is defined as [a(2p−1,2p−1), a(2p−1,2p) . . . a(2p+1,2p+1)].
However, unlike with the spatial domain, selection of this standard deviation as the scale parameter
leads to an excessively large value for σd, as shown in [24]. Hence, a rotating window function for
determining the value of σd is proposed as follows. A (2p + 1) × (p + 1) rectangular window centered
on the (x, y) pixel is selected, with an offset angle defined as 2π/K. The standard deviation of pixels in
this rectangular window is then calculated, following which the window is rotated by the offset angle.
This calculation and rotation process is successively iterated for a complete revolution (i.e., K rotations
should be completed). Finally, the minimum pixel standard deviation min(σn) computed is selected
as σd; the window in which this value was calculated is used in subsequent filtering. σd is defined
as follows:

σd = min(σn) = min
k=0,1,...K−1

{
std[ f (x, y)2πk/K]

}
(10)

where f (x, y)2πk/K is the value of a pixel at a given location in the window, K = 8.

4. Gaussian–Laplacian Multi-Scale Pyramid Algorithm

Gaussian–Laplacian pyramid [24] generation is a multi-scale image decomposition method with a
sampling rate of 2, i.e., the resolution of a resulting image is halved in each successive decomposition.
The resulting pyramid consists of layers of decomposed images decreasing in resolution from bottom
to top, with the original image defined as the base level of the pyramid (level 0). In detail, beginning
from level 0, decomposition consists of convolution of the input image with a Gaussian low-pass filter
followed by a down-sample operation in order to halve the horizontal and vertical resolution of the
processed image. The filtered down-sampled image is subsequently defined as the image at level 1
of the pyramid (F1). This operation is repeated, as defined by the number of levels required in the
Gaussian pyramid. Mathematically, this process is defined as

Fl =
2∑

m=−2

2∑
n=−2

G(x, y)Fl−1(2i + m, 2 j + n), (11)

where G(x, y) is a low-pass filter, l is the level of the pyramid, N is the number of layers in the pyramid,
0 ≤ l ≤ N, i ≤ Rl, j ≤ Cl, and Rl, Cl represent the number of rows and columns in Fl and N = 3,
respectively.

As each image in the pyramid, Fl, is of a different resolution, iterative image generation and
boundary closure may be affected by noise and dispersed sampling. To ensure the structural information
in the highest resolution image is retained in subsequent pyramid levels, image enhancement is required.
To do this, we employed the improved Retinex algorithm to recover details in images lost in processing.
Enhanced pyramid images are subsequently termed F′l .

To complete the image enhancement process, the modified Gaussian pyramid is reconstructed to
yield a single image with the same resolution as the original input. Reconstruction is completed by
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generating a Laplacian pyramid from the image-enhanced Gaussian pyramid. This reconstruction
process is detailed as follows:

(1) The topmost image in the Gaussian pyramid, F′l+1, is interpolated to obtain an image termed Dl,
which has the same resolution as the image in the preceding layer (F′l ).

(2) Dl is subtracted from F′l , with the difference, FN, stored in the Laplace residual set. FN is subsequently
added to F′l to yield F′N, which is interpolated for reconstruction of the image in the preceding layer.

(3) Computation of the Laplacian and image interpolation continues iteratively, until the reconstructed
image is of the same resolution as the original input. Using the terminology described above, the
process can be described as (12). A Gaussian–Laplacian multi-scale pyramid from intermediate
results of different pyramid levels is presented in Figure 4. In our experiment, the sampling value
of the pyramid was 3. {

FN = Fl
′
−Dl

F′N = FN + Fl
′

. (12)
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the final image of the reconstruction is in Column 3, first picture.

5. Experiments and Results

To verify the effectiveness of our algorithm, we compared its operation in experiments with those
of the original SSR, MSRCR, Non-local retinex(NLR) [25], and Illumination Invariant Face Recognition
(INF) [26,27] algorithms based on a database [28] evaluating their performance using objective and
subjective measures of image perception. The proposed operator was implemented in MATLAB 2014b
on a computer running the Windows 7 (64 bit) operating system.
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5.1. Results of Improved Bilateral Filtering

In this experiment, we selected the database [29] which includes 24 .png images (typically
768 × 512 or similar size) for processing. Gaussian white noise with mean value u = 0 and the standard
deviation σ = 0.01, σ = 0.02,σ = 0.05,σ = 0.1, and σ = 0.2 was added to these images—an example of
which is shown in Figure 5—to degrade their quality such that the performance of the different filtering
algorithms could be observed. We note that with the original bilateral filter, edges in the images were
lost, as they had all been smoothed. In contrast, Gaussian noise is few perceptible following operation
of our algorithm, as shown in Figure 5d. Moreover, the image performance following operation of
our algorithm is a better improvement, shown in Figure 5d. The edges in the image are retained after
denoising, as shown in Figure 6c.
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Figure 6. Magnified view of the effects of bilateral filtering focusing on the region defined by the red
box in Figure 4. (a) Image with Gaussian noise. (b) Image processed using original bilateral filtering
algorithm. (c) Image processed using improved bilateral filtering algorithm.

For additional verification, we compared the two filtering algorithms with respect to Peak Signal
to Noise Ratio (PSNR), Mean Squared Error (MSE), Structural Similarity (SSIM) [30], Multi-scale
structural similarity (MS-SSIM) [31], Visual Information Fidelity (VIF) [32], Full Refer- ence Visual
Information Fidelity (FR-VIF) [33], and visual signal-to-noise ratio (VSNR) [34], shown in Table 1.
This MATLAB wrapper code is presented in [35]. In this case, the objective measure scores are directly
averaged; we highlight the best result of the two algorithms with boldface. We note that the intensity
of noise in the images following processing is higher with the traditional bilateral filtering algorithm
than it is with our modified solution, based on a comparison of the values of seven Image Quality
Assessment (IQA) measures.
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Table 1. Evaluation of bilateral filtering algorithms based database [29] (24 images).

Gaussian
White Noise Algorithm PSNR MSE SSIM MSSIM VIF FR-VIF VSNR

σ = 0.01
Original algorithm 22.493 376.772 0.542 0.912 0.361 0.231 18.221
Modified algorithm 27.034 129.231 0.799 0.964 0.566 0.379 26.314

σ = 0.02
Original algorithm 20.505 587.780 0.488 0.898 0.327 0.205 17.375
Modified algorithm 28.414 93.752 0.928 0.993 0.794 0.463 34.386

σ = 0.05
Original algorithm 18.014 1035.936 0.451 0.881 0.284 0.182 16.101
Modified algorithm 27.220 123.450 0.946 0.991 0.691 0.469 30.743

σ = 0.1
Original algorithm 16.222 1560.708 0.431 0.869 0.257 0.170 15.226
Modified algorithm 27.507 115.525 0.970 0.995 0.713 0.502 32.404

σ = 0.2
Original algorithm 16.127 1610.014 0.418 0.856 0.249 0.165 14.992
Modified algorithm 22.286 481.923 0.860 0.952 0.446 0.365 21.867

5.2. Subjective Analysis of Image Enhancement Algorithms

To verify the effectiveness of our improved image enhancement technique, we conducted
experiments comparing its performance to those of the SSR, MSRCR, NLR, and INF algorithms based
on a database [28] with 4322 images, which is a real foggy test dataset provided by Gac Research
Institute. The partial results of these experiments are shown in Figure 6, with Column 1 depicting
original images, Column 2 depicting images processed using the SSR algorithm, Column 3 depicting
images processed using the MSRCR algorithm, Column 4 depicting images processed using the NLR
algorithm, Column 5 depicting images processed using the INF algorithm, and Column 6 depicting
images processed using our improved image enhancement technique.

There are degradation and dark regions in the original images in Figure 7, which are characteristic
of uneven lighting, making them suitable for image enhancement. We note that with all five algorithms
considered, most of the foreground details are preserved, and the color in the resulting images is
enhanced following processing. However, with the SSR, MSRCR, and NLR algorithms, the “halo” effect
can also be observed, as seen most obviously in Figure 7(a-2), Figure 7(d-3), Figure 7(e-3), Figure 7(f-3),
and Figure 7(f-4). The MSRCR and INL algorithms darken the image and lose the details, as shown in
Figure 7(a-3–f-3) and Figure 7(a-5–f-5). While details in the blurred areas of the original images can
be enhanced using the other four algorithms, there is a deviation between the color in the input and
output images. Hence, the color of the imaged object is not restored, and the visual representation of
this object is thus distorted. In addition, the MSRCR and NLR algorithm was not effective in removing
the fog from the foreground of the images, as shown in Figure 7(a-4–f-4).

In contrast, the texture and color contrast of images processed using our technique are improved,
and enhancement is effective for images in different low light situations. In addition, following
processing, the deviation of color between the input and output images is small. As color fidelity is
better, the overall visual representation of the image is retained. Finally, details in the image are more
clearly identified, as can be seen from Figure 7(a-6–f-6).

For a more quantitative representation of the effect of the different algorithms, histograms of the
grayscale intensity of the images in Row (a) of Figure 6 are shown in Figure 8. From this, it can be
seen that the distribution of pixel intensities is more uniform and the average grayscale intensity of
the image is reduced. This is indicative of the fog removal effect obtained with our algorithm; fog is
observed as a brighter area in an image, with a correspondingly large grayscale intensity. A reduction
in the average grayscale intensity of an image thus suggests the removal of fog.
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Figure 7. Subjective comparison of the performance of different enhancement algorithms (six images
of the dataset). (Column 1) Original images. (Column 2) Images processed using the SSR algorithm.
(Column 3) Images processed using the multi-scale Retinex with color restoration (MSRCR) algorithm.
(Column 4) Images processed using NLR algorithm. (Column 5) Images processed using INF algorithm.
(Column 6) Images processed using our algorithm.
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Figure 8. Grayscale-based comparison of the performance of different enhancement algorithms.
Histograms were computed using the images in Row (a) of Figure 7. (a) Original image. (b) Image
processed using the SSR algorithm. (c) Image processed using the MSRCR algorithm. (d) Image
processed using the NLR algorithm. (e) Image processed using the INF algorithm. (f) Image processed
using our algorithm.

5.3. Objective Evaluation of Image Enhancement Algorithms

For objective evaluation of the different image enhancement algorithms, we calculated the Peak
Signal to Noise Ratio (PSNR), Mean Squared Error (MSE), SSIM, MS-SSIM, VIF, Information content
weighting Structural SIMilarity (IWSSM) [35], and VSNR of the images in the database, as shown in
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Table 2. In this case, the correlation scores are directly averaged and we highlight the best result with
boldface, as each of these parameters characterizes a different aspect of the image.

Table 2. Objective comparison of the performance of different enhancement algorithms based on
information Peak Signal to Noise Ratio (PSNR), Mean Squared Error (MSE), SSIM, MS-SSIM, VIF,
IWSSIM, and VSNR.

Algorithm PSNR MSE SSIM MSSIM VIF IWSSIM VSNR

OI N/A 0.000 1.000 1.000 1.000 1.000 N/A
SSR 18.584 1097.904 0.734 0.761 1.192 0.728 7.194

MSRCR 12.034 4438.279 0.547 0.761 0.826 0.731 12.376
NLR 13.751 3424.179 0.767 0.799 0.867 0.662 6.932
INF 10.357 6132.800 0.632 0.480 0.355 0.736 7.956
Our 24.071 333.602 0.851 0.914 0.994 0.894 13.224

Table 2 shows that images processed using our algorithm had the best values, suggesting that more
high-frequency information is processed using our technique, and details in the image are subsequently
enhanced. Similarly, the PSNR and SSIM values were maximized using our algorithm, indicating that
the contrast of the images is improved with our technique, and details are more identifiable. Then,
MSSIM and VIF value of the image were maximized with our technique, indicating its improved
reconstruction quality. Finally, the other values also improved using our algorithm, demonstrated that
our algorithm leads to significant and consistent performance of image enhancement.

6. Conclusions

In this paper, we proposed a new Retinex-based image enhancement algorithm to address the
problem of image blurring caused by uneven illumination. The technique features an improved
bilateral filtering function, addressing the problem of an over-enhanced luminance image and the
associated loss of texture. In addition, we combine our modified Retinex model with Gaussian pyramid
down-sampling for multi-scale processing, in order to eliminate blurring problems and increase the
contrast of the final image. We compared the performance of our technique with those of the SSR,
MSRCR, NLR, and INF algorithms in experiments, with the results highlighting its improved image
enhancement. However, the combination of the improved bilateral filtering function and the Gaussian
pyramid transformation increases the time complexity of the technique, a problem which will be
addressed in future studies.
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