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Abstract: Integer Linear Programming (ILP) is among the most successful and general paradigms for
solving computationally intractable optimization problems in computer science. ILP is NP-complete,
and until recently we have lacked a systematic study of the complexity of ILP through the lens
of variable-constraint interactions. This changed drastically in recent years thanks to a series of
results that together lay out a detailed complexity landscape for the problem centered around the
structure of graphical representations of instances. The aim of this survey is to summarize these
recent developments, put them into context and a unified format, and make them more approachable
for experts from many diverse backgrounds.
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1. Introduction

Integer Linear Programming (ILP) is among the most successful and general paradigms for solving
computationally intractable optimization problems in computer science. In particular, a wide variety
of problems in areas such as process scheduling [1], planning [2,3], vehicle routing [4], packing [5],
and network hub location [6], to name a few, are efficiently solved in practice via a translation into
an Integer Linear Program.

ILP is NP-complete, and a significant amount of research has been carried out on tractable
fragments of ILP defined in terms of the algebraic properties of the instance (see, e.g., the work of
Papadimitriou and Steiglitz exploiting total unimodularity (Section 13.2, [7])) or in terms of restrictions
on the number of constraints or variables (see Lenstra’s algorithm [8] together with its subsequent
improvements by Kannan [9], Frank and Tardos [10]).

On the other hand, until recently we have lacked a systematic study of the complexity of
ILP through the lens of variable-constraint interactions. This represented a stark contrast to our
understanding of other fundamental problems such as BOOLEAN SATISFIABILITY and CONSTRAINT

SATISFACTION, where we have classical results that explore and showcase how interactions between
variables and constraints (formalized via graphical representations) can be used to define natural
tractable fragments of the problem—consider, e.g., the early work of Freuder [11], Dechter and
Pearl [12]. The situation for ILP changed drastically in recent years thanks to a flurry of results that
together lay out a detailed complexity landscape for the problem centered around variable-constraint
interactions, captured in terms of graphical representations of instances. The aim of this survey is
to summarize these recent developments, put them into context and a unified format, and make
them more approachable for experts from many diverse backgrounds. We will also call attention to
prominent open problems in the area.
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Survey Organization. After introducing some basic preliminaries for ILPs, graphical representations
and structural parameters in Section 2, Section 3 proceeds to a brief overview of classical algorithms
for ILP that rely on explicit restrictions such as bounds on the number of variables and/or
constraints. In Section 4 we focus on algorithms and lower bounds for ILP that target instances
whose variable-constraint interactions give rise to graphical representations of bounded treewidth
and/or treedepth. Section 5 then covers results utilizing other structural parameters related to
variable-constraint interactions, and the final Section 6 provides an outlook to future work in the area.

2. Preliminaries

For a positive integer n, we use [n] to denote the set {1, . . . , n}. We use bold face letters for vectors
and normal font when referring to their components, that is, x is a vector and x3 is its third component.

2.1. Graphs

We use standard graph terminology, see for instance Diestel’s handbook [13]. A graph G is a tuple
(V, E), where V or V(G) is the vertex set and E or E(G) is the edge set. A graph H is a subgraph of
a graph G, denoted H ⊆ G, if H can be obtained by deleting vertices and edges from G. All our graphs
are simple and loopless.

A path from vertex v to vertex w in G is a sequence of pairwise distinct vertices v1, . . . , vj of G
such that v = v1 and w = vj and {vi, vi+1} ∈ E(G) for every i with 1 ≤ i < j; and we define the length
of a path to be equal the number of vertices it contains (i.e., j). A tree is a graph in which, for any two
vertices v, w ∈ G, there is precisely one unique path from v to w; a tree is rooted if it contains a specially
designated vertex r, the root. Given a vertex v in a tree G with root r, the parent of v is the unique vertex
w with the property that {v, w} is the first edge on the path from v to r.

2.2. Integer Linear Programming

We consider instances of Integer Linear Programming (ILP) in the following two normal forms.
In the first case, which we call the equality normal form, instances consist of a matrix A ∈ Zm×n with
m rows (constraints) and n columns (variables) and vectors c, b ∈ Zm, l, u ∈ Zn ∪ {∞,−∞}. The set of
solutions for the equality normal form is given by:

{ y | Ay = b, l ≤ y ≤ u } (EQ)

In the second case, which we call the inequality normal form, instances consist of a matrix
A ∈ Zm×n with m rows (constraints) and n columns (variables) and vectors c, b ∈ Zm. Here, the set of
solutions is given by:

{ y | Ay ≤ b } (INEQ)

We denote by ILPF= and ILPF≤ the feasibility problem for ILPs, whose sets of solutions are
given in the equality respectively the inequality form, e.g., ILPF= is the problem of deciding whether
{ y | Ay = b, l ≤ y ≤ u } is non-empty and if so to output a vector y in { y | Ay = b, l ≤ y ≤ u }.
Moreover, ILP= and ILP≤ denote the corresponding minimization versions, e.g., ILP= is the problem
of deciding whether y ∈ { y | Ay = b, l ≤ y ≤ u } contains a vector y that minimizes cy and if so
outputs such a vector.

For the matrix A of an instance I , we let x = (x1, . . . , xn) be a vector representing the columns
in A and let the variable set, denoted var(I), be the set of such columns. If I is given in equality
normal form, then its constraint set denoted by con(I) contains one equation for every equation in the
system Ax = b respectively one inequality for every inequality in the system Ax ≤ b, if I is given in
inequality normal form.

We will also make use of the following notions which describe specific properties of ILP instances.
We denote by ‖A‖∞, ‖b‖, and ‖c‖ the maximum absolute value of any coefficient (entry) in the matrix
A, in the vector b, and in the vector c, respectively.
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For an ILP instance I in inequality form, we say that the domain of the variable xi is bounded if
there are constraints p and r of the form xi ≤ bp and −xi ≤ br, otherwise we say that its domain is
unbounded. Moreover, we denote by ‖xi‖ the maximum domain span of the i-th variable, i.e., given by
‖bp − br‖ if xi has bounded domain and ∞ otherwise. We denote by ‖x‖∞ the maximum domain span
of any variable, i.e., maxi ‖xi‖. On the other hand, if I is in equality form, we say that the domain of
the i-th variable xi is bounded if li, ui /∈ {−∞, ∞}, where li, ui are the i-th entries of l, u, respectively;
otherwise, we say that the domain of x is unbounded. Moreover, we denote by ‖xi‖ the maximum
domain span of the i-th variable, i.e., ‖ui − li‖ any variable, and by ‖x‖∞ the maximum domain span of
any variable, i.e., maxi ‖xi‖.

In either case, we say that an ILP instance has bounded domain if all variables have bounded
domain, and we say that the instance has unary bounded domain if the coefficients bounding the domain
of variables are encoded in unary.

Finally, we call an ILP instance unary if all coefficients in A, b, c, as well as l, u (if they are part of
the input) are given in unary. We say that an ILP instance is fully unary if it is unary and all variables
have (unary) bounded domain.

2.3. Parameterized Complexity

In parameterized algorithmics [14–17] the runtime of an algorithm is studied with respect to
a parameter k ∈ N and input size n. The basic idea is to find a parameter that describes the structure of
the instance such that the combinatorial explosion can be confined to this parameter. In this respect,
the most favorable complexity class is FPT (fixed-parameter tractable) which contains all problems
that can be decided by an algorithm running in time f (k) · nO(1), where f is a computable function.
Algorithms with this running time are called fpt-algorithms.

There is a variety of classes capturing parameterized intractability. Here we require only the
class paraNP, which is defined as the class of problems that are solvable by a nondeterministic
Turing-machine in fpt-time. We will make use of the characterization of paraNP-hardness given by
Flum and Grohe (Theorem 2.14, [15]): any parameterized (decision) problem that remains NP-hard
when the parameter is set to some constant is paraNP-hard. Showing paraNP-hardness for a problem
rules out the existence of an fpt-algorithm under the assumption that P 6= NP. In fact, it even allows
us to rule out algorithms running in time n f (k) for any function f (these are called XP algorithms).

2.4. Graph Parameters

Treewidth. Treewidth is the most prominent structural parameter and has been extensively studied
in a number of fields. In order to define treewidth, we begin with the definition of its associated
decomposition. A tree-decomposition T of a graph G = (V, E) is a pair (T, χ), where T is a tree
and χ is a function that assigns each tree node t a set χ(t) ⊆ V of vertices such that the following
conditions hold:

(T1) For every edge {u, v} ∈ E(G) there is a tree node t such that u, v ∈ χ(t).
(T2) For every vertex v ∈ V(G), the set of tree nodes t with v ∈ χ(t) forms a non-empty subtree of T.

The sets χ(t) are called bags of the decomposition T and χ(t) is the bag associated with
the tree node t. The width of a tree-decomposition (T, χ) is the size of a largest bag minus 1.
A tree-decomposition of minimum width is called optimal. The treewidth of a graph G, denoted
by tw(G), is the width of an optimal tree decomposition of G.

Proposition 1 ([18–20]). It is possible to compute an optimal tree-decomposition of an n-vertex graph G with
treewidth k in time kO(k

3)n, and to compute a 5-approximate one in time 2O(k)n. Moreover, the number of nodes
in the obtained tree decompositions is at most O(n).
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Treedepth. Another important notion that we make use of extensively is that of treedepth. Treedepth
is a structural parameter closely related to treewidth, and the structure of graphs of bounded treedepth
is well understood [21]. A useful way of thinking about graphs of bounded treedepth is that they are
(sparse) graphs with no long paths.

We formalize a few notions needed to define treedepth. A rooted forest is a disjoint union of rooted
trees. For a vertex x in a tree T of a rooted forest, the height (or depth) of x in the forest is the number
of vertices in the path from the root of T to x. The height of a rooted forest is the maximum height of
a vertex of the forest.

Definition 1 (Treedepth). Let the closure of a rooted forest F be the graph clos(F ) = (Vc, Ec) with the
vertex set Vc =

⋃
T∈F V(T) and the edge set Ec = {xy : x is an ancestor of y in some T ∈ F}. A treedepth

decomposition of a graph G is a rooted forest F such that G ⊆ clos(F ). The treedepth td(G) of a graph G is
the minimum height of any treedepth decomposition of G.

We will later use Tx to denote the vertex set of the subtree of T rooted at a vertex x of T. Similarly
to treewidth, it is possible to determine the treedepth of a graph in FPT time.

Proposition 2 ([21]). Given a graph G with n nodes and a constant w, it is possible to decide whether G has
treedepth at most w, and if so, to compute an optimal treedepth decomposition of G in time On.

The following alternative (equivalent) characterization of treedepth will be useful later.

Proposition 3 ([21]). Let Gi be the connected components of G. Then

td(G) =


1, if |V(G)| = 1;

1 + minv∈V(G) td(G− v), if G is connected and |V(G)| > 1;

maxi td(Gi), otherwise.

We conclude with a few useful facts about treedepth.

Proposition 4 ([21]).

1. If a graph G has no path of length d, then td(G) ≤ d.
2. If td(G) ≤ d, then G has no path of length 2d.
3. tw(G) ≤ td(G).
4. If td(G) ≤ d, then td(G′) ≤ d + 1 for any graph G′ obtained by adding one vertex into G.

(Signed) Clique-width. Let k be a positive integer. A k-graph is a graph whose vertices are labeled
by [k]; formally, the graph is equipped with a labeling function γ : V(G)→ [k], and we also use γ−1(i)
to denote the set of vertices labeled i for i ∈ [k].

We consider an arbitrary graph as a k-graph with all vertices labeled by 1. We call the k-graph
consisting of exactly one vertex v (say, labeled by i) an initial k-graph and denote it by i(v). The clique-width
of a graph G is the smallest integer k such that G can be constructed from initial k-graphs by means of
repeated application of the following three operations:

1. Disjoint union (denoted by ⊕);
2. Relabeling: changing all labels i to j (denoted by pi→j);
3. Edge insertion: adding an edge between each vertex labeled by i and each vertex labeled by j,

where i 6= j (denoted by ηi,j or ηj,i).

A construction of a k-graph G using the above operations can be represented by an algebraic term
composed of ⊕, pi→j and ηi,j (where i 6= j and i, j ∈ [k]). Such a term is called a k-expression defining
G, and the clique-width of G is the smallest integer k such that G can be defined by a k-expression.
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A k-expression tree (also called parse trees in the literature [22]) is a rooted tree representation of
a k-expression; specifically, the k-expression tree can be built from a k-expression in a leaves-to-root
fashion by using a leaf to represent each i(v), each ⊕ operator is represented by an ⊕ node with two
children, and each pi→j and ηj,i operator is represented by a corresponding node with a single child.

There are many graph classes which are known to have bounded clique-width. Examples of such
graph classes include every graph class of bounded treewidth [23], co-graphs [23], complete (bipartite)
graphs and distance hereditary graphs [24].

If the edges of G have signs, then one can define two different variants of clique-width for G.
The unsigned clique-width of G is simply the clique-width of the graph G′ obtained by removing all
signs on the edges of G. On the other hand, the signed clique-width of G is the minimum k such that G
can be defined by a signed k-expression, which is analogous to a k-expression with the sole distinction
that the operation ηi,j is replaced by η`

i,j which adds an edge with sign ` between all vertices labeled i
and j. An example is provided in Figure 1.

+2
-1

+3

-1

Figure 1. An example of a graph with clique-width 2 and signed clique-width 4.

We list a few known facts and observations about clique-width below:

• The difference between the signed clique-width (scw) and unsigned clique-width (cw) of a signed
graph G can be arbitrarily large; more precisely, for every gap g there exists a signed graph G
such that scw(G) ≥ cw(G) + g [25].

• There exists a function f and a polynomial-time algorithm which takes as input a (signed)
graph G and either outputs a (signed) f (k)-expression or correctly determines that the (signed)
clique-width of G is greater than k [26,27].

• Every signed graph of (signed) clique-width k can be defined by a (signed) k-expression
which does not use the ηi,j operator to create edges between vertices that are already adjacent
(i.e., each edge is created only once).

• A signed k-expression of a bipartite signed graph G with bi-partition V1, V2 can be converted to
a signed (k + 1)-expression of G such that the labels used for V1 are completely disjoint from
those used for V2 (this is because any label that was originally used for V1 and V2 cannot be used
to create new edges).

2.5. Graphical Representations

Here, we overview some natural graphical representations which have been used to capture
the variable-constraint interactions of ILP instances. We remark that such representations are not
unique to the ILP setting: indeed, they have been used and studied extensively also in settings such as,
e.g., constraint programming [28,29] and Boolean satisfiability [11,30].

Let A be an m × n integer matrix that is provided as part of an ILP instance I . The signed
incidence graph of A (or, equivalently, of I) is the edge-labeled bipartite graph GSI(I) = (R ∪ C, E, λ),
where R = {r1, . . . , rm} contains one vertex for each row of A and C = {c1, . . . , cn} contains one vertex
for each column of A. There is an edge {r, c} with label λ({r, c}) = Ar,c between the vertex r ∈ R
and c ∈ C if Ar,c 6= 0, that is, if row r contains a nonzero coefficient in column c. In other words,
the vertex set of GSI is con(I) ∪ var(I), a variable is adjacent to a constraint if and only if it occurs in
that constraint with a non-zero coefficient, and the labels on edges encode this coefficient.

The incidence graph of A (or I), denoted GI(I), is equal to the signed incidence graph without the
edge-labels. The primal graph of A (or I) is the graph GP(I) = (C, E), where C is the set of columns
of A and {c, c′} ∈ E whenever there exists a row of A with a nonzero coefficient in both columns c
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and c′. This graph is also sometimes called the Gaifman graph in the literature. The dual graph of A
(or I) is the graph GD(I) = (R, E), where R is the set of rows of A and {r, r′} ∈ E whenever there
exists a column of A with a nonzero coefficient in both rows r and r′. In other words, the vertex sets of
these graphs are var(I) and con(I), respectively; an edge then signifies that two variables directly
interact via a constraint or that two constraints directly interact via a variable, respectively. For all
graph representations introduced above, we drop the I in the parenthesis when the instance is clear
from context. Figure 2 illustrates the four graphical representations of a constraint matrix.

constraint matrix

A =


1 −2 0 0 0
0 0 −1 3 1
−2 −4 0 0 0
0 1 1 0 0


1 2 3 4 5

primal graph

1 2 3 4

dual graph

1 2 3 4 5

1 2 3 4

incidence graph

1 2 3 4 5

1 2 3 4

1 −2−2

−4

1−1

1 3 1

signed incidence graph

Figure 2. The primal, dual, incidence, and signed incidence graph of the constraint matrix shown
in the top left corner. Vertices corresponding to variables (constraints) of the matrix are indicated by
circles (rectangles). The label of a vertex corresponds to its row/column-index in the constraint matrix.

For a decompositional width measure dw ∈ {td, tw, cw, scw}, we denote by dwSI(I), dwI(I),
dwP(I), dwD(I), the width of the signed incidence graph, the incidence graph, the primal graph,
and the dual graph of I , respectively.

2.6. Representation Stability

Changing between the equality and inequality representations for ILP does not have a significant
effect on most of the structural parameters considered in this paper. In particular, it is easy to show
that the parameters td, tw, cw, scw as well as the parameters fracture number (frac) and torso-width
(defined in Section 5) differ at most by a factor of two when switching between the two representations.
To see this it suffices to consider the standard transformations between ILP= and ILP≤, which are
given as follows.

Given an instance I= of ILP=, we obtain an equivalent instance of ILP≤ by replacing every
equality constraint of I= with two inequality constraints and by adding the lower and upper bounds
for the variables to the constraint matrix. It is easy to see that this transformation increases the above
mentioned parameters for the primal, dual, and incidence graph by at most a factor of two.

Similarly, given an instance I≤ of ILP≤, we obtain an equivalent instance of ILP= by introducing
(i.e., adding) one novel “slack” variable to every constraint with a lower bound of 0. It is, similarly to
the previous case, straightforward to show that this does not increase any of the considered parameters
by more than a factor of two. As a consequence, for the statement of most of our complexity results
we will simply consider instances of ILP and/or ILPF (which may be given in equality as well as in
inequality form).
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3. Solving ILPs with Explicit Restrictions

Initial work on mapping the complexity of integer linear programming predominantly focused
on identifying tractable classes by placing restrictions on explicit properties of instances, such as the
number of variables or of constraints. Lenstra [8] showed that ILP can be solved by an algorithm which
has an exponential dependency on the number of variables, but only a linear dependency on the size of
the instance. His running time was subsequently improved by Kannan [9] and Frank and Tardos [10].

Theorem 1 ([8–10]). An ILP instance I with n variables can be solved in time O(n2.5n+o(n) · |I|); in other
words, ILP is fixed-parameter tractable parameterized by n.

Papadimitriou showed that ILP is fixed-parameter tractable parameterized by m + ‖A‖∞ +

‖b‖ [31]. His result was recently improved by Eisenbrand and Weismantel [32], and then further
improved by Jansen and Rohwedder [33]. Even more recently, Knop, Pilipczuk and Wrochna showed
that the running time of this result cannot be substantially improved [34].

Theorem 2 ([32–34]). An ILP= instance I with m constraints can be solved in time O((m · ‖A‖∞)m ·
log ‖b‖); in other words, ILP is fixed-parameter tractable parameterized by m + ‖A‖∞.

On the other hand, ILP remains intractable when all other obvious numerical measures are
bounded. In particular, ILPF remains NP-complete even when ‖A‖∞ = ‖b‖ = ‖u‖ = 1 and ‖l‖ = 0,
as witnessed by the folklore encoding of the VERTEX COVER problem into ILP, i.e., given a graph
G and an integer k, the ILP instance has one binary variable for every vertex of G (representing of
whether or not the vertex is chosen to be in a vertex cover) and for every edge between u and v
a constraint ensuring that the sum of the variables for u and v is at least one (ensuring that the vertex
cover contains at least one vertex from every edge).

While this is not the focus of this survey, we also mention that there is a significant body of work on
exploiting algebraic properties to solve ILP. Perhaps the most prominent example of a complexity result
obtained in this vein is the well-known fact that instances I whose matrix A is totally unimodular (i.e., each
of its square submatrices has a determinant in {−1, 0, 1}) can be solved in polynomial time [35]).

Theorem 3 ([35,36]). An ILP instance I having a totally unimodular constraint matrix can be solved in
polynomial-time.

We say that an ILP instance is non-negative if all entries of A and b are non-negative. Cunningham
and Geelen [37] showed that non-negative ILP= is fixed-parameter tractable parameterized by ‖b‖ and ω,
where ω is the branchwidth of the column-matroid of A, i.e., the matroid whose elements are the column
vectors of A and whose independent sets are the set of all linearly independent column vectors.

Theorem 4 ([37]). A non-negative ILP= instance I with m constraints and n variables can be solved in time
O((‖b‖∞ + 1)2ωωmn + m2n), where ω is equal to the branchwidth of the column-matroid of A.

4. Parameters for Sparse Variable-Constraint Interactions: Treewidth and Treedepth

We note that due to the discussion at the end of Section 2.5 all the results presented in this section
hold regardless of whether our instance is provided in inequality or equality form. In 2015, Jansen and
Kratsch [36] showed that the treewidth of the primal graph can be used to efficiently solve ILP when
the variable domains are bounded by the parameter. More precisely:

Theorem 5 ([36]). Let c be a constant. Given an ILPF instance I with unary bounded domain satisfying
the property that all but at most c variables have domain span at most d, and let GP be the primal graph of I .
Then I admits a fixed-parameter algorithm when parameterized by d + twP(I).
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The result follows from standard leaves-to-root dynamic programming along a tree decomposition
of GP(I), and can be straightforwardly adapted to also solve ILP. This result provides a useful tool
for dealing with instances where all variables have bounded domain. One year after Jansen and
Kratsch’s result, Ganian and Ordyniak used a reduction from SUBSET SUM to rule out the application
of treewidth In the setting of unbounded domain—even for extremely restricted instances of ILPF.

Theorem 6 ([38]). ILPF is NP-complete even when restricted to instances I such that twP(I) ≤ 2 and
‖b‖ = ‖A‖∞ = 1.

In the same paper, Ganian and Ordyniak complemented this result with a fixed-parameter
algorithm for ILP parameterized by tdP(I) + ‖A‖∞ + ‖b‖; the proof uses a pruning technique
which transforms the instance into an equivalent one of size bounded by the parameter (a “kernel”).
Their result was later superseded by Koutecký, Levin and Onn [39], who used Graver-best oracles
to show:

Theorem 7 ([39]). ILP is FPT when parameterized by tdP(I) + ‖A‖∞.

We note that both parameters tdP(I) and ‖A‖∞ are required to achieve even XP algorithms:
it is well known that ILP is NP-hard when restricted to instances with ‖A‖∞ = 1, and Ganian and
Ordyniak [38] showed that it is also NP-hard when restricted to instances with tdP(I) ≤ 4. It is worth
noting that both Theorem 7 and its predecessor have a non-elementary dependency on the parameter.

In their paper, Koutecký, Levin and Onn also used the same techniques to obtain a fixed-parameter
algorithm that uses the treedepth of the dual graph (as opposed to the primal one):

Theorem 8 ([39]). ILP is FPT when parameterized by tdD(I) + ‖A‖∞.

They also established an analogue to Theorem 6 for dual graphs, showing that restricting the dual
or primal graphs leads to a similar complexity behavior for ILP:

Theorem 9 ([39]). ILPF is NP-complete even when restricted to instances I such that twD(I) ≤ 3 and with
‖A‖∞ = 2.

Since the classical encoding of SUBSET SUM into an instance I of ILPF only uses a single constraint
(i.e., | con(I)| = 1), it is immediate that ILPF is also NP-complete when tdD(I) = 1; in other words,
it is not possible to strengthen Theorem 8 by dropping any of the parameters. By the standard reduction
from SUBSET SUM we mean the reduction to the ILP instance that has one binary variable for every
integer in the SUBSET SUM instance (representing whether or not the integer is in a solution) and one
constraint over all variables ensuring that the sum of all chosen integers equals the target value of the
SUBSET SUM instance.

The third fundamental graph representation that has been considered for restricting the
variable-constraint interactions of an ILP instance I is the incidence graph. It is worth noting that
a trivial transformation of the respective decompositions yields tdI(I) ≤ max(tdP(I), tdD(I)) and
similarly twI(I) ≤ max(twP(I), twD(I)); on the other hand, there are instances where both tdI(I)
and twI(I) are bounded but the dual and primal graphs exhibit neither bounded treewidth nor
treedepth. Hence, tractability results using the treewidth and treedepth of the incidence graph have the
potential to supersede similar results for both previously considered graph representations, while any
obtained hardness results carry over from primal and dual graphs to incidence graphs.

Ganian, Ordyniak and Ramanujan [40] identified conditions under which twI(I) can be used to
obtain algorithms for ILP. Notably, after factoring in Proposition 1 their result states:
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Theorem 10. ILP can be solved in time ΓO(twI(I)) · |I|, where Γ is the maximum absolute value of any partial
evaluation of a constraint by any feasible assignment of I ; here, a partial evaluation of a constraint/row r of
A with a feasible assignment x is equal to rx′, where x′ is any vector obtained from x after setting some of its
entries to 0.

Note that Γ ≤ n‖A‖∞d, where d is the maximum domain span of every variable in I . Hence,
Theorem 10, e.g., implies that fully unary ILP can be solved in polynomial-time if twI(I) is bounded
by a constant.

On the other hand, ILPF remains NP-complete even when restricted to instances with strong
restrictions on the treewidth and coefficients—to some extent justifying the dependency of the above
algorithm on Γ. Indeed, the first part of the following theorem follows from the classical encoding of
SUBSET SUM into ILPF, while the second part was shown by Ganian et al. [40].

Theorem 11. ILPF remains NP-complete even on instances I with (1) twI(I) = 1 and Boolean domains for
all variables, as well as with (2) twI(I) ≤ 3 and max(‖A‖∞, ‖b‖) = 2.

A natural question is whether one can use tdI(I) instead of twI(I) in order to obtain tractability
for ILP under a weaker restriction than by bounding Γ—notably, can one lift Theorems 7 and 8 to
the incidence treedepth setting? Very recently, Eiben et al. [41] answered the question in the negative
by showing:

Theorem 12 ([41]). ILP remains NP-complete even when restricted to instances I such that max(‖A‖∞, ‖b‖) =
1 and tdI(I) ≤ 5.

In the full version of that paper, they also showed that restricting the structure by the size
of a minimum vertex cover of GI(I)—a significantly stronger restriction than treedepth—leads
to tractability.

Theorem 13. ILP is FPT parameterized by ‖A‖∞ and the vertex cover number of GI(I).

Note that even though the vertex cover number is sensitive to changes between the equality and
inequality form of ILP in general, the above theorem still holds for both forms. This is because the
proof of Theorem 13 works by first observing that the number of (linearly independent) equalities
is bounded by a function of the vertex cover number and ‖A‖∞ and then uses Theorem 2 to show
tractability. Almost the same approach can be used for inequalities, i.e., one can again observe that
the number of inequalities is bounded in terms of the parameters (otherwise there are redundant
inequalities) and then use the standard reduction from ILP≤ to ILP=; since the reduction does not
increase the number of constraints, one can again apply Theorem 2.

We conclude this section by touching on the complexity of integer linear programs whose graph
representations have an extremely simple structure—notably, have treewidth 1 (i.e., are acyclic).
This setting was investigated by Eiben et al. [42], who showed that ILP≤ restricted to unary instances
whose graph representations are acycllic exhibit a different complexity behavior than ILP restricted to
instances of bounded treewidth. We summarize their results in Table 1.
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Table 1. The complexity map for ILP≤ for unary instances (first row), instances whose coefficients are
encoded in unary (second row), and instances with unary bounded domain (third row). Without these
restrictions, the problem becomes intractable due to the simple acyclic structure of the classical encoding
of SUBSET SUM into ILP.

Acyclic Primal Graph
Acyclic Incidence Graph

ILPF ILP

UNARY P P P
UNARY-C NP-hard P NP-hard
UNARY-D P P NP-hard

5. Other Parameters Exploiting Variable-Constraint Interactions

Of course, ILP has also been studied through the lens of structural parameters that are different than
treewidth. The first example of such a parameter is the fracture number of Dvořák et al. [43], which captures
the “distance” of an ILP instance from being fractured into small independent components.

Three variants of the fracture number will be of interest for the purposes of this survey:
the constraint fracture number of an ILP I (fracC(I)) is the minimum number ` of constraints that need
to be deleted from I so that the resulting instance I ′ satisfies the following: each connected component
of GI(I ′) contains at most ` vertices. The variable fracture number (fracV(I)) and mixed fracture number
(frac(I)) are then defined analogously, with the distinction that we may only delete variables or are
allowed to delete both variables and constraints, respectively.

The constraint fracture number is bounded whenever the dual graph has bounded treedepth,
and the mixed fracture number is bounded whenever the incidence graph has bounded treedepth
(and similarily for the variables fracture number and the primal graph); however, the converse of these
statements is not true. Intuitively, this means that the fracture number can be viewed as a stronger
restriction than treedepth. Dvořák et al. [43] showed that the fracture number can be used to obtain
XP-algorithms for ILP in settings which would remain NP-hard if treedepth were used instead
(see Theorem 12). See Figure 3 for an illustration of the relationships between the different variants of
fracture number as well as their relation to treewidth and treedepth.

twP

tdP

fracV

twI

tdI

frac

twD

tdD

fracC

primal incidence dual

Figure 3. The relationship between the structural parameters treewidth, treedepth, and fracture
number for the primal, dual, and incidence graph. An arc from one parameter to another indicates
that the former is a more general parameter, i.e., whenever the later is bounded so is the former.
The variable, constraint, and mixed fracture number are defined in Section 5.
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Theorem 14 (Corollary 8, [43]). ILP admits an XP-algorithm parameterized by ‖A‖∞ + frac(I).

Theorem 15 (Theorem 12, [43]). ILP restricted to unary instances admits an XP-algorithm parameterized
by fracC(I).

Note that theorem 15 cannot be improved to an FPT-algorithm due to (Theorem 14, [43]). Moreover,
an analogous result does not hold for the mixed respectively variable fracture number as already unary ILP
is NP-hard if the variable fracture number is bounded by a constant (Theorem 13, [43]), which also excludes
the use of a less restrictive parameter than constraint fracture number (such as treedepth) in Theorem 15.

Another structural parameter that can be used to solve ILP is the torso-width. The base idea
behind torso-width is to decompose instances into (possibly many) separate parts with only limited
interaction between them, and to solve some parts with Lenstra’s algorithm (Theorem 1) and others
with dynamic programming along a tree decomposition as per Theorem 5.

To define torso-width, we will need the operation of collapsing: for a graph G and a vertex set X,
the operation of collapsing X deletes X from the graph and adds an edge between each pair of neighbors of
X. We denote the resulting graph G ◦X. Now, let q be a fixed constant. A graph G is a q-torso of I iff there
exists a set P of variables, each with domain span at most q, such that G = GP(I) ◦ P. The q-torso-width
of I, denoted torq(I), is then the minimum integer k such that I has a q-torso G such that:

• G has treewidth at most k, and
• the largest connected component of the subgraph of GP(I) induced on V(GP(I)) \V(G) contains

at most k vertices.

Ganian, Ordyniak and Ramanujan [40] showed that the q-torso-width of I can be approximated
by a fixed-parameter algorithm, and that this parameter can also be used to solve ILP. This result can
be seen as a generalization of Theorem 1 as well as Theorem 5.

Theorem 16 (Theorem 5, [40]). For every fixed integer q, ILP is FPT parameterized by q-torso-width.

Eiben, Ganian, Knop and Ordyniak [42] also investigated the complexity of ILP with respect to
the parameter clique-width. They showed (and it is also not difficult to observe) that ILPF remains
NP-complete even when restricted to extremely simple instances whose incidence, primal, and/or dual
graphs have bounded clique-width. However, ILP becomes polynomially tractable when restricted
to unary instances of bounded signed clique-width (of their signed incidence graph), under the
assumption that a suitable k-expression is provided in the input.

Theorem 17. There exists an algorithm which takes as input a unary instance I of ILP and a signed
k-expression tree T of GSI(I), runs in time O(|I|4k · |T|), and solves I .

6. Summary and Future Work

This survey provides an overview of recently obtained (as well as previously known)
(in-)tractability results for ILP with a focus on structural restrictions of the primal, dual, and incidence
graph. The classes based on fracture number and treedepth can alternatively be defined in terms of
block matrices and are also known as n-fold, tree-fold, 2-stage stochastic, and multi-stage stochastic
integer linear programs; a recent and comprehensive overview for these classes, their exact relation to
the classes considered in this survey, as well as the current best algorithmic approaches and techniques
employed for these classes is given in [44].

Even though the complexity of ILP w.r.t. decompositional parameters such as treedepth, treewidth,
and clique-width is by now quite well understood, we believe that the study of parameterized
complexity of ILP is still in its infancy. Apart from studying more restrictive settings such as tree-like
instances (in combination with, e.g., ‖A‖∞) as well as related parameters such as feedback edge set,
feedback vertex set, and bandwidth, we see at least two very promising directions for developing novel
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and even more general structural parameterizations: backdoor sets and hybrid parameters. Both of
these approaches have already been successfully applied in settings such as BOOLEAN SATISFIABILITY

and CONSTRAINT SATISFACTION [29,45,46]. Informally, a backdoor set captures the situation when
an instance is “close” to being tractable, and it looks promising to develop backdoor sets into one
of the newly defined tractable classes. For instance, can we solve instances of ILP that differ from
a known tractable class only by a small set of variables or constraints? Concerning the hybrid approach,
where the aim is to solve instances consisting of many parts each of them tractable for a different
reason, the number of possible directions seems even greater—torso-width is thus far the only explored
hybrid parameter and many more tractable classes of ILP have been discovered since its introduction.
Finally, it is important to explore if, how, and how far the known tractable fragments for ILP can be
employed for well-known generalizations of ILP such as mixed or quadratic integer programs.
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