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Abstract: The article presents a numerical model of sea wave generation as an implementation of the
stochastic process with a spectrum of wave angular velocity. Based on the wave spectrum, a forming
filter is determined, and its input is fed with white noise. The resulting signal added to the angular
speed of a ship represents disturbances acting on the ship’s hull as a result of wave impact. The model
was used for simulation tests of the influence of disturbances on the course stabilization system of
the ship.

Keywords: sea waves; wave disturbance modelling; spectrum of wave angular speed; automatic
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1. Introduction

A typical practice in designing an automatic control system is to build a mathematical model
of an object (or process), and on this basis to make a synthesis of a control system (controller,
algorithm). Then, before implementation, the created control algorithm is tested (if possible) by
computer simulation and tuned in right after installation. Simulation is therefore the first step in
checking the stability of the system and algorithm operation, so it should reflect reality as faithfully as
possible, accounting for disturbances.

The process of ship movement control is characterized by a high level of external disturbances.
Due to the manner of their influence, disturbances can be divided into two groups. Disturbances
of one type affect ship dynamics (changes in water depth or loading condition, etc.); the other type
is additive disturbances, whose effects are observed as additional signals superimposed on a ship’s
heading, angular speed, drift angle, etc. The latter group also includes disturbances from currents,
winds, and waves. Although they are correlated, these disturbances are usually divided into three
different types of signals. This article focuses on disturbances from wind-generated waves, as they are
the most essential from the viewpoint of the automatic ship movement control problem.

Literature on the subject abounds, with publications presenting complex models of sea waves
related to specific water areas [1,2]. Other articles covering the topic under consideration address
wave filters [3–8], as a standard based on the Kalman filter. Similar topics are also discussed in other
works [9–13].

The article presents a numerical model of sea wave generation as a method alternative to the
existing ones. The presented solution can be universally used in simulations of automatic ship
movement control systems, tackling various problems. This is often difficult in the case of solutions
presented in the literature on the subject. This restriction often results from the complexity of the
models and the assumptions made. The proposed model is easy to implement and still takes into
account all relevant components. The model was verified in simulations testing the influence of
disturbances on the operation of the ship course stabilization system.
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2. Wave Disturbances Generated by Wind

Surface layers of water in the sea and the air above are rarely calm. Statistical data on weather
conditions prevailing in the North Atlantic show that, on average, the weather is windless only for
about seven days a year [14]. In the remaining period, winds blow with different forces and from
different directions, and the sea is more or less wavy. Wind-induced waves are formed by the impact
of wind on the water; that is, kinetic energy from the atmosphere is transferred to the surface of
the sea, creating free deformations. The size of the waves depends on the speed of wind-generating
waves (the stronger the wind is, the larger wave dimensions can be), the duration of the wind blowing
above the water from the same direction (in practice ±15◦), and the distance of fetch. Waves that
appear on the surface of the seas and oceans make up an irregular interfered signal composed of a
series of monochromatic waves. A set of interfered waves contains a whole spectrum of waves with
different lengths, periods, speeds, and heights, so disturbances from waves can be regarded as an
implementation of a stochastic process involving a specific spectrum. An example of such a description
appointed by research based on real measurements is the spectrum in this form [14]:

S(ω) =
2Dαω2

ω4 + 2(α2 − β2)ω2 + (α2 + β2)
2 (1)

where

S(ω)—spectral density of wave ordinate;
ω—angular frequency of the wave (pulsation);

D—dispersion of wave coordinates
(

D = 0.143(h3%)2
)

;

h3%—wave height with 3% probability of exceedance (Table 1);
β—parameter dependent on h3% (Figure 1);
α—parameter dependent on parameter β(α = 0.21β).

The above values are associated with wave parameters (height h3%, length) and depend on the
sea state, as shown in Table 1. This table also approximately indicates the relation between wind speed
(Beaufort wind scale) and sea state (Douglas scale).

Table 1. Summary of selected parameters of waves depending on the sea state and the Beaufort
wind scale.

Sea State Sea State
Designation

Probability of
Occurrence [%]

h3% [m]
Maximum Wave

Length [m]
Beaufort Wind
Scale (Approx.)

0 calm–glassy
11.2486

0 – 0
1 calm–rippled 0.00–0.25 5 1

2 smooth
wavelets 0.25–0.75 25 2–3

3 slight 31.6851 0.75–1.25 50 4
4 moderate 40.1944 1.25–2.00 75 5
5 rough 12.8005 2.00–3.50 100 6
6 very rough 3.0253 3.50–6.00 135 7
7 high 0.9263 6.00–8.50 200 8
8 very high 0.1190 8.50–11.0 250 9–10
9 phenomenal 0.0009 11.0– . . . >250 11–12
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The greatest changes in the heading angle of the ship at low speeds occur in case of transverse 
waves, whereas the smallest impact comes from diagonal and quartering waves; in case of diagonal 
and head waves, heading deviations (yawing) get larger as the ship speed increases. Taking into 
account the ship speed and wave angle, we can transform spectrum (1) to this form (determined by 
research based on real measurements) [14]: 

Figure 1. Boundary relation between the parameter beta and wave height.

In the automatic course control system, the value of deviation from a preset course depends on
wave energy, as well as a ship’s speed and wave angle (Figure 2). In this approach, we can consider
the following situations:

• Waves coming at a specific angle from the direction opposite to ship movement (diagonal waves);
• waves coming at an angle, but in the direction of ship movement (quartering waves);
• waves coming from the bow (head waves);
• waves perpendicular to the ship side (beam waves);
• waves striking the stern (following waves).
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Figure 2. Definition of the wave angle.

The greatest changes in the heading angle of the ship at low speeds occur in case of transverse
waves, whereas the smallest impact comes from diagonal and quartering waves; in case of diagonal
and head waves, heading deviations (yawing) get larger as the ship speed increases. Taking into
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account the ship speed and wave angle, we can transform spectrum (1) to this form (determined by
research based on real measurements) [14]:

S(ω) =
2Dαkω2

ω4 + 2(αk
2 − βk

2)ω2 + (αk
2 + βk

2)
2 (2)

where

αk—parameter dependent on parameter βk(αk = 0.21βk);
βk—parameter calculated from the formula

∣∣β + Vg−1 cos(ξ)β2
∣∣;

V—ship’s speed;
G—gravitational acceleration;
ξ—wave angle (Figure 2).

The effect of wave action on the process of ship movement control (in various control problems)
can easily be determined by measuring a ship’s angular velocity. The signal of angular speed is a sum
of two components: One formed due to rudder deflection, and the other due to waves. The spectrum
of angular velocity is created by transforming the spectrum of wave ordinates (2) and takes this form
(appointed by research based on real measurements) [14]:

Sr(ω) =
2Dαkxr

2xT
2cos2(ξ)g−2ω4

ω4 + 2(αk
2 − βk

2)ω2 + (αk
2 + βk

2)
2 (3)

where

Sr(ω)—spectral density of wave angular velocity;
xr, xT—dimensionless reducing parameters (Figure 3) dependent on the length of the ship (L),
wavelength (λ), and the ship’s maximum draught marked by the waterplane (T).
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Figure 3. Boundary dependences of reducing parameters.

It should be noted that spectral density (3), due to the expression in the numerator cos(ξ),
faithfully represents the power of the wave signal for angles differing from 90◦ by at least ±15◦ (for
diagonal, quartering, head, and following waves).

In order to use the spectrum of wave angular velocity (3) acting as disturbances affecting the ship
hull due to waves, the forming filter:

Hr(s) =
√

2DαkxrxT |cos(ξ)|g−1s2

s2 + 2αks + αk
2 + βk

2 (4)
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should be used to pass white noise through it (stochastic process with zero expected value and
steady spectral density); then, the formed signal rw should be added to—or, for positive wave angles,
subtracted from—the ship’s angular speed caused by rudder deflection.

Filter (4) is obtained from this relation:

Sr(ω) = (|Hr(s)|s=ωi)
2. (5)

Using Lagrange interpolation (Algorithm 1), where average values of parameters are adopted in
the nodes β, xr, xT , we get:

β = cut f (polyval([0.000156− 0.0058 0.0859− 0.5842 2.1039 ], h3%), 0, 9)

xr = cut f
(

polyval
(
[0.0242 − 0.1725 0.0483 1], π·L

λ |cos(ξ)|
)

, 0, 3.7
)

xT = cut f (polyval([−4.2 1], T/λ), 0, 0.23)

(6)

where

polyval(p, xi)—a function returning the value of the polynomial with coefficients written in a table p,
in a set point xi;
cut f ( f (x), a, b)—function returning the value f (x) for x ∈ 〈a, b〉, value f (a) for x < a and value f (b)
for x > b.

Algorithm 1 Using Lagrange interpolation

% x = [x0, x1, . . . , xN], y = [y0, y1, . . . , yN]
% p—coefficients of Lagrange polynomial

function p = lagranp(x,y)
N = length(x) − 1;
p = 0;
for m = 1:N + 1

P = 1;
for k = 1:N + 1

if k ~= m
P = conv(P,[1 − x(k)])/(x(m) − x(k));

End
End

p = p + y(m) * P;
end

end

In relation to Equation (6), input parameters of the numerical model of sea wave generation acting
on the ship hull are:

• Parameters associated with the wave:

- Wave angle ξ;
- wave height h3%;
- wave length λ;

• parameters of the ship:

- Maximum draft T;
- length L;
- speed V.
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In addition, taking into account the data from Table 1, we can refer to the model input to wind
force (Beaufort wind scale) or to sea state (Douglas scale).

3. Computing Experiments

The experiments have been made in a MATLAB/Simulink environment. A de Witt-Oppe
model [15] represented a real ship, incorporating the dynamics of the steering gear [16]:

.
x1 = x5 cos x3 − x6 sin x3
.
x2 = x5 sin x3 + x6 cos x3
.
x3 = x4
.
x4 = −a1x4 − a2x4

3 + a3u
.
x5 = − f x5 −Wx4

2 + St

x6 = −r1x4 − r3x4
3

.
u = uz − u
|uz| ≤ umax∣∣ .
u
∣∣ ≤ .

umax

(7)

where

(x1, x2) = (x, y)—Cartesian coordinates (ship’s position);
x3 = ψ—deviation from the course;
x4 = r—angular velocity;
x5—longitudinal speed;
x6—transverse speed;
u = δ—rudder angle;
uz = δz—rudder angle setting;
δmax—maximum rudder deflection;
.
δmax—maximum rate of turn of the rudder;
St—propeller thrust;
a1, a2, a3, f , W, r1, r3—coefficients determined from model tests (different for different types of vessels).

The ship movement parameters adopted herein are those of a ship of mariner class, motor ship
(m.s.). Compass Island [15]: a1 = 0.018 [1/s], a2 = 37.2 [s/rad2], a3 = 0.001 [1/s2], f = 0.014 [1/s],
w = 124 [m/rad2], st = 0.11 [m/s2], r1 = −69.5 [m/rad], r3 = 0 [m/s2/rad3]. This particular ship has
the following characteristics: 9214 gross registered tons [t], 13,498 DWT, single screw, length L = 172 [m],
maximum draft indicated by the waterplane T = 8 [m], maximum speed 20 [w], maximum (minimum)
angular velocity rmax = 0.0191 [rad/s] (rmin = −0.0191 [rad/s]), maximum (minimum) rudder angle
δmax = 0.6 [rad] (δmax = −0.6 [rad]), maximum (minimum) rudder rate of turn δmax = 0.066 [rad/s]
(δmax = −0.066[rad/s]).

The established initial parameters of the simulation were as follow: Angular velocity r = 0 [rad/s],
deviation from the course ψ = 0 [rad], rudder angle δ = 0 [rad], ship’s speed V = 7.7[m/s].

A linear quadratic regulator (LQR) was chosen as the control algorithm of the ship course
stabilization system. The LQR regulator was synthesized using a Nomoto model [16]:

.
x3 = x4.
.
x4 = −a1x4 + a3u

(8)

The quality control criterion was this functional:

J =
t∫

0

(
ψ2 + λJδ

2
)

dt (9)
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where
λJ—a coefficient greater than zero, which is interpreted as a compromise between the deviation

from the course (angle of yaw) and the rudder angle (steering gear load), arbitrarily adopted here as 1.
Then, the control for LQR can be expressed by this formula:

δ = kψψ + krr (10)

where kψ = − 1√
λJ

, kr =
1
a3

(
a1 −

√
a1

2 + 2a3√
λJ

)
.

Without compromising the generality of the research, it was assumed that parameters ξ, h3%, λ

do not change their value during computational experiments.
The computing experiments were intended to investigate the operational correctness of

numerical-model-generating waves acting on the ship hull. Figures 4–7 show ship movement
trajectories (course setting was 0◦) for disturbances from four types of wave. The first trajectory
was obtained at sea state 4 (h3% = 1.5, λ = 60) and for the wave angle ξ = −π/4[rad] (diagonal
waves); the second trajectory was produced at sea state 5 (h3% = 3, λ = 90) and for the wave angle
ξ = 5π/12[rad] (diagonal waves); the third one was also obtained at sea state 5 (h3% = 3, λ = 90),
but for the wave angle ξ = 0[rad] (head waves), whereas the fourth was obtained at sea state 6
(h3% = 5, λ = 130) and for the wave angle ξ = −π/5[rad] (diagonal waves). In all four situations,
the quality control is high (note the scale used due to the specificity of particular cases), although in
the second case the ship is much more pushed to the left (port side, because ξ > 0) than in the first
case (to the right—starboard, because ξ < 0), due to higher sea state. In the third case, despite sea state
5, the ship is drifting less than in the second situation, due to the zero angle of the head waves. In the
fourth case, the ship has the strongest drift (to the right—starboard, because ξ < 0), due to the highest
sea state 6. This happens even if the wave angle in absolute terms is the smallest of all presented
situations involving diagonal waves.Algorithms 2018, 11, x FOR PEER REVIEW  8 of 10 
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In addition, Figures 4–7 illustrate disturbance signals added to the ship’s angular velocity caused
by rudder deflection. One can observe that, as expected, the absolute value of the signal increases with
increasing sea state, whereas for the steady sea state it decreases for smaller absolute wave angles.

The presented situations are typical of the research done. In all examined cases, the model
correctly executed hull-affecting disturbances that corresponded to sea waves induced by wind.

4. Conclusions

The article presents a numerical model of sea wave generation, which was positively tested
in a ship course stabilization problem. The stabilization control algorithm was provided by an
LQR regulator.

Wave generation is required for ship movement simulations designed for various problems
(navigation along a preset trajectory, dynamic positioning systems, collision avoidance, etc.) [17–20],
and makes up a preliminary stage in designing control systems before sea trials of a ship.
The inclusion of wave disturbance is also recommended in other problems relating to modern marine
navigation [21–29].

The author plans to apply stochastic disturbance of a ship’s angular speed in developing original
systems of ship movement control.

Funding: This research outcome has been achieved under the grant No 1/S/ITM/16 financed from a subsidy of
the Ministry of Science and Higher Education in Poland for statutory activities.
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