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Abstract: The events location and real-time computational performance of crowd scenes continuously
challenge the field of video mining. In this paper, we address these two problems based on a regional
topic model. In the process of video topic modeling, region topic model can simultaneously cluster
motion words of video into motion topics, and the locations of motion into motion regions, where each
motion topic associates with its region. Meanwhile, a hybrid stochastic variational Gibbs sampling
algorithm is developed for inference of our region topic model, which has the ability of inferring in
real time with massive video stream dataset. We evaluate our method on simulate and real datasets.
The comparison with the Gibbs sampling algorithm shows the superiorities of proposed model and
its online inference algorithm in terms of anomaly detection.
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1. Introduction

Video mining is a hot topic that has attracted significant interests in recent years. Video mining is
able to find the implicit, valuable, and understandable video patterns by analyzing visual features,
time structure, event relationships, and semantic information of video data [1], which can be classified
into video structure mining and video motion mining [2]. In particular, for poor structural videos
such as traffic surveillance video, video motion mining can realize the applications of abnormal events
detection or congestion analysis, and so on.

With the evolution of video mining technology, there has been an increasing number of research
works focused on the use of topic models for video motion mining. Although probabilistic topic
models were originally studied in the field of natural language processing [3,4], they also provide
a way for discovering hidden pattern from images or document corpus. In the text mining, a topic
model represents unlabeled documents as mixtures of topics where latent topics are distributions over
observed words. In the video motion mining, full video is treated as document collection; a short
video clip is treated as a document that divided from full video; the video features are considered as
words. In this way, with the introduction of probabilitics topic model in video motion analysis, variety
of latent motion patterns, and latent motions correlations were discovered, which are represented by
topics. Figure 1 shows the diagram of video topic modeling.
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Figure 1. Diagram of video topic modeling. 

Although several topic models have successfully applied in surveillance systems [5–8], there 
exist several premature phenomena in the procedure of video topic modeling—such as abnormal 
events locating and computational performance of real-time mining. In this paper, we focus on topic 
modeling with region information and uses it to automatically detect abnormal events from a 
complex video scene in real-time. 

The rest of the paper is organized as follows. In the next section, we present a brief survey of the 
related works. In Section 3.1.—Video Representation—the video representation is explained. In 
Section 3.2.—Regional Topic Model and its Online Inference Algorithm, our regional topic model 
(RTM) and its hybrid stochastic variational Gibbs Sampling algorithm (HSVG) are presented. The 
datasets, evaluations and comparisons are discussed in detail, in Section 4. Our conclusions are 
presented in the last section. 
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problems of low sensitivity, so it is unable to detect the abnormal event accurately. In addition, there 
is a problem with abnormal event localization in LDA: it can only detect which clip the abnormal 
event is in, but have no ability to determine where the event happened in. Therefore, several 
attempts have been made to model video data using LDA extensions. 

X. Wang [10] adopted hierarchical variants of LDA, including a Hierarchical Dirichlet Processes 
(HDP) [7] mixture model and a Dual Hierarchical Dirichlet Processes (Dual-HDP) model, to connect 
three elements in visual surveillance: low-level visual features, simple atomic activities, and 
interactions. Thereafter, X. Wang [11] converted tracks into words, and applied a topic model to 
them. The words were the quantized positions and directions of motion, consequentially the topics 
would represent routes shared between objects. J. Li [12] proposed WS-JTM to address the typical 
topic model weakness of inference speed and exploited weak supervision. They fixed delta latent 
Dirichlet allocation (dLDA) in their extension, multi-class dLDA, which is also used to detect rare 
and subtle behavior. Thereafter, a two-staged cascaded LDA model was formulated by Li et al. in 
reference [13] where the first stage learns regional behavior and the second stage learns the global 
context over the regional models. Hospedales T.M. et al. [14] adopt a nonparametric Bayesian 
approach to automatically determine the number of topics shared by the documents and also when 
they appear in each temporal document. Emonet R. [15] proposed framework consists of an 
activity-based semantic scene segmentation model for learning behavior spatial context, and a 
cascaded probabilistic topic model for learning both behavior correlation context and behavior 
temporal context at multiple scales. Fu et al. [16] improved sparse topical coding (STC) to discover 
semantic motion patterns for a dynamic scene, which can be sparsely reconstructed. Yuan et al. [17] 
used a topic model to discover functional regions in a city using taxi probe data and point-of-interest 
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Although several topic models have successfully applied in surveillance systems [5–8], there
exist several premature phenomena in the procedure of video topic modeling—such as abnormal
events locating and computational performance of real-time mining. In this paper, we focus on topic
modeling with region information and uses it to automatically detect abnormal events from a complex
video scene in real-time.

The rest of the paper is organized as follows. In the next section, we present a brief survey of
the related works. In Section 3.1—Video Representation—the video representation is explained.
In Section 3.2—Regional Topic Model and its Online Inference Algorithm, our regional topic
model (RTM) and its hybrid stochastic variational Gibbs Sampling algorithm (HSVG) are presented.
The datasets, evaluations and comparisons are discussed in detail, in Section 4. Our conclusions are
presented in the last section.

2. Related Works

Recently, there has been a significant number of research works focused on the use of topic
models for complex scene analysis. These methods have become quite popular due to their success in
natural language processing, e.g., probabilistic latent semantic analysis (pLSA) [9] and latent Dirichlet
allocation (LDA) [5]. Nevertheless, when there are lots of motions co-occurred, LDA has problems of
low sensitivity, so it is unable to detect the abnormal event accurately. In addition, there is a problem
with abnormal event localization in LDA: it can only detect which clip the abnormal event is in, but
have no ability to determine where the event happened in. Therefore, several attempts have been
made to model video data using LDA extensions.

X. Wang [10] adopted hierarchical variants of LDA, including a Hierarchical Dirichlet Processes
(HDP) [7] mixture model and a Dual Hierarchical Dirichlet Processes (Dual-HDP) model, to connect
three elements in visual surveillance: low-level visual features, simple atomic activities, and
interactions. Thereafter, X. Wang [11] converted tracks into words, and applied a topic model
to them. The words were the quantized positions and directions of motion, consequentially the
topics would represent routes shared between objects. J. Li [12] proposed WS-JTM to address
the typical topic model weakness of inference speed and exploited weak supervision. They fixed
delta latent Dirichlet allocation (dLDA) in their extension, multi-class dLDA, which is also used to
detect rare and subtle behavior. Thereafter, a two-staged cascaded LDA model was formulated by
Li et al. in reference [13] where the first stage learns regional behavior and the second stage learns
the global context over the regional models. Hospedales T.M. et al. [14] adopt a nonparametric
Bayesian approach to automatically determine the number of topics shared by the documents and
also when they appear in each temporal document. Emonet R. [15] proposed framework consists
of an activity-based semantic scene segmentation model for learning behavior spatial context, and
a cascaded probabilistic topic model for learning both behavior correlation context and behavior
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temporal context at multiple scales. Fu et al. [16] improved sparse topical coding (STC) to discover
semantic motion patterns for a dynamic scene, which can be sparsely reconstructed. Yuan et al. [17]
used a topic model to discover functional regions in a city using taxi probe data and point-of-interest
information. Similarly, Farrahi and Gatica-Perez [18] used a topic model to discover human routines
using mobile-phone location data. In [19], LDA was extended to model the flow of people entering
or exiting a building. Yu et al. [20] proposed a topic model for detecting an anomalous group of
individuals in a social network. Kinoshita et al. [21] introduced a traffic state model based on a
probabilistic topic model to describe the traffic states for a variety of roads, the model can be learned
using an expectation–maximization algorithm. Hospedales et al. [22] introduced a dynamic topic
model named Markov clustering topic model (MCTM), and an approximation to online Bayesian
inference was formulated to enable dynamic scene understanding and behavior mining in new video
data online in real-time. In order to handle the temporal nature of the video data, Fan et al. [23] devised
a dynamical causal topic model (DCTM) that can detect the latent topics and causal interactions
between them.

Meanwhile, several attempts have also been made to find anomalies using topic models and
surveillance cameras [24,25]. Jeong et al. [26] proposed a topic model for detecting anomalous
trajectories of people or vehicles in surveillance-video images. Kaviani et al. [27] addressed the
problem of abnormality detection based on a fully sparse topic models (FSTM). Isupova et al. [28]
proposed a novel dynamic Bayesian nonparametric topic model and its Batch and online Gibbs
samplers for anomaly detection in video.

In general, there were several key problems in existing studies about video mining using topic
model: (1) model parameters increment leads to the increments of the model learning time, and
then traditional off-line inference algorithm is not suitable for video monitoring system; (2) anomaly
detection in a whole scene rather than in each region reduces the sensitivity of the anomaly detection.

To address the problem of motion region, Zou et al. [29] proposed a belief based on correlated
topic model (BCTM) for the semantic region analysis of pedestrian motion patterns in the crowded
scenes. Haines proposed regional LDA model (rLDA) [30], which not only can model activities
in a complicated scene, but also realize a high sensitivity detection and the localization of motion
topic (especially the abnormal event) by extracting spatial information ignored by LDA. Nonetheless,
the inference algorithm of above studies still used the collapsed Gibbs sampling, which needs to
scan the whole samples at each iteration. For huge data sets and data streams such as video, this
way adopted by Gibbs sampling leads to high memory overhead, slow running speed, and judging
convergence difficultly.

Classic approaches of inference algorithm in LDA are Gibbs sampling (GS) [31] and variational
Bayesian (VB) batch inference [5]. In order to solve the problem of computational complexity, collapsed
Gibbs sampling (CGS) [6] and collapsed VB batch inference (CVB) [32] were proposed. Nevertheless,
for the purpose of LDA applied to video mining, we need to make the inference algorithm adapt to
the characteristics of video streaming data set, it is better to a realize real-time and online processing
quickly and efficiently. For text database which is huge or in the form of data stream, there have been
developments of online LDA inference algorithm with less memory, faster running, and convergence
speed. Hoffman proposed the stochastic gradient optimization algorithm (online LDA) [33], which
repeatedly subsamples a small set of documents from the collection and then updates the topics
from an analysis of the subsample. Since online LDA does not need to scan the entire samples
for updating topic parameter matrix at each iteration, the updating of topic parameters is more
frequently. The algorithm not only takes up less memory, faster running, and convergence speed,
but also realizes online inference in real time for huge data sets or data stream. Nonetheless, the
algorithm complexity linearly increased with the number of topics. Therefore, it is not suitable for
large collection with many topics. On the basis of online LDA algorithm, Mimno proposed hybrid
stochastic variational Gibbs sampling (HSVG) [34]. This algorithm introduced the second source of
stochasticity by MCMC sampling, and taken advantage of sparse computation to make complexity



Algorithms 2018, 11, 97 4 of 19

sublinearly increased with the number of topics. It fits for a large collection with many topics. Besides,
RLD (Riemannian Langevin dynamics) [35] algorithm was proposed by Girolami. It is a kind of
Langevin dynamics algorithm based on Riemannian manifold of MH correction. Welling proposed
SGLD (stochastic gradient Langevin dynamics) [36] algorithm, which reserved stochastic gradient
optimization algorithm, and can sample from the posterior distribution. Patterson proposed SGRLD
(stochastic gradient Riemannian Langevin dynamics) [37] by combining RLD and SGLD algorithm.
In addition, Olga Isupova et al. [38] proposed new learning algorithms for activity analysis in video,
which are based on the expectation maximization approach and variational Bayes inference.

3. Materials and Methods

3.1. Video Representation

To discover motion patterns for video by topic modeling, the definitions of visual words and
visual documents are essential for topic model applied to video analysis: given an input video, we
first temporally segment the video into non-overlapping clips. Each clip is considered as a document.
To create visual words, we segment a scene into sub-grid. Next, we compute optical flow field
for motion object from foreground mask extracted in each frame, and then optical flow histograms
are generated for one clip by counting grids i accumulated over frames of this clip. After spatial
and directional quantization, video motion word labeled in v ∈ {0, 1, . . . , V − 1} is split into grid
position i ∈ {0, 1, . . . , I − 1} and motion direction ω ∈ {0, 1, . . . , Ω− 1}. Finally, we select the
largest optical flow histogram to generate a motion words sample v = (i, ω). Then, for a visual word
v ∈ {0, 1, . . . , V − 1}, the information of motion position and direction mix together to express a
motion word (i, ω), and all the motion words in a video clip constitute the bag of visual words (BOVW).

3.2. Regional Topic Model and Its Online Inference Algorithm

In our RTM, the goal is to discover a set of motions (topics) from video by learning the probability
distributions of visual features over each topic and topics over each clip. These two probability
distributions are represented as two co-occurring matrixes in Figure 1. Meanwhile, the location
information of motion is discovered. Nonetheless, BOVW based on latent Dirichlet allocation (LDA)
model presumes that the words are unordered and interchangeable in document, this hypothesis
destroys the spatial information of motions or activities; we are unable to get the motion region from
model learning.

In order to keep and use the spatial information of motion in video, we introduce RTM, in which
each sample in a frame is not only labeled by its motion direction ω but also by a motion region label
r ∈ {0, 1, . . . R}. It means that the latent motion topics in videos are associated with the regions where
they occurred in.

Suppose that there are J documents (video clips), each document j ∈ J contains Nj observed
samples xjn. tjn is the motion topic of each sample xjn, and rjn∈i is its motion region label of region

i. Then, video sequence can be represented as X =
{

Xj
}J

j=1, Xj =
{

xjn
}Nj

n=1. The latent variables are

motion topic and regional labels sets Z = {T, R} =
{

tjn, rjn∈i
}Nj , J

n=1,j=1. From a global perspective,

motion topic weight vector of document j can be expressed as πj =
{

πjt
}T

t=1. When a symmetric
Dirichlet prior distribution is applied on the topic weight vector πj, the hyperparameters of Dirichlet
prior is α, πj ∼ Dir(α). From a local perspective, motion regional weight vector can be expressed as
ρ = {ρr}R

r=1. When a symmetric Dirichlet prior distribution β is applied on the regional weight vector,
it means ρ ∼ Dir(β).

Document j shares T motion topics by local topic weight vector πj =
{

πjt
}T

t=1. In other words,

the motion topic label subset Tj =
{

tjn
}Nj

n=1 obeys a multinomial distribution of T dimension whose
parameter is πj, Tj ∼ Mul

(
πj
)
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log p
(
Tj
∣∣πj
)
= ∑T

t=1Njt log πjt log p
(
Tj
∣∣πj
)
= ∑T

t=1Njt log πjt (1)

Local motion topic weight vector πj obey a symmetric Dirichlet prior distribution πj ∼ Dir(α)
whose parameter is α

log p
(
πj
∣∣α) = log Γ(Tα)− T log Γ(α) + ∑T

t=1(α− 1) log πjt (2)

The corpus share R motion regions by global region weight vector ρ = {ρr}R
r=1. In other words,

motion region label set R = { ri}I
i=1 obeys a multinomial distribution of R dimension whose parameter

is ρ, R ∼ Mul(ρ)
log p(R|ρ) = ∑R

r=1 Ir log ρr (3)

Likewise, global region weight ρ obeys a symmetric Dirichlet prior distribution ρ ∼ Dir(β) whose
parameter is β

log p(ρ|β ) = log Γ(Rβ)− R log Γ(β) + ∑R
r=1(β− 1) log ρr (4)

Under the known motion topic label tjn = t and known motion region label rjn∈i = r of sample

xjn, the sample subset Xjtr =
{

xjn
∣∣tjn = t, rjn∈i = r

}Nj
n=1 allocated by document j obeys a R dimension

multinomial distribution Xjtr ∼ Mul(θrt) whose parameter is θrt = {θωrt}Ω
ω=1

log p
(
Xjtr

∣∣θrt
)
= ∑Ω

ω=1Njωrt log θωrt (5)

The hybrid parameter θrt obeys a symmetric Dirichlet prior distribution θrt ∼ Dir(λ) whose
parameter is λ

log p(θrt|λ) = log Γ(Ωλ)−Ω log Γ(λ) + ∑Ω
ω=1(λ− 1) log θωrt (6)

The construction of RTM is summarized as that: the number of motion topics is T; the number
of motion regions is R; the video sequence contains J documents; the observed sample set is Xj ={

xjn
}Nj

n=1 =
{
(i, ω)jn

}Nj

n=1
; the corresponding latent variables set is Zj =

{
Tj, R

}
=
{

tjn, rjn∈i
}Nj

n=1.
Then, the generative process of RTM is as follows, the corresponding graphical model is shown in
Figure 2.
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Generate ρ ∼ Dir(β)

For each sample xjn
Generate a regional label ri ∼ ρ for its location i
For each video clip j
Generate a motion topic weight vector πj ∼ Dir(α)
For each sample xjn
Generate motion topic label tjn ∼ πj
Generate θrt ∼ Dir(λ)
Generate xjn ∼ Mult(.

∣∣θrt)
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As the generative process of RTM described above, the unknown parameters to be estimated
are πj =

{
πjt
}T

t=1, ρ = {ρr}R
r=1 and θrt = {θωrt}Ω

ω=1; the known data are the observed samples

Xj =
{

xjn
}Nj

n=1 and their joint distribution. As shown in Equation (7),

p(ρ,θ,π, R, T, X|α, β, λ) = p(ρ, R|β)p(π, T|α)p(θ, X|R, T, λ)

= p(ρ|β )p(R|ρ) ·
R
∏

r=1

T
∏

t=1
p(θrt|λ) ·

J
∏
j=1

p
(
πj
∣∣α)p

(
Tj
∣∣πj
)

p
(
Xj
∣∣R, Tj,θ

)
= p(ρ|β )p(R|ρ) ·

R
∏

r=1

T
∏

t=1
p(θrt|λ) ·

J
∏
j=1

p
(
πj
∣∣α) Nj

∏
n=1

p
(
tjn
∣∣πj
)

p
(

xjn

∣∣∣tjn, rjn∈i,θrjn∈i ,tjn

) (7)

According to above construction of RTM, the model learning acts as clustering document sample

subsets Xj =
{

xjn
}Nj

n=1. The word samples not only can be clustered to T motion topics, but also
to R motion regions. Each latent motion topic is inevitably correlated to a space region. It is worth
noting that even though there have been several studies that introduce latent variables for merging
various factors to jointly estimate document contents, which have the obvious differentiation with our
RTM. For instance, in topic modeling of document, Rosen-Zvi et al. [39] introduced an author latent
variable, and Bao et al. [40] introduced an emotion latent variable. Both of them first generated the
introduced variables (emotion or author) from a specific distribution, then generated a latent topic
from a multinomial distribution conditioned on generated variable, and finally generated document
terms from another multinomial distribution based on latent topics. Whereas our RTM generates
a introduced variable (region) and a latent topic in two independent steps respectively, and finally
generates document terms from a multinomial distribution based on fixed latent region and topic.
Therefore, a different generative process leads to different forms of joint distribution as well as
inference algorithm.

As with traditional topic model, there are generally two kinds of inference methods for our RTM:
MCMC sampling and VB inference. For realizing the real-time video mining, we proposed a hybrid
stochastic variational Gibbs (HSVG) sampling algorithm for RTM. In comparison with HSVG sampling,
the Gibbs sampling algorithm needs to scan the entire samples for at each iteration as a batch algorithm.
Therefore, due to the huge memory (risk of overhead), slower running and difficultly determining
convergence time, even collapsed Gibbs sampling algorithm is not suitable for huge data sets or data
stream. The HSVG algorithm introduces the second source of stochasticity by MCMC sampling, and
takes advantage of sparse computation to make complexity sublinearly increased with the number of
topics, which fits for large collection with many topics. The inference process of our HSVG algorithm
is formulated with more detail as follows.

Firstly, the motion region label is considered as a global latent variable. We eliminate the local
motion topic weight πj by marginal computation, and obtain the local collapsed space of latent variable

Z =
({

Tj
}J

j=1, R
)
=
{

tjn, rjn∈i
}Nj , J

n=1,j=1. Then the strong correlation between latent variable Z and
local motion topic weight πj is retained. The joint distribution becomes Equation (8)

p(ρ,θ, R, T, X|α, β, λ)

= p(ρ|β )p(R|ρ) ·∏R
r=1∏T

t=1 p(θrt|λ) ·∏J
j=1 p

(
Tj
∣∣α)p

(
Xj
∣∣R, Tj,θ

) (8)

Next, for improving the inference accuracy by retaining weak correlation of local latent variables
Tj, we suppose that Tj obeys an indecomposable variational distribution

q
(

Tj

∣∣∣ηj

)
6=

Nj

∏
n=1

q
(
tjn
∣∣ηjn

)
(9)

Therefore, in the inference of semi-collapsed RTM, we just need to suppose that global latent
variable R, local latent variable Tj, motion region weight ρ and global hybrid parameters θ are
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independent. Then, the variational distribution q of free variational parameters ν, σ, µrt, and
{
ηj

}J

j=1
can be decomposed into Equation (10)

q(ρ,θ, R, T|ν,µ,σ,η) = q(ρ|ν)q(R|σ)
R

∏
r=1

T

∏
t=1

q(θrt|µrt) ·
J

∏
j=1

q
(

Tj

∣∣∣ηj

)
(10)

Then, the semi-collapsed ELBO (Evidence Lower Bound) of document collection X is the global
objective function

L(X, q) = Eq[log p(ρ,θ, R, T, X|α, β, λ)]−Eq[log q(ρ,θ, R, T|ν,µ,σ,η)]
= Eν[log p(ρ|β )] − Eν[log q(ρ|ν)] + Eσ,ν[log p(R|ρ)]
−Eσ[log q(R|σ)] + Eµ[log p(θ|λ )] −Eµ[log q(θ|µ)]

+
J

∑
j=1

{
Eηj

[
log p

(
Tj
∣∣α)]−Eηj

[
log q

(
Tj

∣∣∣ηj

)]
+ Eµ,σ,ηj

[
log p

(
Xj
∣∣R, Tj,θ

)]} (11)

The motion topic weight π in p(π, T|α) is eliminated by integrating

p(T|α) =
∫

Π
p(π|α )p(T|π)dπ ∝

J

∏
j=1

Γ(Tα)

Γ
(
Tα + Nj

) T

∏
t=1

Γ
(
α + Njt

)
Γ(α)

(12)

Then, Equation (13) is obtained

Eηj

[
log p

(
Tj
∣∣α)] = T

∑
t=1

Eηj

[
log Γ

(
α + Njt

)]
− T log Γ(α) (13)

At this point, the local variational objective function of each document j is

lj =

{
∑T

t=1Eηj

[
log Γ

(
α + Njt

)]
− T log Γ(α)−Eηj

[
log q

(
Tj

∣∣∣ηj

)]
+∑Ω

ω=1∑R
r=1∑T

t=1Eσr ,ηj

[
Njωrt

]
Eµωrt [log θωrt]

}

+ 1
J

{
log Γ(Rβ)− R log Γ(β) + ∑R

r=1(β− 1)Eνr [log ρr]

− log Γ
(

∑R
r=1 νr

)
+ ∑R

r=1 log Γ(νr)−∑R
r=1(νr − 1)Eνr [log ρr]

}
+ 1

J

{
∑R

r=1∑I
i=1 ςirEνr [log ρr]−∑R

r=1∑I
i=1 ςir log ςir

}
+ 1

J

R
∑

r=1

T
∑

t=1


log Γ(Ωλ) − Ω log Γ(λ) + ∑Ω

ω=1(λ− 1)Eµωrt [log θωrt]

− log Γ
(

Ω
∑

ω=1
µωrt

)
+

Ω
∑

ω=1
log Γ(µωrt)−

Ω
∑

ω=1
(µωrt − 1)Eµωrt [log θωrt]



(14)

Next, the stochastic variational inference of global layer and the MCMC inference of local layer
are as follows

1. Local MCMC Inference

Computing the first derivative of local objective function lj with respect to variational
parameters ηj

∂lj
∂ηj

= ∂
∂ηj

{
∑T

t=1Eηj

[
log Γ

(
α + Njt

)]
−Eηj

[
log q

(
Tj

∣∣∣ηj

)]
+∑Ω

ω=1∑R
r=1∑T

t=1Eσr ,ηj

[
Njωrt

]
Eµωrt [log θωrt]

}

=
∫

Tj

{
∑T

t=1 log Γ
(
α + Njt

)
− log q

(
Tj

∣∣∣ηj

)
− 1

+∑Ω
ω=1∑R

r=1∑T
t=1Eσr

[
Njωrt

]
Eµωrt [log θωrt]

}
dt

(15)
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Set Equation (15) equals to zero, the optimal variational distribution q∗
(

Tj

∣∣∣ηj

)
is

q∗
(

Tj

∣∣∣ηj

)
∝

T
∏

t=1
Γ
(
α + Njt

)
exp

{
∑Ω

ω=1∑R
r=1Eσr

[
Njωrt

]
Eµωrt [log θωrt]

}
∝

T
∏

t=1
Γ
(

α + ∑
Nj
n=1 I

(
tjn = t

))
exp

{
∑

Nj
n=1ςirI

(
tjn = t

)
Eµωrt

[
log θxjn=ω,ri=r,t

]} (16)

Among Equation (16), the variational expectation of sufficient statistic Njωrt =

∑
Nj
n=1I

(
xjn = ω

)
I
(
rjn = r

)
I
(
tjn = t

)
respect to variational parameter ςr is

Eσr

[
Njωrt

]
= Eσr

[
∑

Nj
n=1I

(
xjn = ω

)
I
(
rjn = r

)
I
(
tjn = t

)]
= Eσr

[
∑

Nj
n=1∑I

i=1I
(
xjn = ω

)
I
(
ijn = i

)
I(ri = r)I

(
tjn = t

)]
= ∑

Nj
n=1∑I

i=1 ςirI
(
xjn = ω

)
I
(
ijn = i

)
I(ri = r)I

(
tjn = t

) (17)

The MCMC sampling method can be used to solve the estimation problem of optimal variational
distribution q∗

(
Tj

∣∣∣ηj

)
without supposing the independent of local latent variables. Constructing

a Markov chain whose stationary distribution is the optimal variational distribution local latent
variables, the key problem of Gibbs sampling is computing the transition probability of Markov chain,
which equals to the motion topic label tjn’s prediction probability of sample xjn. Then, Equation (18)
is obtained

q∗
(

tjn = t
∣∣∣T(\jn)

j , Xj

)
∝
(

α + ∑
Nj
i=1,i 6=n I

(
tjn = t

))
exp

{
Eµωrt

[
log θxjn=ω,rjn∈i=r,t

]}
∝
(

α + N(\jn)
jt

)
exp

{
Eµωrt

[
log θxjn=ω,rjn∈i=r,t

]} (18)

In the Equation (18)

Eµωrt

[
log θxjn=ω,rjn∈i=r,t

]
= Ψ

(
µjωrt

)
− Ψ

(
∑Ω

ω=1∑
R
r=1 µjωrt

)
(19)

The prediction probability is iteratively learning in Markov chain, Markov chain is converged after
N times Gibbs sampling state transition in burn-in time. After Markov chain converged, the arithmetic
average value of sample sufficient statistics Njωrt is the estimation of Eηj

[
Njωrt

]
Eηj

[
Njωrt

]
= Eηj

[
∑

Nj
n=1I

(
xjn = w

)
I
(
rjn = r

)
I
(
tjn = t

)]
≈ 1

S

S

∑
s=1

N(s)
jωrt (20)

2. Global Stochastic Variational Inference

In the tth stochastic iteration, the state space of Markov chain is constructed by the sample
sufficient statistics N(Bt)ωrt = ∑j∈Bt Njωrt of a stochastic small batch documents Bt, the contribution of
Bt to natural gradient of global variational parameters is

Ñ(Bt)ωrt = Eη(Bt)

[
N(Bt)ωrt

]
≈ 1

S

S

∑
s=1

N(s)
(Bt)ωrt =

1
S

S

∑
s=1

∑
j∈Bt

N(s)
jωrt (21)
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At this point, the update amount ς̂
(t)
ir , ν̂

(t)
r and µ̂

(t)
ωrt of local small batch documents Bt respect to

global variational parameters is
ς̂
(t)
ir ∝ exp

{
E

ν
(t−1)
r

[log ρr] + (J/|Bt|)∑Ω
ω=1∑T

t=1Ñ(t)
(Bt)ωrtEµ

(t−1)
ωrt

[log θωrt]

}
ν
(t)
r = β + ∑I

i=1 ς
(t)
ir

µ̂
(t)
ωrt = λ + (J/|Bt|)Eσ(t)

[
Ñ(t)
(Bt)ωrt

] (22)

Then, the variational expectation of Ñjωrt or Ñ(Bt)ωrt obtained from local MCMC inference respect
to global variational parameters is that

Eσ

[
Eηj

[
Njωrt

]]
= Eσ

[
Ñjωrt

]
= Eσ

[
∑

Nj
n=1I

(
xjn = ω

)
I
(̃
rjn = r

)
I
(̃
tjn = t

)]
= ∑

Nj
n=1∑I

i=1∑R
r=1 ςirI

(
xjn = ω

)
I
(
ijn = i

)
I(̃ri = r)I

(̃
tjn = t

)
= ∑

Nj
n=1ςirI

(
xjn = ω

)
I
(̃
tjn = t

) (23)

When the number of motion topics T, motion regions R or words Ω is large, Nj observed
samples of document j is allocated to a large T × R×Ω dimensions hybrid parameters matrix θ =

{θωrt}Ω,R,T
ω=1,r=1,t=1, which make sufficient statistics Njωrt of many samples be zero. Then, Eηj

[
Njωrt

]
estimated by MCMC sampling is a sparse matrix. Therefore, the amount of computations is decreased
and computing speed is improved because of the sparsity.

Given the above description, the specific description of HSVG algorithm is shown in Algorithm 1.

Algorithm 1. HSVG algorithm of RTM model

Initialize global variational parameters ς
(0)
ir , ν

(0)
r and µ

(0)
ωrt

while the number of random iterations t = 0 : tmax do
Update iteration step: ρt , a(τ0 + t)−κ

Import a small batch documents Bt

Initialize T(0)
j from (1, . . . , T), R(0)

j from (1, . . . , R)
forj ∈ Bt do

For a sample n = 1 : Nj of document j local MCMC inference is adopted

q∗
(

tjn = t
∣∣∣T(\jn)

j , Xj

)
∝
(

α + N(\jn)
jt

)
exp

{
Ψ
(

µ
(t−1)
ωrt

)
−Ψ

(
∑Ω

ω=1∑R
r=1µ

(t−1)
ωrt

)}
end_for

end_for
N times iteration in burn-in time is not processed
For converged Markov chain s = 1 : S do

Ñ(Bt)ωrt = Eη(Bt )

[
N(Bt)ωrt

]
≈ (1/S)∑S

s=1N(s)
Btωrt

end_for
log ς

(t)
ir = (1− ρt) log ς

(t−1)
ir + ρt log ς̂

(t)
ir

ν
(t)
r = (1− ρt)ν

(t−1)
r + ρt ν̂

(t)
r

µ
(t)
ωrt = (1− ρt)µ

(t−1)
ωrt + ρtµ̂

(t)
ωrt

, where


log ς̂

(t)
ir = E

ν
(t−1)
r

[log ρr] + (J/|Bt|)∑Ω
ω=1∑T

t=1Ñ(t)
(Bt)ωrtEµ

(t−1)
ωrt

[log θωrt]

ν
(t)
r = β + ∑I

i=1 ς
(t)
ir

µ̂
(t)
ωrt = λ + (J/|Bt|)Eσ(t)

[
Ñ(t)
(Bt)ωrt

]
end_while
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4. Results

4.1. Evaluation Criterion

In the text mining and statistic inference of nature language, perplexity is always used to evaluate
the performance of model, which is computed by perp(Xtest|ϕ̂) = exp{− log p(Xtest|ϕ̂)/Ntest}.
ϕ̂ denotes the parametric estimation of trained model, Xtest and Ntest are test dataset and observed
samples respectively. Perplexity is the negative log likelihood (NLL) − log p(Xtest|ϕ̂) divided by the
number of observed samples Ntest. As described in above, the computation of perplexity is mainly
the NLL computation of trained model, and NLL denotes the cross entropy of trained model and
unknown testing data. Perplexity represents the uncertainty of trained model for unknown test set’s
estimation. Therefore, the lower the NLL value is, the better the model performance is.

In our RTM, NLL can be computed for motion topic and region of test video clip. The parameters
estimation of trained model and a test video clip are learning in RTM, the learned local motion topic
weight estimation π̃t and global parameter estimation ς̃ir, θ̃ωrt of original trained model is computed
for NLL of test clips.

rLDA_NLL
(

Xtest
∣∣∣π̃t, ς̃ir, θ̃ωrt

)
= −∑Ntest

n=1 log
(

∑R
r=1ς̃ir∑T

t=1 π̃t θ̃xtest
n =ω,rt

)
= −N(ω,i) log

(
∑R

r=1ς̃ir∑T
t=1 π̃t θ̃ωrt

) (24)

Besides, t_NLL and r_NLL are computed by:

t_NLL
(

Xtest
∣∣∣ς̃ir, θ̃ωrt

)
= −∑Ntest

n=1 log
(
I(tn = t)∑R

r=1ς̃ir θ̃xtest
n =ω,rt

)
= −N(ω,i,t) log

(
∑R

r=1ς̃ir θ̃ωrt

) (25)

r_NLL
(

Xtest
∣∣∣π̃t, θ̃ωrt

)
= −∑Ntest

n=1 log
(
I(rn = r)∑T

t=1 π̃t θ̃xtest
n =ω,rt

)
= −N(ω,r) log

(
∑T

t=1 π̃t θ̃ωrt

) (26)

t_NLL is used to evaluate the performance of learning motion topic by our model, and r_NLL
is used to evaluate the performance of learning motion region. Meanwhile, because of the samples
number difference between different regions, the abnormal events probabilities of the region including
few samples is lower, so we add a sample number weight for each region. We regard the five most
regions of r_NLL value as the most possible abnormal events regions. Furthermore, we utilize receiver
operating characteristic curve (ROC) and AUC (area under ROC) to evaluate the abnormal detecting
performance of our model, which are independent of threshold selection. Obviously, for ROC, the
closer to the top left corner, the performance of abnormal detection is better. Similarly, the closer
to 1 the AUC value is, the better the performance of abnormal detection. The running platform of
experiment is shown in Table 1.

Table 1. Software and hardware platform.

CPU Intel® Core(TM) 2 Duo CPU E8400 @ 3.00 GHz 3.00 GHz
Memory 2.00 G
OS Window7
Programing platform Python 2.7.5

4.2. Datasets and Parameter Settings

In order to get the comprehensive evaluation of our model and its inference algorithm, we analyze
the performance based on two types of dataset. The first one is a simulation video dataset constructed
by specific steps, and the second one is a real video dataset.



Algorithms 2018, 11, 97 11 of 19

4.2.1. Simulation Video Dataset

We make a simulation video dataset for simulating the traffic intersection. Each image of a frame
was divided into a 6 by 6 grid (a total of 36 positions) and five valid regions (including the sides of up,
middle, down, right, and left). Meanwhile, each valid region is composed by 4 grids, that there are in
total of 4 × 5 = 20 locations to simulate one center and four directions of traffic intersection, as shown
in Figure 3.
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Figure 3. Directions and regions of simulation video

In Figure 3, white texts represent the valid region number r ∈ {0, 1, 2, 3, 4}, and red texts represent
the valid location number i ∈ {0, . . . , 19}. Four directions are represented as down (green), left
(blue), up (purple) and right (red), whose number is ω ∈ {0, 1, 2, 3}. Then, the number of locations is
I = 20, and the number of motion directions is Ω = 4. (i, ω) is used to denote a motion word, where
i ∈ {0, . . . , I − 1},ω ∈ {0, . . . , Ω− 1}, and the number of motion words is W = I ×Ω = 80. The latent
motion topic is constructed by combining region number r and direction number ω. Regarding
(i ∈ r = 0, ω = 0) as an instance, it means that one location of region 0(that location number is one
of {0, 1, 2, 3}) is moving in direction 0(down). Then, normal and abnormal motions are able to be
constructed by above way. There are five kinds of normal motion states and two kinds of abnormal
motion states. The generative algorithm of simulation video is described below:

Generate an initial motion direction ω randomly.
Choose a motion topic, where the probability of abnormal motion topic is 5%, and the probability

of abnormal motion topic is 95%.
Generate 100 samples by
Based on the chosen motion topic, choose a motion state randomly.
Based on the chosen motion state, generate an observed sample (ω′, i′) randomly.
Figure 4 shows the generated training set and test set by above steps. The color of arrow represents

the direction, and the brightness represents the probability in motion topic.

Algorithms 2018, 11, x FOR PEER REVIEW  12 of 20 

Choose a motion topic, where the probability of abnormal motion topic is 5%, and the 
probability of abnormal motion topic is 95%. 

Generate 100 samples by 
Based on the chosen motion topic, choose a motion state randomly. 
Based on the chosen motion state, generate an observed sample ( ), iω′ ′  randomly. 

Figure 4 shows the generated training set and test set by above steps. The color of arrow 
represents the direction, and the brightness represents the probability in motion topic. 

  
(a) (b) 

Figure 4. Generated simulation datasets. (a) Training set. (b) Test set. 

4.2.2. Real Video Dataset 

We use the QMUL street intersection dataset [41] for evaluating abnormality detection 
performance of this model. This standard video is 50 min in length, frame rates are 30 fps, resolution 
is 360 × 288, and there are 90,000 frames. Video codec is mpeg-4 compression encoding. The whole 
traffic light cycle is about 1.5 min; the average duration of abnormal event is 4.3 s (129 frames). 

In our experiment, we divide whole video into 250 clips; each clip is 12 s (360 frames). The top 
14.36 min (30 documents) is training dataset, and the last 10 min (50 documents) is test dataset. Each 
scene of a clip is first divided into a 4 by 4 grid (a total of 16 positions) and five valid regions. After 
cutting off the part of sky and generating motion code book for model training, RTM-HSVG (RTM is 
learned and inference by Hybrid Stochastic Variational Gibbs Sampling) and RTM-GS (RTM is 
learned and inference by Gibbs Sampling) then computes the negative loglikelihood of every region 
as a score in each test clip and abnormality clips are picked up while its abnormality score exceed 1.5 
times of average. The parameter settings are shown in Table 2 

Table 2. Parameter settings of RTM-HSVG and RTM-GS. 

RTM-GS RTM-HSVG 
Burn-in time 2000N = ; After Markov chain 
convergence, sampling at intervals of 100 times; 
the total number of sampling is 20S = ; 18T = ; 

20R = ; The hyper parameter is 0.3α = ; 
1.2β = ; 0.3λ =  

Burn-in time 400N = ; After Markov chain 
convergence, sampling at intervals of 10 times; 
the total number of sampling is 10S = ; 36T = ;

20R = ; The hyper parameter is 0.3α = ; 
1.2β = ; 0.3λ =  

  

Figure 4. Generated simulation datasets. (a) Training set. (b) Test set.



Algorithms 2018, 11, 97 12 of 19

4.2.2. Real Video Dataset

We use the QMUL street intersection dataset [41] for evaluating abnormality detection
performance of this model. This standard video is 50 min in length, frame rates are 30 fps, resolution
is 360 × 288, and there are 90,000 frames. Video codec is mpeg-4 compression encoding. The whole
traffic light cycle is about 1.5 min; the average duration of abnormal event is 4.3 s (129 frames).

In our experiment, we divide whole video into 250 clips; each clip is 12 s (360 frames). The top
14.36 min (30 documents) is training dataset, and the last 10 min (50 documents) is test dataset.
Each scene of a clip is first divided into a 4 by 4 grid (a total of 16 positions) and five valid regions.
After cutting off the part of sky and generating motion code book for model training, RTM-HSVG
(RTM is learned and inference by Hybrid Stochastic Variational Gibbs Sampling) and RTM-GS (RTM is
learned and inference by Gibbs Sampling) then computes the negative loglikelihood of every region
as a score in each test clip and abnormality clips are picked up while its abnormality score exceed
1.5 times of average. The parameter settings are shown in Table 2

Table 2. Parameter settings of RTM-HSVG and RTM-GS.

RTM-GS RTM-HSVG

Burn-in time N = 2000; After Markov chain convergence,
sampling at intervals of 100 times; the total number of
sampling is S = 20; T = 18; R = 20; The hyper parameter
is α = 0.3; β = 1.2; λ = 0.3

Burn-in time N = 400; After Markov chain convergence,
sampling at intervals of 10 times; the total number of
sampling is S = 10; T = 36; R = 20; The hyper parameter
is α = 0.3; β = 1.2; λ = 0.3

4.3. Experimental Results

4.3.1. Simulation Experiment of Visualization Traffic Intersection

Firstly, the motion topics and regions discovered by RTM-GS and RTM-HSVG is shown in Figure 5,
where Figure 5a shows the seven random simulated abnormal motions. The number of simulated
training documents is same as the number of test set, which is 100.
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Figure 5. Motion topics and regions discovered by RTM-GS and RTM-HSVG in simulation dataset
(a) The seven random simulate abnormal motions. (b) The four motion topics and five regions
discovered by RTM-GS. (c) The four motion topics and three regions discovered by RTM-HSVG.

As can be seen from Figure 5, although RTM-GS discovers more latent regions, a refined topic
division is obtained by RTM-HSVG. Furthermore, in RTM-HSVG, the two roads with same direction
are combined to a latent region, which is capable of moving crossroad. It is more reasonable that
motions comply with traffic rules of a same road are the same.

To compare the abilities of our model to discover abnormal motion, the NLL and r_NLL
comparisons of our model and actual values is shown in Figure 6.
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Figure 6. The NLL and r_NLL comparisons of our model and actual values. (a) NLL (left and blue)
and r_NLL (right and blue) comparisons of RTM-HSVG. (b) NLL (left and blue) and r_NLL (right and
blue) comparisons of RTM-GS.

As shown in Figure 6, for r_NLL curve, the accuracy of RTM-GS seems to be higher than
RTM-HSVG. Nonetheless, for NLL curve, RTM-HSVG obtained a higher accuracy. As HSVG is
a kind of stochastic algorithm, it cause a volatile shocks in r_NLL curve. It also suggests that our
stochastic online algorithm need to introduce more motion region information to acid early-warning.
The difference between RTM-GS and RTM-HSVG is also able to be observed in their ROC and AUC,
which is shown in Figure 7.
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As shown in Figure 7, the area under NLL ROC of RTM-HSVG is 0.68, and RTM-GS is 0.56.
This result again explains that the comprehensive accuracy of RTM-HSVG is better than RTM-GS.
On the other hand, the area under r_NLL ROC of RTM-HSVG is 0.64, and RTM-GS is 0.97, which
illustrates that the performance of learning motion region of RTM-GS is better than RTM-HSVG.
These simulated experimental results show the validity of RTM for discovering motion topic and
motion region.

4.3.2. Real Video Experiment

Likewise, for QUML dataset, the motion topics and regions discovered by RTM-GS and
RTM-HSVG is shown in Figures 8–11 respectively.
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According to the comparisons of latent motion topic and motion regions discovered in above
figures, RTM-GS obtained more clearly atomic motion patterns, which form the motion topic.
Nevertheless, RTM-HSVG obtained a more focused clustering in both motion topic and region, and
the direction representation of RTM-HSVG is richer (observed from the mixture of four directions).
This is because the Markov chain state space of large-scale dataset is larger; it needs a longer burn-in
time for Markov chain convergence. Even if RTM-HSVG has a shorter burn-in time, it also obtained a
better performance than RTM-GS.

In order to test the impact of burn-in time on performance of our model, the burn-in time of
RTM-GS is increasing to four times, and the iteration-times is set as 8000. Then, the motion topics and
regions results are shown in Figures 12 and 13.
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In comparison with Figures 8 and 12 as well as Figures 9 and 13, we find that longer burn-in time
makes a more focused clustering in both motion topic and region. Nevertheless, it is difficult to decide
when Markov chain is convergent in Gibbs sampling, and longer burn-time is at the expense of time
efficiency. Therefore, RTM-HSVG is more efficient than RTM-GS as an online algorithm. Meanwhile,
we find that a larger number of topics can make more clear motion topics, which also makes more
repeated latent topics. Therefore, it illustrates that the number of topics and regions are important
aspects to decide performance of RTM.

The ROC curve comparison of RTM-HSVG and RTM-GS is shown in the Figure 14. As shown in
Figure 14, the area under ROC of RTM-HSVG is 0.59, and RTM-GS is 0.577. These results again indicate
that RTM-HSVG can improve the accuracy of abnormal event detection in comparison with RTM-GS.

At last, several abnormal events discovered by RTM-HSVG are shown in Figure 15, and the
regions of abnormal motion are labeled by dark red.
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Figure 15. Locating abnormal events by RTM-HSVG.

Figure 15a shows an abnormal event in 33rd clips (37,410~37,769), its motion region is number 6,
and NLL = 724,951.87. A fire vehicle is driving into the crossing from right and interrupting the
vertical traffic.

Figure 15b shows an abnormal event in 25th clips (34,538~34,897), its motion region is number 9,
and NLL = 753,774.17. A car is turning right illegally.

Figure 15c shows an abnormal event in 15th clips (30,948~31,307), its motion region is number 13,
and NLL = 792,248.81. A car makes a U-turn illegally.

Figure 15d shows an abnormal event in 14th clips (30,589~30,948), its motion region is number 15,
and NLL = 819,426.78. A fire vehicle is driving into the crossing from lift and interrupting the
vertical traffic.

From the above experimental results, we can see that RTM is able to discover motion topics and
motion regions efficiently. Specially, the HSVG inference algorithm designed for RTM is better than
Gibbs sampling on accuracy and time efficiency. Therefore, we can anticipate that RTM-HSVG is a
potential method for real-time video mining.

5. Conclusions

To solve the problem that traditional topic model is unable to process video in real-time and
model motion regional information, we proposed a RTM and designed its hybrid stochastic variational
Gibbs sampling algorithm. In RTM, observation data not only has the motion topic label but also has
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region label of its position. In our HSVG algorithm, the local weight πj is collapsed locally for retaining
the high relativities between local latent variable set and local weight at first, and then local Gibbs
sampling is introduced for retaining low relativities of local latent variable set Tj. For global variational
parameters ςir, νr, and µωrt, the stochastic natural gradient methods are adopted, which make RTM
capable of processing massive video dataset in real time. The experimental results on simulate and
real dataset show that the proposed RTM-HSVG improves the anomaly detection performance in
comparison to the RTM-GS.
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