
Article

Linking and Cutting Spanning Trees

Luís M. S. Russo *, Andreia Sofia Teixeira and Alexandre P. Francisco

INESC-ID and the Department of Computer Science and Engineering, Instituto Superior Técnico,
Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal;
sofia.teixeira@tecnico.ulisboa.pt (A.S.T.); aplf@tecnico.ulisboa.pt (A.P.F.)
* Correspondence: luis.russo@tecnico.ulisboa.pt; Tel.: +351-21-310-0272

Received: 12 March 2018; Accepted: 11 April 2018; Published: 19 April 2018
����������
�������

Abstract: We consider the problem of uniformly generating a spanning tree for an undirected
connected graph. This process is useful for computing statistics, namely for phylogenetic trees.
We describe a Markov chain for producing these trees. For cycle graphs, we prove that this approach
significantly outperforms existing algorithms. For general graphs, experimental results show that
the chain converges quickly. This yields an efficient algorithm due to the use of proper fast data
structures. To obtain the mixing time of the chain we describe a coupling, which we analyze for cycle
graphs and simulate for other graphs.

Keywords: spanning tree; uniform generation; Markov chain; mixing time; link-cut tree

PACS: 02.10.Ox; 02.50.Ga; 02.50.Ng; 02.70.Uu

MSC: 05C81; 05C85; 60J10; 60J22; 65C40; 68R10

1. Introduction

A spanning tree A of an undirected connected graph G is a connected set of edges without cycles
that spans every vertex of G. Every vertex of G occurs at an edge of A. Figure 1 shows an example.
The vertices of the graph are represented by circles. The set of vertices is denoted by V. The edges
of G are represented by dashed lines, and the set of edges is represented by E. The edges of the
spanning tree A are represented by thick gray lines. We also use V and E to denote the size of the set
V and the size of set E, respectively, i.e., the number of vertices and the number of edges. In case the
expression can be interpreted as a set instead of a number, we avoid the ambiguity by writing |V| and
|E|, respectively.

Linking and Cutting Spanning Trees

Luís M. S. Russoa,∗, Andreia Sofia Teixeiraa, Alexandre P. Franciscoa

aINESC-ID and the Department of Computer Science and Engineering,
Instituto Superior Técnico, Universidade de Lisboa.

Abstract

We consider the problem of uniformly generating a spanning tree, of a connected undirected graph.

This process is useful to compute statistics, namely for phylogenetic trees. We describe a Markov

chain for producing these trees. For cycle graphs we prove that this approach significantly outper-

forms existing algorithms. For general graphs experimental results show that the chain converges

quickly. This yields an efficient algorithm, also due to the use of proper fast data structures. To

obtain the mixing time of the chain we describe a coupling, which we analyze for cycle graphs and

simulate for other graphs.

Keywords: Spanning Tree, Uniform Generation, Markov Chain, Mixing Time, Link Cut Tree

PACS: 02.10.Ox, 02.50.Ga, 02.50.Ng, 02.70.Uu

2010 MSC: 05C81, 05C85, 60J10, 60J22, 65C40, 68R10

1. Introduction

A

Figure 1: A Spanning tree A over a

graph G.

A spanning tree A of an undirected connected graph G is a tree,

i.e., a connected set of edges without cycles, that spans every

vertex of G. Every vertex of G occurs in some edge of A. Figure 1

shows an example. The vertexes of the graph are represented by

circles, the set of vertexes is denoted by V . The edges of G are

represented by dashed lines, the set of edges is represented by E.

The edges of the spanning tree A are represented by thick grey

lines. We also use V and E to mean respectively the size of the

set V and the size of set E, i.e., the number of vertexes and the

number of edges. In case the expression can be interpreted as a

∗Corresponding author.

Preprint submitted to arXiv.org March 12, 2018

Figure 1. A Spanning tree A over a graph G.

We aim to compute one such spanning tree, A, uniformly among all possible spanning trees.
The number of these trees may vary significantly, from 1 to VV−2, depending on the underlying

Algorithms 2018, 11, 53; doi:10.3390/a11040053 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a11040053
http://www.mdpi.com/journal/algorithms
http://www.mdpi.com/1999-4893/11/4/53?type=check_update&version=1

Algorithms 2018, 11, 53 2 of 34

graph ([1–3], Chapter 22). Computing such a tree uniformly and efficiently is challenging for several
reasons: the number of such trees is usually exponential; and the structure of the resulting trees is
largely heterogeneous as the underlying graphs change. The contributions of this paper are as follows:

• We present a new algorithm, which given a graph G, generates a spanning tree of G uniformly at
random. The algorithm uses the link-cut tree data structure to compute randomizing operations
in O(log V) amortized time per operation. Hence, the overall algorithm takes O(τ log V) time
to obtain a uniform spanning tree of G, where τ is the mixing time of a Markov chain that is
dependent on G. Theorem 1 summarizes this result.

• We propose a coupling to bound the mixing time τ. The analysis of the coupling yields a bound for
cycle graphs (Theorem 2), and for graphs which consist of simple cycles connected by bridges or
articulation points (Theorem 3). We also simulate this procedure experimentally to obtain bounds
for other graphs. The link-cut tree data structure is also key in this process. Section 4.3 shows
experimental results, including other classes of graphs.

This paper is structured as follows. In Section 2 we introduce the problem and explain its subtle
nature. In Section 3 we explain our approach and point out that using the link-cut tree data structure is
much faster than repeating depth first searches (DFSs). In Section 4 we thoroughly justify our results,
proving that the underlying Markov chain has the necessary properties and providing experimental
results of our algorithm. In Section 5 we describe the related work concerning random spanning trees,
link-cut trees, and mixing times of Markov chains. In Section 6 we present our conclusions.

2. The Challenge

We start by describing an intuitive process for generating spanning trees that does not obtain
a uniform distribution. It produces some trees with a higher probability than others. This serves to
illustrate that the problem is more difficult than it may seem at first glance. Moreover, we explain why
this process is biased, using a counting argument.

A simple procedure to build A consists in using a union-find data structure [4] to guarantee that
A does not contain a cycle. Note that these structures are strictly incremental, meaning that they can be
used to detect cycles but can not be used to remove an edge from the cycle. Therefore the only possible
action is to discard the edge that creates the cycle.

Let us analyze a concrete example of the resulting distribution of spanning trees. We shall show
that this distribution is not uniform. First, generate a permutation p of E and then process the edges in
this order. Each edge that does not produce a cycle is added to A, edges that would otherwise produce
cycles are discarded, and the procedure continues with the next edge in the permutation.

Consider the complete graph on four vertices, K4, and focus on the probability of generating a star
graph, centered at the vertex labeled 1. Figure 2 illustrates the star graph. The K4 graph has 6 edges,
hence there are 6! = 720 different permutations. To produce the star graph, from one such permutation,
it is necessary that the edges (1, 2) and (1, 3) are selected before the edge (2, 3) appears; in general
the edges (1, u) and (1, v) must occur before (u, v). One permutation that generates the star graph is
(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4). Now, (2, 3) can be moved to the right to any of three different
locations, so we know four sequences that generate the star graph. The same reasoning can be applied
to (2, 4) which can be moved once to the right. In total we count 8 different sequences that generate
the star graph, centered at 1. For each of these sequences it is possible to permute the vertices 2, 3, 4,
amongst themselves. Hence, we multiply the previous count by 3! = 6. In total we count 48 = 8× 6
sequences that generate the star graph, and therefore the total probability of obtaining a star graph
is 48/6! = 1/15. According to Cayley’s formula, the probability of obtain the star graph centered at
1 should be 1/42 = 1/16. Hence, too many sequences generate the star graph centered at 1.

In the next section we fix this bias by discarding some edge in the potential cycle, not necessarily
the edge that creates it.

Algorithms 2018, 11, 53 3 of 34

A simple procedure to build A consists in using a Union-Find data structure (Galler and Fisher,

1964), to guarantee that A does not contain a cycle. Note that these structures are strictly incre-

mental, meaning that they can be used to detect cycles but can not be used to remove an edge from

the cycle. Therefore the only possible action is to discard the edge that creates the cycle.

Let us analyse a concrete example of the resulting distribution of spanning trees. We shall show that

this distribution is not uniform. First generate a permutation p of E and then process the edges

in this order. Each edge that does not produce a cycle is added to A, edges that would otherwise

produce cycles are discarded and the procedure continues with the next edge in the permutation.

1

2

3 4

Figure 2: A star graph on K4, cen-

tered at 1.

Consider the complete graph on 4 vertexes, K4, and focus on the

probability of generating a star graph, centered at the vertex la-

beled 1. Figure 2 illustrates the star graph. The K4 graph has

6 edges, hence there are 6! = 720 different permutations. To

produce the star graph, from one such permutation, it is neces-

sary that the edges (1, 2) and (1, 3) are selected before the edge

(2, 3) appears, in general the edges (1, u) and (1, v) must occur

before (u, v). One permutation that generates the star graph is

(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4). Now (2, 3) can be moved to

the right to any of 3 different locations so we know 4 sequences

that generate the star graph. The same reasoning can be applied to (2, 4) which can be moved once

to the right. In total we counted 8 different sequences that generate the star graph, centered at 1.

For each of these sequences it is possible to permute the vertexes 2, 3, 4, amongst themselves. Hence

multiplying the previous count by 3! = 6. In total we counted 48 = 8 × 6 sequences that generate

the star graph, therefore the total probability of obtaining a star graph is 48/6! = 1/15. According

to Cayley’s formula the probability to obtain the star graph centered at 1 should be 1/42 = 1/16.

Hence too many sequences are generating the star graph centered at 1.

In the next section we fix this bias by discarding some edge in the potential cycle, not necessarily

the edge that creates it.

3. Main Idea

To generate a uniform spanning tree start by generating an arbitrary spanning tree A. One way to

obtain this tree is to compute a depth first search in G, in which case the necessary time is O(V +E).

3

Figure 2. A star graph on K4, centered at 1.

3. Main Idea

To generate a uniform spanning tree, start by generating an arbitrary spanning tree A. One way
to obtain this tree is to compute a depth first search in G, in which case the necessary time is O(V + E).
In general, we want the mixing time of our chain to be much smaller than O(E), especially for dense
graphs. This initial tree is only generated once, and subsequent trees are obtained by the randomizing
process. To randomize A, repeat the next process several times. Choose an edge (u, v) from E
uniformly at random, and consider the set A ∪ {(u, v)}. If (u, v) already belongs to A the process
stops, otherwise A ∪ {(u, v)} contains a cycle C. To complete the process, choose an edge (u′, v′)
uniformly from C \ {(u, v)} and remove it. Hence, at each step the set A is transformed into the set
(A ∪ {(u, v)}) \ {(u′, v′)}. An illustration of this process is shown in Figure 3.

In general we wish that the mixing time of our chain is much smaller than O(E), specially for dense

graphs. This initial tree is only generated once, subsequent trees are obtained by the randomizing

process. To randomize A repeat the next process several times. Choose and edge (u, v) from E,

uniformly at random, and consider the set A ∪ {(u, v)}. If (u, v) already belongs to A the process

stops, otherwise A ∪ {(u, v)} contains a cycle C. To complete the process choose and edge (u′, v′)

uniformly from C \ {(u, v)} and remove it. Hence at each step the set A is transformed into the set

(A ∪ {(u, v)}) \ {(u′, v′)}. An illustration of this process is shown in Figure 3.

A

u

v

C

u

v

u′

v′

(A ∪ {(u, v)}) \ {(u′, v′)}

Figure 3: Edge swap procedure, in-

serting the edge (u, v) into the ini-

tial tree A generates a cycle C. The

edge (u′, v′) is removed from C.

This edge swapping process can be adequately modeled by a

Markov chain, where the states corresponds to different spanning

trees and the transitions among states correspond to the process

we have just described. In Section 4.1 we study the ergodic prop-

erties of this chain. For now let us focus on which data structures

can be used to compute the transition procedure efficiently. A sim-

ple solution to this problem would be to compute a depth first

search (DFS) on A, starting at u and terminating whenever v was

reached. This would allow us to identify C in O(V) time, recall

that A contains exactly V − 1 elements. The edge (u′, v′) could

then be easily removed. Besides G the elements of A would also

need to be represented with the adjacency list data structure. For

our purposes this approach is inefficient. This computation is cen-

tral to our algorithm and its complexity becomes a factor in the

overall performance. Hence we will now explain how to perform

this operation in only O(log V) amortized time with the link cut

tree data structure.

The link cut tree (LCT) is a data structure that can used to rep-

resent a forest of rooted trees. The representation is dynamic so

that edges can be removed and added. Whenever an edge is re-

moved the original tree is cut in two. Adding an edge between two

trees links them. This structure was proposed by Sleator and Tar-

jan (1985). Both the link and cut operations can be computed in

O(log V) amortized time.

4

Figure 3. Edge-swap procedure. Inserting the edge (u, v) into the initial tree A generates a cycle C.
The edge (u′, v′) is removed from C.

Algorithms 2018, 11, 53 4 of 34

This edge-swapping process can be adequately modeled by a Markov chain, where the states
corresponds to different spanning trees and the transitions among states correspond to the process
we have just described. In Section 4.1 we study the ergodic properties of this chain. For now let us
focus on which data structures can be used to compute the transition procedure efficiently. A simple
solution to this problem would be to compute a depth first search (DFS) on A, starting at u and
terminating whenever v is reached. This allows us to identify C in O(V) time. Recall that A contains
exactly V − 1 elements. The edge (u′, v′) can then be easily removed. Besides G the elements of A
also need to be represented with the adjacency list data structure. For our purposes, this approach
is inefficient. This computation is central to our algorithm and its complexity becomes a factor in
the overall performance. Hence, we will now explain how to perform this operation in only O(log V)

amortized time with the link-cut tree data structure.
The link-cut tree (LCT) is a data structure that can used to represent a forest of rooted trees.

The representation is dynamic so that edges can be removed and added. Whenever an edge is
removed, the original tree is cut in two. Adding an edge between two trees links them. This structure
was proposed by Sleator and Tarjan [5]. Both the link and cut operations can be computed in O(log V)

amortized time.
The LCT can only represent trees; therefore the edge swap procedure must first cut the edge

(u′, v′) and afterwards insert the edge (u, v) with the Link operation. The randomizing process
needs to identify C and select (u′, v′) from it. The LCT can also compute this process in O(log V)

amortized time. The LCT works by partitioning the represented tree into disjoint paths. Each path is
stored in an auxiliary data structure, so that any of its edges can be accessed efficiently in O(log V)

amortized time. To compute this process we force the path D = C \ {(u, v)} to become a disjoint path.
This means that D will be completely stored in one auxiliary data structure. Hence, it is possible to
efficiently select an edge from it. Moreover the size of D can also be computed efficiently. The exact
process, to force D into an auxiliary structure, is to make u the root of the represented tree and then
access v. Algorithm 1 shows the pseudo-code of the edge-swapping procedure. We can confirm,
by inspection, that this process can be computed in the O(log V) amortized time bound that is crucial
for our main result.

Algorithm 1 Edge-swapping process

1: procedure EDGESWAP(A) . A is an LCT representation of the current spanning tree
2: (u, v)← Chosen uniformly at random from E
3: if (u, v) /∈ A then . O(log V) time
4: ReRoot(A, u) . Makes u the root of A
5: D ← Access(A, v) . Obtains a representation of the path C \ {(u, v)}
6: i← Chosen uniformly from {1, . . . , |D|}
7: (u′, v′)← Select(D, i) . Obtain the i-th edge from D
8: Cut(A, u′, v′)
9: Link(A, u, v)

10: end if
11: end procedure

Theorem 1. If G is a graph and A is a spanning tree of G, then a spanning tree A′ can be chosen uniformly
from all spanning trees of G in O((V + τ) log V) time, where τ is the mixing time of an ergodic edge-swapping
Markov chain.

In Section 4.1 we prove that the process we described is indeed an ergodic Markov chain,
thus establishing the result. We finish this section by pointing out a detail in Algorithm 1. In the
comment in line 3 we point out that the property (u, v) /∈ A must be checked in at most O(log V) time.
This can be achieved in O(1) time by keeping an array of Booleans indexed by E. Moreover it can also

Algorithms 2018, 11, 53 5 of 34

be achieved in O(log V) amortized time by using the LCT data structure, essentially by delaying the
verification until D is determined and verifying if |D| 6= 1.

4. The Details

4.1. Ergodic Analysis

In this section, we analyze the Markov chain Mt induced by the edge-swapping process. It should
be clear that this process has the Markov property because the probability of reaching a state depends
only on the previous state. In other words the next spanning tree depends only on the current tree.

To prove that our procedure is correct we must show that the stationary distribution is uniform
for all states. Let us first establish that such a stationary distribution exists. Note that, for a given finite
graph G, the number of spanning trees is also finite. More precisely, for complete graphs, Cayley’s
formula yields VV−2 spanning trees. This value is an upper bound for other graphs, as all spanning
trees of a certain graph are also spanning trees of the complete graph with the same number of vertices.
Therefore, the chain is finite. If we show that it is irreducible and aperiodic, it follows that it is
ergodic ([6], Corollary 7.6) and therefore it has a stationary distribution ([6], Theorem 7.7).

The chain is aperiodic because self-loops may occur, i.e., transitions where the underlying state
does not change. Such transitions occur when (u, v) is already in A, and therefore their probability is
at least (V − 1)/E, because there are V − 1 edges in a spanning tree A.

To establish that the chain is irreducible it is sufficient to show that for any pair of states i and
j there is a non-zero probability path from i to j. First note that the probability of any transition on
the chain is at least 1/(EV), because (u, v) is chosen out of E elements and (u′, v′) is chosen from
C \ {(u, v)}, that contains at most V − 1 edges. To obtain a path from i to j let Ai and Aj represent the
respective trees. We consider the following cases:

• If i = j we use a self-loop transition.
• Otherwise, when i 6= j, it is possible to choose (u, v) from Aj \ Ai, and (u′, v′) from (C \ {(u, v)})∩

(Ai \ Aj) = C \ Aj; note that the set equality follows from the assumption that (u, v) belongs to
Aj. For the last property, note that if no such (u′, v′) exists then C ⊆ Aj, which is a contradiction
because Aj is a tree and C is a cycle. As mentioned above, the probability of this transition is
at least 1/(EV). After this step the resulting tree is not necessarily Aj, but it is closer to that
tree. More precisely (Ai ∪ {(u, v)}) \ {(u′, v′)} is not necessarily Aj, however the set Aj \ ((Ai ∪
{(u, v)}) \ {(u′, v′)}) is smaller than the original Aj \ Ai. Its size decreases by 1 because the edge
(u, v) exists on the second set but not on the first. Therefore, this process can be iterated until
the resulting set is empty and therefore the resulting tree coincides with Aj. The maximal size of
Aj \ Ai is V − 1, because the size of Aj is at most V − 1. This value occurs when Ai and Aj do not
share edges. Multiplying all the probabilities in the process of transforming Ai into Aj we obtain
a total probability of at least 1/(EV)V−1.

Now that the stationary distribution is guaranteed to exist, we will show that it coincides with
the uniform distribution by proving that the chain is time-reversible ([6], Theorem 7.10). We prove that
for any pair of states i and j, with j 6= i, for which there exists a transition from i to j, with probability
Pi,j, there exists, necessarily, a transition from j to i with probability Pj,i = Pi,j. If the transition from
i to j exists it means that there are edges (u, v) and (u′, v′) such that (Ai ∪ {(u, v)}) \ {(u′, v′)} = Aj,
where (u′, v′) belongs to the cycle C contained in Ai ∪ {(u, v)}. Hence, we also have that (Aj ∪
{(u′, v′)}) \ {(u, v)} = Ai, which means that the tree Ai can be obtained from the tree Aj by adding the
edge (u′, v′) and removing the edge (u, v). In other words, the process in Figure 3 is similar both top
down or bottom up. This process is a valid transition in the edge-swap chain, where the cycle C is the
same in both transitions, i.e., C is the cycle contained in Ai ∪ {(u, v)} and in Aj ∪ {(u′, v′)}. Now we
obtain our result by observing that Pi,j = 1/(E(C− 1)) = Pj,i. In the transition from i to j, the factor
1/E comes from the choice of (u, v) and the factor 1/(C− 1) from the choice of (u′, v′). In the transition

Algorithms 2018, 11, 53 6 of 34

between j to i, the factor 1/E comes from the choice of (u′, v′) and the factor 1/(C− 1) from the choice
of (u, v). Hence, we established that the algorithm we propose correctly generates spanning trees
uniformly, provided we can sample from the stationary distribution. Hence, we need to determine
the mixing time of the chain, i.e., the number of edge swap operations that need to be performed on
an initial tree until the distribution of the resulting trees is close enough to the stationary distribution.

Before analyzing the mixing time of this chain we point out that it is possible to use a faster
version of this chain by choosing (u, v) uniformly from E \ A, instead of from E. This makes the chain
faster, but proving that it is aperiodic is trickier. In this chain we have that Pr(Mt+1 = i|Mt = i) = 0,
for any state i. We will now prove that Pr(Mt+s = i|Mt = i) 6= 0, for any state i and s > 1. It is
enough to show for s = 2 and s = 3, all other values follow from the fact that the greatest common
divisor of 2 and 3 is 1. For the case of s = 2 we use the time reverse property and the following
deduction: Pr(Mt+2 = i|Mt = i) ≥ Pi,jPj,i ≥ (1/EV)2 > 0. For the case of s = 3 we observe that the
cycle C must contain at least three edges (u, v), (u′, v′) and (u′′, v′′). To obtain Aj we insert (u, v) and
remove (u′, v′); now we move from this state to state Ak by inserting (u′′, v′′) and removing (u, v).
Finally we move back to Ai by inserting (u′, v′) and removing (u′′, v′′). Hence, for this case we have
Pr(Mt+3 = i|Mt = i) ≥ (1/EV)3 > 0.

4.2. Coupling

In this section, we focus on bounding the mixing time. We did not obtain general analytical
bounds from existing analysis techniques, such as couplings [6,7], strong stopping times [7] and
canonical paths [8]. The coupling technique yielded a bound only for cycle graphs and moreover
a simulation of the resulting coupling converges for ladder graphs.

Before diving into the reasoning in this section, we first need a finer understanding of the cycles
generated in our process. We consider a closed walk to be a sequence of vertices v0, . . . , vn = v0,
starting and ending at the same vertex, such that any two consecutive vertices vi and vi+1 are adjacent;
in our case (vi, vi+1) ∈ A ∪ {(u, v)}. The cycles we consider are simple in the sense that they consist
of a set of edges for which a closed walk can be formed that traverses all the edges in the cycle, and
moreover no vertex repetitions are allowed, except for the vertex v0, which is only repeated at the end.
Formally this can be stated as: if 0 ≤ i, j < n and i 6= j, then vi 6= vj.

The cycles that occur in our randomizing process are even more regular. A cordless cycle in
a graph is a cycle such that no two vertexes of the cycle are connected by an edge that does not itself
belong to the cycle. The cycles we produce also have this property, otherwise if such a chord existed
then it would form a cycle on our tree A, which is a contradiction. In fact, a spanning tree over a graph
can alternatively be defined as a set of edges such that for any pair of vertices v and v′ there is exactly
one path linking v to v′.

A coupling is an association between two copies of the same Markov chain Xt and Yt, in our case
the edge-swapping chain. The goal of a coupling is to make the two chains meet as fast as possible,
i.e., to obtain Xτ = Yτ , for a small value of τ. At this point we say that the chains have coalesced.
The two chains may share information and cooperate towards this goal. However, when analyzed in
isolation, each chain must be indistinguishable from the original chain Mt. Obtaining Xτ = Yτ with a
high probability implies that at time τ the chain is well mixed. Precise statements of these claims are
given in Section 5.

We use the random variable Xt to represent the state of the first chain, at time t. The variable Yt

represents the state of the second chain. We consider the chain Xt in state x and the chain Yt in state y.
In one step, the chain Xt will transition to the state x′ = Xt+1 and the chain Yt will transition to state
y′ = Yt+1.

The set Ax \ Ay contains the edges that are exclusive to Ax and likewise the set Ay \ Ax

contains the edges that are exclusive to Ay. The number of such edges provides a distance
d(x, y) = |Ax \ Ay| = |Ay \ Ax| that measures how far apart the two states are. We refer to this

Algorithms 2018, 11, 53 7 of 34

distance as the edge distance. We define a coupling when d(x, y) ≤ 1, which can be extended for states
x and y that are farther apart by using the path-coupling technique [9].

To use the path-coupling technique we cannot alter the behavior of the chain Xt as, in general,
it is determined by the previous element in the path. We denote by ix the edge that gets added to Ax,
and by ox the edge that gets removed from the corresponding cycle Cx ⊆ Ax ∪ {ix}, in the case such a
cycle exists. Likewise, iy represents the edge that is inserted into Ay and oy the edge that gets removed
from the corresponding cycle Cy ⊆ Ay ∪ {iy}, in the case such a cycle exists. The edge ix is chosen
uniformly at random from E and ox is chosen uniformly at random from Cx \ {ix}. The edges iy and oy

will be obtained by trying to mimic the chain Xt, but still exhibiting the same behavior as Mt. In this
sense the information flows from Xt to Yt. Let us now analyze d(x, y).

4.2.1. d(x, y) = 0

If d(x, y) = 0 then x = y, which means that the corresponding trees are also equal, Ay = Ax.
In this case Yt uses the same transition as Xt, by inserting ix, i.e., set iy = ix, and by removing ox,
i.e., set oy = ox.

4.2.2. d(x, y) = 1

If d(x, y) = 1 then the edges ex ∈ Ax \ Ay and ey ∈ Ay \ Ax exist and are distinct. We also need
the following sets: I = Cx ∩ Cy, Ex = Cx \ I and Ey = Cy \ I. The set I represents the edges that are
common to Cx and Cy. The set Ex represents the edges that are exclusive to Cx, from the cycle point of
view. This should not be confused with ex which represents the edge that is exclusive to Ax, i.e., from
a tree point of view. Likewise, Ey represents the edges that are exclusive to Cy. Also we consider the
cycle Ce as the cycle contained in Ax ∪ {ey}, which necessarily contains ex. The following Lemma
describes the precise structure of these sets.

Lemma 1. When iy = ix we either have Cx = Cy = I and therefore Ex = Ey = ∅, or Ex, Ey and I form
simple paths, and the following properties hold:

• ex ∈ Ex, ey ∈ Ey, ix ∈ I
• Ex ∩ Ey = ∅, Ex ∩ I = ∅, Ey ∩ I = ∅
• Ex ∪ I = Cx, Ey ∪ I = Cy, Ex ∪ Ey = Ce.

Notice that in particular this means that, in the non-trivial case, Ex and Ey partition Ce. A schematic
representation of this Lemma is shown in Figure 4.

ex

ix ∈ I

ey

ex ∈ Ex

ix

ey

ex

ix

ey ∈ Ey

Figure 4: Schematic representation of the relations between Ex, Ey and I.

Ax, i.e., from a tree point of view. Likewise, Ey represents the edges that are exclusive to Cy. Also

we consider the cycle Ce as the cycle contained in Ax ∪ {ey}, which necessarily contains ex. The

following Lemma describes the precise structure of these sets.

Lemma 1. When iy = ix we either have Cx = Cy = I and therefore Ex = Ey = ∅ or Ex, Ey and I

form simple paths and the following properties hold:

• ex ∈ Ex, ey ∈ Ey, ix ∈ I

• Ex ∩ Ey = ∅, Ex ∩ I = ∅, Ey ∩ I = ∅

• Ex ∪ I = Cx, Ey ∪ I = Cy, Ex ∪ Ey = Ce.

Notice that in particular this means that, in the non-trivial case, Ex and Ey partition Ce. A

schematic representation of this Lemma is shown in Figure 4.

We have several different cases described below. Aside from the lucky cases 2 and 3, we will usually

choose iy = ix, as Yt tries to copy Xt. Likewise, if possible, we would like to set oy = ox. When

this is not possible we must choose oy ∈ Ey, ideally we would choose oy = ey, but we must be extra

careful with this process to avoid loosing the behavior of Mt. To maintain this behaviour, we must

sometimes choose oy ∈ Ey \ {ey}. Since Xt provides no information on this type of edges we use

oy = sy chosen uniformly from this Ey \ {ey}, i.e., select from Cy but not ey nor edges that are also

in Cx.

There is a final twist to this choice, which makes the coupling non Markovian, i.e., it does not verify

the conditions in Equations (1a) and (1b). We can choose oy = ey more often than would otherwise

be permissible, by keeping track of how ey was determined. If ey was obtained deterministically,

for example by the initial selection of x and y, then this is not possible. In general ey might

10

Figure 4. Schematic representation of the relations between Ex, Ey, and I.

We have several different cases described below. Aside from the lucky cases 2 and 3, we will
usually choose iy = ix, as Yt tries to copy Xt. Likewise, if possible, we would like to set oy = ox.
When this is not possible we must choose oy ∈ Ey, ideally we would choose oy = ey, but we must be
extra careful with this process to avoid losing the behavior of Mt. To maintain this behaviour, we must
sometimes choose oy ∈ Ey \ {ey}. Since Xt provides no information on this type of edges, we use

Algorithms 2018, 11, 53 8 of 34

oy = sy chosen uniformly from this Ey \ {ey}, i.e., select from Cy but not ey nor edges that are also
in Cx.

There is a final twist to this choice, which makes the coupling non-Markovian, i.e., it does not verify
the conditions in Equations (1a) and (1b). We can choose oy = ey more often than would otherwise be
permissible by keeping track of how ey was determined. If ey is obtained deterministically, for example
by the initial selection of x and y, then this is not possible. In general ey might be determined by the
changes in Xt, in which case we want to take advantage of the underlying randomness. Therefore,
we keep track of the random processes that occur. The exact information we store is a set of edges
Uy ⊆ Ce \ {ex}, such that ey ∈ Uy, and moreover this set contains the edges that are equally likely to
be ey. This information can be used to set oy = ey when sy ∈ Uy, however after such an action the
information on Uy must be purged.

To illustrate the possible cases we use Figures 5–15, where the edges drawn with double lines
represent a generic path that may contain several edges, or none at all. The precise cases are as follows:

1. If the chain Xt loops (x′ = x), because ix ∈ Ax, then Yt also loops and therefore y′ = y. The set
Uy does not change, i.e., set Uy′ = Uy.

2. If ix = ey and ox = ex then set iy = ex and oy = ey. In this case the chains do not coalesce;
they swap states because x′ = y and y′ = x (see Figure 5). Set Uy′ = Ce \ {ex′}.

x

ox = ex ↓

ix = ey ↓
y

oy = ey ↑

iy = ex ↑

x′ = y

ex′

y′ = x

ey′

Figure 5: Case 2.

be determined by the changes in Xt, in which case we want to take advantage of the underlying

randomness. Therefore, we keep track of the random processes that occur. The exact information

we store is a set of edges Uy ⊆ Ce \ {ex} such that ey ∈ Uy and moreover this set contains the edges

that are equally likely to be ey. This information can be used to set oy = ey when sy ∈ Uy, however

after such an action the information on Uy must be purged.

To illustrate the possible cases we use Figures 5 to 15, where the edges drawn with double lines

represent a generic path, that may contain several edges, or none at all. The precise cases are the

following:

1. If the chain Xt loops (x′ = x), because ix ∈ Ax then Yt also loops and therefore y′ = y. The

set Uy does not change, i.e., set Uy′ = Uy.

2. If ix = ey and ox = ex then set iy = ex and oy = ey. In this case the chains do not coalesce,

they swap states because x′ = y and y′ = x, see Figure 5. Set Uy′ = Ce \ {ex′}.

3. If ix = ey and ox 6= ex then set iy = ex and oy = ox. In this case the chains coalesce, i.e.,

x′ = y′, see Figure 6. When the chains coalesce the edges ex′ and ey′ no longer exist and the

set Uy′ is no longer relevant.

11

Figure 5. Case 2.

3. If ix = ey and ox 6= ex then set iy = ex and oy = ox. In this case the chains coalesce, i.e., x′ = y′

(see Figure 6). When the chains coalesce, the edges ex′ and ey′ no longer exist and the set Uy′ is no
longer relevant.

Algorithms 2018, 11, 53 9 of 34

x

exix = ey ↓

ox ↓

y

↓ iy = exey

oy = ox ↓

x′ = y′

Figure 6: Case 3.

4. If ix 6= ey set iy = ix. We now have 3 sub-cases, which are further sub-divided. These cases

depend on whether |Cx| = |Cy|, |Cx| < |Cy| or |Cx| > |Cy|. We start with |Cx| = |Cy| which

is simpler and establishes the basic situations. When |Cx| < |Cy| or |Cx| > |Cy| we use some

Bernoulli random variables to balance out probabilities and whenever possible reduce to the

cases considered for |Cx| = |Cy|. When this is not possible we present the corresponding new

situation.

a) If |Cx| = |Cy| we have the following situations:

i) If ox = ex then set oy = ey. In this case the chains coalesce, see Figure 7.

ii) If ox ∈ I \ {ix} then set oy = ox. In this case the chains do not coalesce, in fact the

exclusive edges remain unchanged, i.e., ex′ = ex and ey′ = ey, see Figures 8 and 9.

When ox /∈ Ce the set Ce′ remains equal to Ce and likewise Uy′ remains equal to Uy,

see Figure 8. Otherwise when ox ∈ Ce the set Ce′ is different from Ce and we assign

Uy′ = Uy ∩ Ce′ , see Figure 9.

iii) If ox ∈ Ex \{ex} then select sy uniformly from Ey \{ey}. If sy ∈ Uy then set oy = ey,

see Figure 10. In this case set Uy′ = Ex \ {ex}. The alternative, when sy /∈ Uy is

considered in the next case (4.a.iv).

12

Figure 6. Case 3.

4. If ix 6= ey set iy = ix. We now have three sub-cases, which are further sub-divided. These cases
depend on whether |Cx| = |Cy|, |Cx| < |Cy| or |Cx| > |Cy|. We start with |Cx| = |Cy| which
is simpler and establishes the basic situations. When |Cx| < |Cy| or |Cx| > |Cy| we use some
Bernoulli random variables to balance out probabilities and whenever possible reduce to the cases
considered for |Cx| = |Cy|. When this is not possible we present the corresponding new situation.

(a) If |Cx| = |Cy| we have the following situations:

(i) If ox = ex then set oy = ey. In this case the chains coalesce (see Figure 7).
(ii) If ox ∈ I \ {ix} then set oy = ox. In this case the chains do not coalesce, in fact the

exclusive edges remain unchanged, i.e., ex′ = ex and ey′ = ey (see Figures 8 and 9).
When ox /∈ Ce the set Ce′ remains equal to Ce and likewise Uy′ remains equal to
Uy (see Figure 8). Otherwise, when ox ∈ Ce, the set Ce′ is different from Ce, and
we assign Uy′ = Uy ∩ Ce′ (see Figure 9).

(iii) If ox ∈ Ex \ {ex} then select sy uniformly from Ey \ {ey}. If sy ∈ Uy then set
oy = ey (see Figure 10). In this case set Uy′ = Ex \ {ex}. The alternative, when
sy /∈ Uy, is considered in the next case (4.a.iv).

(iv) If ox ∈ Ex \ {ex} and sy /∈ Uy, then set oy = sy. This case is shown in
Figure 11. In this case the distance of the coupled states increases, i.e., d(x′, y′) = 2.
Therefore we include a new state z′ in between x′ and y′ and define ez′ to be the
edge in Az′ \ Ax′ ; ey′ the edge in Ay′ \ Az′ ; and ex′ the edge in Ax′ \ Az′ . The set
Uz′ should contain the edges that provide alternatives to ez′ . In this case set
Uz′ = Ex \ {ex} and Uy′ = (Uy ∩ Ey) \ {oy}.

Algorithms 2018, 11, 53 10 of 34

x

ix ↓

ox = ex ↓

y

iy = ix ↓

oy = ey ↓

x′ = y′

Figure 7: Case 4.a.i, case 4.b.i and case 4.c.i.

x

↑ oxix ↓

ex

y

↑ oy = oxiy = ix ↓
ey

x′

ex′ = ex

y′

ey′ = ey

Figure 8: Case 4.a.ii, case 4.b.ii and case 4.c.ii, when ox /∈ Ce.

13

Figure 7. Case 4.a.i, case 4.b.i, and case 4.c.i.

x

ix ↓

ox = ex ↓

y

iy = ix ↓

oy = ey ↓

x′ = y′

Figure 7: Case 4.a.i, case 4.b.i and case 4.c.i.

x

↑ oxix ↓

ex

y

↑ oy = oxiy = ix ↓
ey

x′

ex′ = ex

y′

ey′ = ey

Figure 8: Case 4.a.ii, case 4.b.ii and case 4.c.ii, when ox /∈ Ce.

13

Figure 8. Case 4.a.ii, case 4.b.ii, and case 4.c.ii, when ox /∈ Ce.

Algorithms 2018, 11, 53 11 of 34

x

↓ ox

ix ↓

ex

y

↓ oy = ox

iy = ix ↓

ey

x′

ex′ = ex

y′

ey′ = ey

Figure 9: Case 4.a.ii, case 4.b.ii and case 4.c.ii, when ox ∈ Ce.

x

ox ↑

ix ↓

ex

y

oy = ey ↓

iy = ix ↓

x′

ex′ = ex

y′

ey′

Figure 10: Case 4.a.iii, case 4.b.iv and case 4.c.iv, when B′ is true.

14

Figure 9. Case 4.a.ii, case 4.b.ii, and case 4.c.ii, when ox ∈ Ce.

x

↓ ox

ix ↓

ex

y

↓ oy = ox

iy = ix ↓

ey

x′

ex′ = ex

y′

ey′ = ey

Figure 9: Case 4.a.ii, case 4.b.ii and case 4.c.ii, when ox ∈ Ce.

x

ox ↑

ix ↓

ex

y

oy = ey ↓

iy = ix ↓

x′

ex′ = ex

y′

ey′

Figure 10: Case 4.a.iii, case 4.b.iv and case 4.c.iv, when B′ is true.

14

Figure 10. Case 4.a.iii, case 4.b.iv, and case 4.c.iv, when B′ is true.

Algorithms 2018, 11, 53 12 of 34

x
exox ↑

ix ↓

y

ey ↓ oy = sy

iy = ix ↓

x′
ex′ = ex

z′

ez′
y′

ey′ = ey

Figure 11: Case 4.a.iv, case 4.b.iv and case 4.c.iv.

iv) If ox ∈ Ex \ {ex} and sy /∈ Uy, then set oy = sy. This case is shown in Figure 11. In

this case the distance of the coupled states increases, i.e., d(x′, y′) = 2. Therefore we

include a new state z′, in between x′ and y′ and define ez′ to be the edge in Az′ \Ax′ ;

and ey′ the edge in Ay′ \ Az′ ; and ex′ the edge in Ax′ \ Az′ . The set Uz′ should

contain the edges that provide alternatives to ez′ . In this case set Uz′ = Ex \ {ex}
and Uy′ = (Uy ∩ Ey) \ {oy}.

b) If |Cx| < |Cy| then Xt will choose ox ∈ I with a higher probability then what Yt should.

Therefore we use a Bernoulli random variable B with a success probability p defined as

follows:

p =
Cx − 1

Cy − 1

In Lemma 2 we prove that p properly balances the necessary probabilities, for now note

that when |Cx| = |Cy| the expression for p yields p = 1. This is coherent with the

following cases, because when B yields true we use the choices defined for |Cx| = |Cy|.
The following situations are possible:

i) If ox = ex then we reduce to the case 4.a.i, both when B yields true or when B

15

Figure 11. Case 4.a.iv, case 4.b.iv, and case 4.c.iv.

(b) If |Cx| < |Cy| then Xt will choose ox ∈ I with a higher probability then what Yt should.
Therefore, we use a Bernoulli random variable B with a success probability p defined
as follows:

p =
Cx − 1
Cy − 1

In Lemma 2 we prove that p properly balances the necessary probabilities. For now
note that when |Cx| = |Cy| the expression for p yields p = 1. This is coherent with the
following cases, because when B yields true we use the choices defined for |Cx| = |Cy|.
The following situations are possible:

(i) If ox = ex then we reduce to the case 4.a.i, both when B yields true or when B
fails and sy ∈ Uy. Set oy = ey (see Figure 7). The new case occurs when B fails and
sy /∈ Uy, in this situation set oy = sy and Uy′ = (Uy ∩ Cy) \ {oy} (see Figure 12).

(ii) If ox ∈ I \ {ix} then we reduce to the case 4.a.ii when B yields true. Set oy = ox

(see Figures 8 and 9). When B fails and sy ∈ Uy we have a new situation.
Set oy = ey and Uy′ = I \ {ix}. The chains preserve their distance, i.e., d(x′, y′) = 1
(see Figure 13). The alternative, when sy /∈ Uy, is considered in the next case
(4.b.iii).

(iii) If ox ∈ I \ {ix} and B fails and sy /∈ Uy. We have a new situation,;set oy = sy.
The distance increases, d(x′, y′) = 2 (see Figure 14). Set Uz′ = I \ {ix} and
Uy′ = (Uy ∩ Ey) \ {oy}.

(iv) If ox ∈ Ex \ {ex} then if sy ∈ Uy use case 4.a.iii (Figure 10), otherwise, when
sy /∈ Uy, use case 4.a.iv (Figure 11).

Algorithms 2018, 11, 53 13 of 34

x

ox = ex ↓

ix ↓

y

oy = sy ↑

iy = ix ↓

ey

x′

ex′

y′

ey′ = ey

Figure 12: Case 4.b.i when B fails and sy /∈ Uy.

fails and sy ∈ Uy. Set oy = ey, see Figure 7. The new case occurs when B fails and

sy /∈ Uy, in this situation set oy = sy and Uy′ = (Uy ∩ Cy) \ {oy}, see Figure 12.

ii) If ox ∈ I \{ix} then we reduce to the case 4.a.ii when B yields true. Set oy = ox, see

Figures 8 and 9. When B fails and sy ∈ Uy we have a new situation. Set oy = ey and

Uy′ = I \ {ix}. The chains preserve their distance, i.e., d(x′, y′) = 1, see Figure 13.

The alternative, when sy /∈ Uy is considered in the next case (4.b.iii).

iii) If ox ∈ I \ {ix} and B fails and sy /∈ Uy. We have a new situation, set oy = sy.

The distance increases, d(x′, y′) = 2, see Figure 14. Set Uz′ = I \ {ix} and Uy′ =

(Uy ∩ Ey) \ {oy}.

iv) If ox ∈ Ex\{ex} then if sy ∈ Uy use case 4.a.iii (Figure 10), otherwise, when sy /∈ Uy,

use case 4.a.iv (Figure 11).

c) If |Cx| > |Cy| we have the following situations:

i) If ox = ex then use case 4.a.i and set oy = ey, see Figure 7. The chains coalesce.

ii) If ox ∈ I \ {ix} then use case 4.a.ii and set oy = ox, see Figures 8 and 9.

16

Figure 12. Case 4.b.i when B fails and sy /∈ Uy.

x

↑ oxix ↓
ex

y

iy = ix ↓

oy = ey ↓

x′

ex′ = ex

y′

ey′

Figure 13: Case 4.b.ii.

x
↑ oxix ↓

ex

y
iy = ix ↓

eyoy = sy ↓

x′

ex′ = ex

z′

ez′
y′

ey′ = ey

Figure 14: Case 4.b.iii.

17

Figure 13. Case 4.b.ii.

(c) If |Cx| > |Cy| we have the following situations:

(i) If ox = ex then use case 4.a.i and set oy = ey (see Figure 7). The chains coalesce.
(ii) If ox ∈ I \ {ix} then use case 4.a.ii and set oy = ox (see Figures 8 and 9).

(iii) If ox ∈ Ex \ {ex} then we use a new Bernoulli random variable B∗ with a success
probability p∗ defined as follows:

p∗ =
(

1
Cy − 1

− 1
Cx − 1

)
× (Cx − 1)(I − 1)

Ex − 1

In Lemma 2 we prove that B∗ properly balances the necessary probabilities.
For now, note that when |Cx| = |Cy| the expression for p∗ yields p∗ = 0, because
1/(Cy − 1)− 1/(Cx − 1) becomes 0. This is coherent because when B∗ returns
false we will use the choices defined for |Cx| = |Cy|. The case when B∗ fails is
considered in the next case (4.c.iv).

Algorithms 2018, 11, 53 14 of 34

If B∗ is successful we have a new situation. Set oy = si, where si is chosen
uniformly from I \ {iy} (see Figure 15). We have ey′ = ey, Uy′ = (Uy ∩ Ey) \ {oy},
ez′ = ox and Uz′ = Ex \ {ex}.

(iv) If ox ∈ Ex \ {ex} and B∗ fails we use another Bernoulli random variable B′ with
a success probability p′ defined as follows:

p′ = 1− (Cx − 1)(Ey − 1)
(Cy − 1)(Ex − 1)(1− p∗)

In Lemma 2 we prove that B′ properly balances the necessary probabilities. In
case B′ yields true, use case 4.a.iii and set oy = ey (see Figure 10). Otherwise,
if sy ∈ Uy, use case 4.a.iii (Figure 10) or, if sy /∈ Uy, use case 4.a.iv (Figure 11).

x

↑ oxix ↓
ex

y

iy = ix ↓

oy = ey ↓

x′

ex′ = ex

y′

ey′

Figure 13: Case 4.b.ii.

x
↑ oxix ↓

ex

y
iy = ix ↓

eyoy = sy ↓

x′

ex′ = ex

z′

ez′
y′

ey′ = ey

Figure 14: Case 4.b.iii.

17

Figure 14. Case 4.b.iii.

x

ex

ix ↓

ox ↓

y
iy = ix ↓

ey

↑ oy = si

x′

ex′
z′

ez′

y′

ey′ = ey

Figure 15: Case 4.c.iii, when B∗ is true.

iii) If ox ∈ Ex \ {ex} then we use a new Bernoulli random variable B∗ with a success

probability p∗ defined as follows:

p∗ =

(
1

Cy − 1
− 1

Cx − 1

)
× (Cx − 1)(I − 1)

Ex − 1

In Lemma 2 we prove that B∗ properly balances the necessary probabilities. For

now, note that when |Cx| = |Cy| the expression for p∗ yields p∗ = 0, because

1/(Cy − 1)− 1/(Cx − 1) becomes 0. This is coherent because when B∗ returns false

we will use the choices defined for |Cx| = |Cy|. The case when B∗ fails is considered

in the next case (4.c.iv).

If B∗ is successful we have a new situation. Set oy = si, where si is chosen uniformly

from I \ {iy} and see Figure 15. We have ey′ = ey, Uy′ = (Uy ∩ Ey) \ {oy}, ez′ = ox

and Uz′ = Ex \ {ex}.

iv) If ox ∈ Ex \ {ex} and B∗ fails we use another Bernoulli random variable B′ with a

success probability p′ defined as follows:

p′ = 1− (Cx − 1)(Ey − 1)

(Cy − 1)(Ex − 1)(1− p∗)

18

Figure 15. Case 4.c.iii, when B∗ is true.

Algorithms 2018, 11, 53 15 of 34

Notice that the case 4.a.ii applies when Cx = Cy, thus solving this situation as a particular case.
This case is shown in Figure 8. It may even be the case that Cx = Cy and Cx and Ce are disjointed,
i.e., Cx ∩ Ce = ∅. This case is not drawn.

Formally, a coupling is Markovian when Equations (1a) and (1b) hold, where Zt is the coupling,
which is defined as a pair of chains (Xt, Yt). The chain Mt represents the original chain.

Pr(Xt+1 = x′ | Zt = (x, y)) = Pr(Mt+1 = x′ | Mt = x) (1a)

Pr(Yt+1 = y′ | Zt = (x, y)) = Pr(Mt+1 = y′ | Mt = y) (1b)

To establish vital insight into the coupling structure we will start by studying it when it
is Markovian.

Lemma 2. When Uy = {ey}, the process we described is a Markovian coupling.

Proof. The coupling verifies Equation (1a), because we do not alter the behavior of the chain Xt.
Hence the main part of the proof focuses on Equation (1b).

First, let us prove that for any edge i ∈ E the probability that iy = i is 1/E, i.e., Pr(iy = i) = 1/E.
The possibilities for iy are the following:

• i ∈ Ay: this occurs only in case 1, when ix ∈ Ax. It may be that i = ey; this occurs when ix = ex, in
which case iy = ey = i and this is the only case where iy = ey. In this case Pr(iy = i) = Pr(ix = ex) =

1/E. Otherwise, i ∈ Ay ∩ Ax, in these cases iy = ix, and therefore Pr(iy = i) = Pr(ix = i) = 1/E.
• i = ex: this occurs in cases 2 and 3, i.e., when ix = ey, which is the decisive condition for this

choice. Therefore Pr(iy = i) = Pr(ix = ey) = 1/E.
• i ∈ E \ Ay: this occurs in case 4. In this case iy = ix so again we have that Pr(iy = i) =

Pr(ix = i) = 1/E.

Before focusing on ox we will prove that the Bernoulli random variables are well defined, i.e., that
the expressions on the denominators are not 0 and that the values of p, p∗, p′ are between 0 and 1.

• Analysis of B. We need to have Cy− 1 6= 0 for p to be well defined. Any cycle must contain at least
three edges; therefore 3 ≤ Cy and hence 0 < 2 ≤ Cy − 1. This guarantees that the denominator is
not 0. The same argument proves that 0 < Cx − 1, thus implying that 0 < p, as both expressions
are positive. We also establish that p < 1 because of the hypothesis of case 4.b which guarantees
Cx < Cy and therefore Cx − 1 < Cy − 1.

• Analysis of B∗. As in seen the analysis of B we have that 0 < Cy − 1 and 0 < Cx − 1, therefore
those denominators are not 0. Moreover we also need to prove that Ex − 1 6= 0. In general we
have that 1 ≤ Ey, because ey ∈ Ey. Moreover, the hypothesis of case 4.c.iii is that Cy < Cx and
therefore Ey < Ex, which is obtained by removing I from the both sides. This implies that 1 < Ex

and therefore 0 < Ex − 1, thus establishing that the last denominator is also not 0.
Let us now establish that 0 ≤ p∗ and p∗ < 1. Note that p∗ can be simplified to the expression
(Cx − Cy)(I − 1)/((Cy − 1)(Ex − 1)), where all the expressions in parenthesis are non-negative,
so 0 ≤ p∗. For the second property we use the new expression for p∗ and simplify p∗ < 1
to (Ex − Ey)(I − 1) < (Ex − 1)(Cy − 1). The deduction is straightforward using the equality
Cx − Cy = Ex − Ey that is obtained by removing I from the left side. The properties Ex − Ey ≤
Ex − 1 and I − 1 < Cy − 1 establish the desired result.

• Analysis of B′. We established, in the analysis of B, that Cy − 1 is non-zero. In the analysis of
B∗ we also established that Ex − 1 is non-zero. Note that case 4.c.iv also assumes the hypothesis
that Cy < Cx. Moreover, in the analysis of B∗ we also established that p∗ < 1, which implies that
0 < 1− p∗ and therefore the last denominator is also non-zero.
Let us also establish that 0 ≤ p′ and p′ ≤ 1. For the second property we instead prove that
0 ≤ 1− p′, where 1− p′ = (Cx − 1)(Ey− 1)/((Cy− 1)(Ex − 1)(1− p∗)) and all of the expressions

Algorithms 2018, 11, 53 16 of 34

in parenthesis are non-negative. We use the following deduction of equivalent inequalities to
establish that 0 ≤ p′:

0 ≤ p′

−p′ ≤ 0

1− p′ ≤ 1

(Cx − 1)(Ey − 1) ≤ (Cy − 1)(Ex − 1)(1− p∗)

(Cx − 1)(Ey − 1) ≤ (Cy − 1)(Ex − 1)
(

1− (Cx − Cy)(I − 1)
(Cy − 1)(Ex − 1)

)

(Cx − 1)(Ey − 1) ≤ (Cy − 1)(Ex − 1)− (Cx − Cy)(I − 1)

(Ex − 1)(Ey − 1) + I(Ey − 1) ≤ (Ey − 1)(Ex − 1) + I(Ex − 1)− (Ex − Ey)(I − 1)

I(Ey − 1) ≤ I(Ex − 1)− (Ex − Ey)(I − 1)

I((Ey − 1) + Ex − Ey) ≤ I(Ex − 1) + Ex − Ey

I(Ex − 1) + Ey ≤ I(Ex − 1) + Ex

Ey ≤ Ex

Cy ≤ Cx

This last inequality is part of the hypothesis of case 4.c.iv.

Now, let us focus on the edge ox. We wish to establish that for any o ∈ Cy \ {iy} we have that
Pr(oy = o) = 1/(Cy − 1). We analyze this edge according to the following cases:

1. When the cycles are equal Cx = Cy. This involves cases 2 and 3.

• o = ey: this occurs only in case 2 and it is determined by the fact that ox = ex. Therefore,
Pr(oy = o) = Pr(ox = ex) = 1/(Cx − 1) = 1/(Cy − 1).

• o 6= ey: this occurs only in case 3 and it is determined by the fact that ox 6= ex, in this case
oy = ox. Therefore Pr(oy = o) = Pr(ox = o) = 1/(Cx − 1) = 1/(Cy − 1).

2. When the cycles have the same size |Cx| = |Cy| (case 4.a). The possibilities for o are as follows:

• o = ey: this occurs only in the case 4.a.i. This case is determined by the fact that ox = ex.
Therefore, Pr(oy = o) = Pr(ox = ex) = 1/(Cx − 1) = 1/(Cy − 1). Note that according to the
Lemma’s hypothesis, case 4.a.iii never occurs.

• o ∈ I \ {iy}: this occurs only in case 4.a.ii. This case is determined by the fact that ox ∈ I \ {ix}
and sets oy = ox = o. Therefore, Pr(oy = o) = Pr(ox = o) = 1/(Cx − 1) = 1/(Cy − 1).

• o ∈ Ey \ {ey}: this occurs only in case 4.a.iv. This case is determined by the fact that
ox ∈ X \ {ex} and moreover sets oy = sy, which was uniformly selected from Ey \ {ey}.
We have the following deduction where we use the fact that the events are independent and
that |Cx| = |Cy| implies |Ex| = |Ey|:

Pr(oy = o) = Pr(ox ∈ Ex \ {ex} and sy = o)

= Pr(ox ∈ Ex \ {ex})Pr(sy = o)

=
Ex − 1
Cx − 1

× 1
Ey − 1

= 1/(Cx − 1)

= 1/(Cy − 1)

3. When Cx < Cy this involves case 4.b. The cases for o are as follows:

Algorithms 2018, 11, 53 17 of 34

• o = ey;: this occurs only in the case 4.b.i and when B is true. This case occurs when ox = ex.
We make the following deduction, that uses the fact that the events are independent and the
success probability of B:

Pr(oy = o) = Pr(ox = ex and B = true)

= Pr(ox = ex)Pr(B = true)

=
1

Cx − 1
× Cx − 1

Cy − 1

= 1/(Cy − 1)

• o ∈ I \ {iy}: this occurs only in case 4.b.ii and when B is true. This case is determined by
the fact that ox ∈ I \ {ix} and sets oy = ox = o. We make the following deduction, that uses
the fact that the events are independent and the success probability of B:

Pr(oy = o) = Pr(ox = o and B = true)

= Pr(ox = o)Pr(B = true)

=
1

Cx − 1
× Cx − 1

Cy − 1

= 1/(Cy − 1)

• o ∈ Ey \ {ey}: this occurs in case 4.b.iv, but also in cases 4.b.iii and 4.b.i when B is false.
We have the following deduction, that uses event independence, the fact that the cases are
disjoint events, and the success probability of B:

Pr(oy = o)

= Pr(4.b.iv or (4.b.iii and B = false) or (4.b.i and B = false))

= Pr(4.b.iv) + Pr(4.b.iii and B = false) + Pr(4.b.i and B = false)

= Pr(ox ∈ Ex \ {ex} and sy = o) + Pr(ox ∈ I and B = false and sy = o)

+ Pr(ox = ex and B = false and sy = o)

= Pr(ox ∈ Ex \ {ex})Pr(sy = o) + Pr(ox ∈ I)Pr(B = false)Pr(sy = o)

+ Pr(ox = ex)Pr(B = false)Pr(sy = o)

= Pr(ox ∈ Ex \ {ex})Pr(sy = o) + Pr(ox ∈ I ∪ {ex})Pr(B = false)Pr(sy = o)

= [Pr(ox ∈ Ex \ {ex}) + Pr(ox ∈ I ∪ {ex})(1− Pr(B = true))]Pr(sy = o)

= [Pr(ox ∈ Cx)− Pr(ox ∈ I ∪ {ex})Pr(B = true)]Pr(sy = o)

= [1− Pr(ox ∈ I ∪ {ex})Pr(B = true)]Pr(sy = o)

=

[
1− I − 1 + 1

Cx − 1
× Cx − 1

Cy − 1

]
Pr(sy = o)

=

[
1− I

Cy − 1

]
Pr(sy = o)

=
Cy − 1− I

Cy − 1
× 1

Ey − 1

=
1

Cy − 1

4. When Cx > Cy, this concerns case 4.c. The cases for o are the following:

Algorithms 2018, 11, 53 18 of 34

• o = ey: this occurs in the case 4.c.i and case 4.c.iv when B′ is true. We use the
following deduction:

Pr(oy = o)

= Pr(4.c.i or (4.c.iv and B′ = true))

= Pr(4.c.i) + Pr(4.c.iv and B′ = true)

= Pr(ox = ex) + Pr(ox ∈ Ex \ {ex} and B∗ = false and B′ = true)

=
1

Cx − 1
+

Ex − 1
Cx − 1

(1− p∗)
(

1− (Cx − 1)(Ey − 1)
(Cy − 1)(Ex − 1)(1− p∗)

)

=
1

Cx − 1
+

Ex − 1
Cx − 1

(
1− p∗ − (Cx − 1)(Ey − 1)

(Cy − 1)(Ex − 1)

)

=
1

Cx − 1
+

Ex − 1
Cx − 1

− Ex − 1
Cx − 1

p∗ − Ey − 1
Cy − 1

=
1

Cx − 1
+

Ex − 1
Cx − 1

−
[

1
Cy − 1

− 1
Cx − 1

]
(I − 1)− Ey − 1

Cy − 1

=
1

Cx − 1
+

Ex − 1
Cx − 1

− I − 1
Cy − 1

+
I − 1

Cx − 1
− Ey − 1

Cy − 1

=
Ex + I − 1

Cx − 1
− Ey + I − 1

Cy − 1
+

1
Cy − 1

=
Cx − 1
Cx − 1

− Cy − 1
Cy − 1

+
1

Cy − 1

=
1

Cy − 1

• o ∈ I \ {iy}: this occurs in case 4.c.ii and case 4.c.iii when B∗ is true. We make the
following deduction:

Pr(oy = o)

= Pr(4.c.ii or 4.c.iii)

= Pr(4.c.ii) + Pr(4.c.iii)

= Pr(ox = o) + Pr(ox ∈ Ex \ {ex} and B∗ = true and si = o)

= Pr(ox = o) + Pr(ox ∈ Ex \ {ex})Pr(B∗ = true)Pr(si = o)

=
1

Cx − 1
+

Ex − 1
Cx − 1

×
(

1
Cy − 1

− 1
Cx − 1

)
× (Cx − 1)(I − 1)

Ex − 1
× 1

I − 1

=
1

Cx − 1
+

1
Cy − 1

− 1
Cx − 1

=
1

Cy − 1

• o ∈ Ey \ {ey}: this occurs in case 4.c.iv when B′ is false. We have the following deduction:

Pr(oy = o)

= Pr(4.c.iv and B′ = false)

= Pr(ox ∈ Ex \ {ex} and B∗ = false and B′ = false and sy = o)

= Pr(ox ∈ Ex \ {ex})Pr(B∗ = false)Pr(B′ = false)Pr(sy = o)

=
Ex − 1
Cx − 1

(1− p∗)
(Cx − 1)(Ey − 1)

(Cy − 1)(Ex − 1)(1− p∗)
× 1

Ey − 1

=
1

Cy − 1

Algorithms 2018, 11, 53 19 of 34

Lemma 3. The process we described is a non-Markovian coupling.

Proof. In the context of a Markovian coupling we analyze the transition from y to y′ given the
information about x. In the non-Markovian case we will use less information about x. We assume
that ey is a random variable and that x provides only ex and Uy; we know only that ey ∈ Uy and
moreover that Pr(ey = e) = 1/Uy for any e ∈ Uy and Pr(ey = e) = 0 otherwise. Then the chain Xt

makes its move and provides information about ix and ox. Let us consider only the cases when Yt

and choose iy = ix, because nothing changes in the cases where this does not happen. Now, ix can
be used to define Cx and Cy and, therefore, Ex and Ey. We focus our attention on Ey ∩Uy because,
except for the trivial cases, we must have ey ∈ (Ey ∩Uy). Hence, we instead alter our condition to
Pr(ey = e) = 1/|Ey ∩Uy|, for any e ∈ (Ey ∩Uy) and 0 otherwise.

Note that this is a reasonable process because we established in Lemma 1 that, in the non-trivial
case, Ex and Ey partition Ce and, therefore, because Uy ⊆ Ce \ {ex}, we have that Ex and Ey also
partition Uy. This means that Uy ∩ I = ∅ and so we are not losing any part of Uy in this process; we
are only dividing it into cases. This process is also the reason why, even when sy /∈ Uy, we define
Uy′ = (Uy ∩ Cy) \ {oy} = (Uy ∩ Ey) \ {oy}.

Now the cases considered in Lemma 2 must be changed. Substitute the original cases of o = ey for
o ∈ Uy ∩ Ey. Also, substitute the case o ∈ Ey \ {ey} for o ∈ Ey \Uy. The other cases remain unaltered.
Except for the first case, the previous deductions still apply. We will exemplify how the deduction
changes for o ∈ Uy ∩ Ey. We consider only the situation when |Cx| = |Cy|. For the remaining situations,
Cx < Cy and Cx > Cy, we use a general argument. Hence our precise assumptions are: o ∈ Uy ∩ Ey

and |Cx| = |Cy|.

Pr(oy = o)
Pr(ey = o)

= Pr(ox ∈ Ex \ {ex} and sy ∈ Uy) + Pr(ox = ex)

= Pr(ox ∈ Ex \ {ex})Pr(sy ∈ Uy) + Pr(ox = ex)

=
Ex − 1
Cx − 1

× |Uy ∩ Ey| − 1
Ey − 1

+
1

Cx − 1

=
|Uy ∩ Ey|

Cx − 1

=
|Uy ∩ Ey|

Cy − 1

This is correct according to our assumption.
The general argument follows the above derivation. Whenever the Markovian coupling produces

oy = ey, we obtain a 1/(Cy − 1) probability of. Moreover, for every edge produced by the
Markovian coupling such that oy ∈ Ey \ {ey}, we obtain another 1/(Cy − 1) probability. This totals
|Uy ∩ Ey|/(Cy − 1), as desired. This also occurs in the cases when Cx < Cy and Cx > Cy, only the
derivations become more cumbersome.

Finally will argue why Pr(ey = e) = 1/Uy when e ∈ Uy. The set Uy is initialized to contain only
the edge ey, i.e., Uy = {ey}. As the coupling proceeds, Uy′ is chosen to represent the edges, from which
ey′ was chosen, or is simply restricted if ey does not change. More precisely, in case 4.a.iii we choose
ey′ = ox; in case 4.b.iv we choose ez′ = ox; and in case 4.b.ii we choose ey′ = ox.

We obtained no general bounds on the coupling we presented; it may even be that such bounds are
exponential even if the Markov chain has a polynomial mixing time. In fact, Kumar and Ramesh [10]
proved that this is the case for Markovian couplings of the Jerrum–Sinclair chain [11]. Note that
according to the classification of Kumar and Ramesh [10] the coupling we present is considered as
time-variant Markovian. Hence their result applies to the type of coupling we are using, although we

Algorithms 2018, 11, 53 20 of 34

are considering different chains so it is not immediately seen that indeed there exist no polynomial
Markovian couplings for the chain we presented. Cycle graphs are the only class of graphs for which
we establish polynomial bounds (see Figure 16).Figure 17: A ladder graph.

Figure 18: A cycle graph.

times. This process is repeated several times to obtain estimates for the corresponding probabilities.

We keep two sets of estimates Mt and M ′
t and stop when ‖Mt −M ′

t‖d < 0.05. Moreover we only

estimate values where ‖π −Mt‖d ≥ 0.1. We use the same criteria to estimate π, but in this case

the trees are again generated by the random walk algorithm. The final value ε̂ is obtained as the

maximum value obtained for the 20 trees.

We generated dense graphs, sparse graphs and some in between graphs. The sparse graphs are

ladder graphs; an illustration of these graphs is shown in Figure 17. The cycle graphs consist of a

single cycle, as shown in Figure 18. The dense graphs are actually the complete graphs KV . We

also generated other dense graphs labelled biK which consisted of two complete graphs connected

by two edges. We also generated graphs based on the duplication model dmP. Let G0 = (V0, E0)

be an undirected and unweighted graph. Given 0 ≤ p ≤ 1, the partial duplication model builds a

graph G = (V,E) by partial duplication as follows (Chung et al., 2003): start with G = G0 at time

t = 1 and, at time t > 1, perform a duplication step:

1. Uniformly select a random vertex u of G.

2. Add a new vertex v and an edge (u, v).

30

Figure 16. A cycle graph.

Theorem 2. For any cycle graph G the mixing time τ of edge-swap chain is O(V) for the normal version of the
chain and 1/ log4(V − 1) for the fast version.

Proof. For any two trees Ax and Ay we have a maximum distance of one edge, i.e., d(Ax, Ay) ≤ 1.
Hence our coupling applies directly.

For the fast version, case 1 does not occur, because ix is chosen from E \ {Ax}. Hence, the only
cases that might apply are cases 2 and 3. In first case, the chains preserve their distance and in
the last case the distance is reduced to 0. Hence, E[d(X1, Y1)] = 1/(V − 1), which corresponds to
the probability of case 2. Each step of the coupling is independent, which means we can use the
previous result and Markov’s inequality to obtain Pr(d(Xτ , Yτ) ≥ 1) ≤ 1/(V − 1)τ . Then, we use this
probability in the coupling Lemma 4 to obtain a variation distance of 1/4, by solving the following
equation: 1/(V − 1)τ = 1/4.

For the slow version of the chain, case 1 applies most of the time, i.e., for V − 1 out of V choices
of ix. It takes V − 1 steps for the standard chain to behave as the fast chain and, therefore, the time
should be (V − 1)/ log4(V − 1).

This result is in stark contrast with the alternative methods, the random walk and Wilson’s
(see Section 5) algorithms, which require O(V2) time [7]. More recent algorithms are also at least
O(V4/3) for this case.

Moreover when a graph is a connected set of cycles linked by bridges or articulation points we
can also establish a similar result. Figure 17 shows one such graph.

Figure 16: Cycles connected by bridges or articulation points.

Theorem 3. For any graph G which consists of n simple cycles connect by bridges or articulation

points, such that m is the size of the smallest cycle, then the mixing time τ of the fast edge swap

chain is the following:

τ =
log(4n)

log
(

n(m−1)
n(m−1)−(m−2)

)

The mixing time for the slow version is obtained by using |E| instead of n in the previous expression.

Proof. To obtain this result we use a path coupling argument. Then for two chains at distance 1

we have E[d(X1, Y1)] ≤
(
1− m−2

n(m−1)

)
.

We assume that the different edge occurs in the largest cycle. In general the edges inserted and

deleted do not alter this situation, hence the term 1. However with probability 1/n the chain Xt

inserts an edge that creates the cycle where the diference occurs. In that case with probability

(m − 2)/(m − 1) the chains coalesce. Hence applying path coupling the mixing time must verify

the following equation:

n

(
1− m− 2

n(m− 1)

)τ

≤ 1

4

For the slow version the chain choose the correct edge with probability 1/E instead of 1/n.

28

Figure 17. Cycles connected by bridges or articulation points.

Theorem 3. For any graph G which consists of n simple cycles connected by bridges or articulation points,
such that m is the size of the smallest cycle, then the mixing time τ of the fast edge swap chain is as follows:

τ =
log(4n)

log
(

n(m−1)
n(m−1)−(m−2)

)

Algorithms 2018, 11, 53 21 of 34

The mixing time for the slow version is obtained by using |E| instead of n in the previous expression.

Proof. To obtain this result we use a path-coupling argument. Then, for two chains at distance 1 we
have E[d(X1, Y1)] ≤

(
1− m−2

n(m−1)

)
.

We assume that the different edge occurs in the largest cycle. In general the edges inserted and
deleted do not alter this situation, hence the term 1. However with probability 1/n the chain Xt inserts
an edge that creates the cycle where the difference occurs. In that case with probability (m− 2)/(m− 1)
the chains coalesce. Hence applying path-coupling the mixing time must verify the following equation:

n
(

1− m− 2
n(m− 1)

)τ

≤ 1
4

For the slow version the chain choose the correct edge with probability 1/E instead of 1/n.

4.3. Experimental Results

4.3.1. Convergence Testing

Before looking at the performance of the algorithm we started by testing the convergence of the
edge swap chain. We estimate the variation distance after a varying number of iterations. The results
are shown in Figures 18–24. We now describe the structure of these figures. Consider for example
Figure 20. The structure is as follows:

• The bottom left plot shows the graph properties, the number of vertices V in the x axis and the
number edges E on the y axis. For the dense case graph 0 has 10 vertices and 45 edges. Moreover,
graph 6 has 40 vertices and 780 edges. These graph indexes are used in the remaining plots.

• The top left plot shows the number of iterations t of the chain in the x axis and the estimated
variation distance on the y axis, for all the different graphs.

• The top right plot is similar to the top left, but the x axis contains the number of iterations divided
by (V1.3 + E). Besides the data this plot also shows a plot of ln(1/ε̂) for reference.

• The bottom right plot is the same as the top right plot, using a logarithmic scale on the y axis.

To avoid the plots from becoming excessively dense, we do not plot points for all experimental
values, instead we plot one point out of three. However, the lines pass through all experimental points,
even those that are not explicit.

The different values at the end of dmP, namely in Figures 22–24, correspond to the choices of p.
The variation distance between two distributions D1 and D2 on a countable state space S is

given by ‖D1 − D2‖ = ∑x∈S |D1(x) − D2(x)|/2. This is the real value of ε. However, the size of
S quickly becomes larger than we can compute. Instead, we compute a simpler variation distance
‖D1 − D2‖d, where S is reduced from the set of all spanning trees of G to the set of integers from
0 to V − 1, which correspond to the edge distance, defined in Section 4.2, of the generated tree A to
a fixed random spanning tree R. More precisely, we generate 20 random trees, using a random walk
algorithm described in Section 5. For each of these trees, we compute ‖π −Mt‖d, i.e., the simpler
distance between the stationary distribution π and the distribution Mt obtained by computing t steps
of the edge-swapping chain. To obtain Mt, we start from a fixed initial tree A0 and execute our chain t
times. This process is repeated several times to obtain estimates for the corresponding probabilities.
We keep two sets of estimates Mt and M′t and stop when ‖Mt − M′t‖d < 0.05. Moreover, we only
estimate values where ‖π −Mt‖d ≥ 0.1. We use the same criteria to estimate π, but in this case the
trees are again generated by the random walk algorithm. The final value ε̂ is obtained as the maximum
value obtained for the 20 trees.

Algorithms 2018, 11, 53 22 of 34

20
30
40
50
60
70
80
90
100
110
120
130

10 20 30 40 50 60 70 80 90

0.1
0

0.25

0.5

0.75

1

0 50 100 150 200 250 300 350

0.1

0.25

0.5

0.75
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E

V

sparse

0
1

2
3

4
5

6

ε̂

t

0

0

1

1

1

2

2

2

3

3

3

3

4

4

4

4

5
5

5

5

6
6

6

6
6

t/(V 1.3 + E)

0

0

1

1

1

2

2

2

3

3

3

3

4

4

4

4

5
5

5

5

6
6

6

6
6

ln(1/ε̂)

ε̂

0

0

1

1

1

2

2

2

3

3

3

4
4

4

4

5
5

5

5

6 6

6

6

ln(1/ε̂)

Figure 19: Estimation of variation distance as a function of the number of iterations for sparse graphs (see Sec-

tion 4.3.1 for details).

3. For each neighbor w of u, add an edge (v, w) with probability p.

The different values at the end of dmP, namely in Figures 23, 24 and 25, correspond to the choices

of p.

These graphs show the convergence of the Markov chain and moreover V 1.3 + E seems to be a

reasonable bound for τ . Still, these results are not entirely binding. On the one hand the estimation

of the variation distance groups several spanning trees into the same distance, which means that

within a group the distribution might not be uniform, even if the global statistics are good. So the

actual variation distance may be larger and the convergence might be slower. On the other hand

we chose the exponent 1.3 experimentally by trying to force the data of the graphs to converge at

the same point. The actual value may be smaller or larger.

4.3.2. Coupling Simulation

As mentioned before, we obtained no general bounds on the coupling we presented. In fact, ex-

perimental simulation for the coupling does not converge for all classes of graphs. We obtained

31

Figure 18. Estimation of variation distance as a function of the number of iterations for sparse graphs
(see Section 4.3.1 for details).

10
20
30
40
50
60
70
80
90

10 20 30 40 50 60 70 80 90

0.1
0

0.25

0.5

0.75

1

0 50 100 150 200 250

0.1

0.25

0.5

0.75
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E

V

cycle

0
1

2
3

4
5

6

ε̂

t

0

0

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

t/(V 1.3 + E)

0

0

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

ln(1/ε̂)

ε̂

0

0

1

1

2

2

3

3

3

4

4

4

5

5

5

6

6

6

ln(1/ε̂)

Figure 20: Estimation of variation distance as a function of the number of iterations for cycle graphs (see Section 4.3.1

for details).

32

Figure 19. Estimation of variation distance as a function of the number of iterations for cycle graphs
(see Section 4.3.1 for details).

Algorithms 2018, 11, 53 23 of 34

0
100
200
300
400
500
600
700
800
900

5 10 15 20 25 30 35 40 45

0.1
0

0.25

0.5

0.75

1

0 50 100 150 200 250

0.1

0.25

0.5

0.75
1

0 0.1 0.2 0.3 0.4 0.5 0.6

E

V

dense

0 1
2

3
4

5

6

ε̂

t

0

0

1

1

1

2

2

2

3

3

3

4
4

4

4

5
5

5

5

6 6

6

6

t/(V 1.3 + E)

0

0

1

1

1

2

2

2

3

3

3

4
4

4

4

5
5

5

5

6 6

6

6

ln(1/ε̂)

ε̂

0

0

1

1

2

2

2

3

3

3

4
4

4

4

5 5

5

5

6 6

6

6

ln(1/ε̂)

Figure 21: Estimation of variation distance as a function of the number of iterations for dense graphs (see Sec-

tion 4.3.1 for details).

33

Figure 20. Estimation of variation distance as a function of the number of iterations for dense graphs
(see Section 4.3.1 for details).

0
200
400
600
800
1000
1200
1400
1600
1800

10 20 30 40 50 60 70 80 90

0.1
0

0.25

0.5

0.75

1

0 50 100 150 200 250 300 350 400 450 500

0.1

0.25

0.5

0.75
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

E

V

biK

0 1
2

3
4

5

6

ε̂

t

0
0

0

0
0

1 1

1

1

1
1

2 2

2

2

2
2 2

3 3
3

3

3
3

4 4 4

4

4

4
4 4

5 5 5

5

5

5
5

5

6 6 6 6

6

6

6

t/(V 1.3 + E)

0
0

0

0
0

1 1

1

1

1
1

2 2

2

2

2
2 2

3 3
3

3

3
3

4 4 4

4

4

4
4 4

5 5 5

5

5

5
5

5

6 6 6 6

6

6

6

ln(1/ε̂)

ε̂

0
0

0

0

0

1 1

1

1

1

1

2 2
2

2

2

2
2

3 3 3

3

3

3

4 4 4
4

4

4

4
4

5 5 5
5

5

5

5

5

6 6 6 6
6

6

6

ln(1/ε̂)

Figure 22: Estimation of variation distance as a function of the number of iterations for biK graphs (see Section 4.3.1

for details).

34

Figure 21. Estimation of variation distance as a function of the number of iterations for biK graphs
(see Section 4.3.1 for details).

Algorithms 2018, 11, 53 24 of 34

0
10
20
30
40
50
60
70
80
90
100

0 10 20 30 40 50 60 70 80 90 100

0.1
0

0.25

0.5

0.75

1

0 20 40 60 80 100 120 140 160 180 200

0.1

0.25

0.5

0.75
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

E

V

dmP05

0
1

2
3

4
5

6
7

8

ε̂

t

0

12

2

3

3

4

4

5

5

6

6

7

7

8

8

8

t/(V 1.3 + E)

0

12

2

3

3

4

4

5

5

6

6

7

7

8

8

8

ln(1/ε̂)

ε̂

0

12

2

3

3

4

4

5

5

6

6

7

7

8

8

8

ln(1/ε̂)

Figure 23: Estimation of variation distance as a function of the number of iterations for dmP graphs (see Section 4.3.1

for details).

35

Figure 22. Estimation of variation distance as a function of the number of iterations for dmP graphs
(see Section 4.3.1 for details).

20
30
40
50
60
70
80
90
100
110

5 10 15 20 25 30 35 40 45

0.1
0

0.25

0.5

0.75

1

0 50 100 150 200 250

0.1

0.25

0.5

0.75
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E

V

dmP25

0
1

2 3

4
5

6

ε̂

t

0
1

1

2

2

3

3

4

4

4

5

5

5

6

6

6

t/(V 1.3 + E)

0
1

1

2

2

3

3

4

4

4

5

5

5

6

6

6

ln(1/ε̂)

ε̂

01

1

2

2

3

3

4

4

4

5

5

6

6

6

ln(1/ε̂)

Figure 24: Estimation of variation distance as a function of the number of iterations for dmP graphs (see Section 4.3.1

for details).

36

Figure 23. Estimation of variation distance as a function of the number of iterations for dmP graphs
(see Section 4.3.1 for details).

Algorithms 2018, 11, 53 25 of 34

0
20
40
60
80
100
120
140

5 10 15 20 25 30 35 40 45

0.1
0

0.25

0.5

0.75

1

0 50 100 150 200 250

0.1

0.25

0.5

0.75
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E

V

dmP50

0
1 2

3

4
5

6

ε̂

t

0

1

1

2

2

3

3

4

4

4

5

5

5

6

6

6

t/(V 1.3 + E)

0

1

1

2

2

3

3

4

4

4

5

5

5

6

6

6

ln(1/ε̂)

ε̂

0

1

1

2

2

3

3

4

4

4

5

5

5

6

6

6

ln(1/ε̂)

Figure 25: Estimation of variation distance as a function of the number of iterations for dmP graphs (see Section 4.3.1

for details).

37

Figure 24. Estimation of variation distance as a function of the number of iterations for dmP graphs
(see Section 4.3.1 for details).

We generated dense graphs, cycle graphs, sparse graphs, and some in-between graphs. The cycle
graphs consist of a single cycle, as shown in Figure 16.The sparse graphs are ladder graphs; an
illustration of these graphs is shown in Figure 25.

Figure 17: A ladder graph.

Figure 18: A cycle graph.

times. This process is repeated several times to obtain estimates for the corresponding probabilities.

We keep two sets of estimates Mt and M ′
t and stop when ‖Mt −M ′

t‖d < 0.05. Moreover we only

estimate values where ‖π −Mt‖d ≥ 0.1. We use the same criteria to estimate π, but in this case

the trees are again generated by the random walk algorithm. The final value ε̂ is obtained as the

maximum value obtained for the 20 trees.

We generated dense graphs, sparse graphs and some in between graphs. The sparse graphs are

ladder graphs; an illustration of these graphs is shown in Figure 17. The cycle graphs consist of a

single cycle, as shown in Figure 18. The dense graphs are actually the complete graphs KV . We

also generated other dense graphs labelled biK which consisted of two complete graphs connected

by two edges. We also generated graphs based on the duplication model dmP. Let G0 = (V0, E0)

be an undirected and unweighted graph. Given 0 ≤ p ≤ 1, the partial duplication model builds a

graph G = (V,E) by partial duplication as follows (Chung et al., 2003): start with G = G0 at time

t = 1 and, at time t > 1, perform a duplication step:

1. Uniformly select a random vertex u of G.

2. Add a new vertex v and an edge (u, v).

30

Figure 25. A ladder graph.

The dense graphs are actually the complete graphs KV . We also generated other dense graphs
labeled biK which consisted of two complete graphs connected by two edges. Graphs were also
generated based on the duplication model dmP. Let G0 = (V0, E0) be an undirected and unweighted
graph. Given 0 ≤ p ≤ 1, the partial duplication model builds a graph G = (V, E) by partial duplication
as follows [12]: start with G = G0 at time t = 1 and, at time t > 1, perform a duplication step:

1. Uniformly select a random vertex u of G.
2. Add a new vertex v and an edge (u, v).
3. For each neighbor w of u, add an edge (v, w) with probability p.

These graphs show the convergence of the Markov chain and moreover V1.3 + E seems to be
a reasonable bound for τ. Still, these results are not entirely binding. On the one hand the estimation of
the variation distance groups several spanning trees into the same distance, which means that within a
group the distribution might not be uniform, even if the global statistics are good. Hence, the actual
variation distance may be larger and the convergence might be slower. On the other hand, we chose
the exponent 1.3 experimentally by trying to force the data of the graphs to converge at the same point.
The actual value may be smaller or larger.

Algorithms 2018, 11, 53 26 of 34

4.3.2. Coupling Simulation

As mentioned before, we obtained no general bounds on the coupling we presented. In fact,
experimental simulation for the coupling does not converge for all classes of graphs. We obtained
experimental convergence for cycle graph, as expected from Theorem 2, and for ladder graphs. For the
remaining graphs we used an optimistic version of the coupling which always assumes that sy ∈ Uy

and that B∗ fails. With these assumptions, all the cases which increase the distance between states
are eliminated and the coupling always converges. Note that this approach does not yield sound
coupling, but in practice we verified that this procedure obtained good experimental variation distance.
Moreover, the variation distance estimation for these tests is not the simpler distance but the actual
experimental variation distance, obtained by generating several experimental trees, such that in
average each possible tree is obtained 100 times.

The simulation of the path coupling proceeds by generating a path with e ln V steps, essentially
selecting two trees at distance e ln V from each other. This path is obtained by computing e ln V steps
of the fast chain. Recall that our implementation and all simulations use the fast version of the chain.
The simulation ends once this path contracts to size ln V. Let t′ be the number of steps in this process.
Once this point is obtained, our estimate for mixing time is τ̂ = t′ ln V. In general, we wish to obtain
τ̂ such that the probability that the two general chains Xt and Xt coalesce is at least 75%. Hence,
we repeat this process four times and choose the second largest value of τ̂ as our estimate.

Table 1 summarizes results for the experimental variation distance. The number of possible
spanning trees for each graph was computed with Kirchhoff’s theorem. Then, we generated 100 times
the number of possible trees, and we computed the variation distance. As stated above, we obtained
good results for the variation distance, getting a median well below 25% for all tested graph topologies.

Table 1. Variation distance (VD) for different graph topologies. Median and maximum VD computed
over five runs for each network. Since dmP graphs are random, results for dmP were further computed
over five different graphs for each size |V|.

Graph |V | Median VD Max VD

dense {5, 7} 0.060 0.194
biK {8, 10} 0.065 0.190

cycle {16, 20, 24} 0.001 0.004
sparse {10, 14, 20} 0.053 0.110
torus {9, 12} 0.094 0.383
dmP {8, 10, 12} 0.069 0.270

We now present experimental results for larger graphs where we use the optimistic coupling.
All experiments were conducted on a computer with an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40 GHz
with 4 cores and 32 GB of RAM. We present running times for different graph topologies and sizes
in Figures 26–32. Note beforehand that the coupling estimate needs only to be computed once for each
graph. Once the estimate is known, we can generate as many spanning trees as we want. Although
the edge-swapping method is not always the faster compared with the random walk and Wilson’s
algorithms, it is competitive in practice for dmP and torus graphs, and it is faster for biK, cycle and
sparse (ladder) graphs. As expected, it is less competitive for dense graphs. Hence, experimental
results seem to point out that the edge-swapping method is more competitive in practice for those
instances that are harder for random walk-based methods, namely biK and cycle graphs. The results
for biK and dmP are of particular interest as most real networks seem to include these kind of
topologies, i.e., they include communities and they are scale-free [13].

Algorithms 2018, 11, 53 27 of 34

0

1

2

3

4

5

6

7

8

9

0× 100 2× 106 4× 106 6× 106 8× 106 1× 107 1× 107 1× 107

ti
m

e
(s

)

E

Dense

Coupling estimate
Edge swapping
Random walk

Wilson’s algorithm

Figure 26: Running times for dense (fully connected) graphs averaged over five runs, including the running time for

computing the optimistic coupling estimate, the running time for generating a spanning tree based on that estimate

and on the edge swapping algorithm, the running time for generating a spanning tree through a random walk, and

also the running time for Wilson’s algorithm.

40

Figure 26. Running times for dense (fully connected) graphs averaged over five runs, including the
running time for computing the optimistic coupling estimate and the running time for generating a
spanning tree based on that estimate, as well as the edge-swapping algorithm, the running time for
generating a spanning tree through a random walk, and the running time for Wilson’s algorithm.

0

1

2

3

4

5

6

7

8

9

0× 100 1× 106 2× 106 3× 106 4× 106 5× 106 6× 106 7× 106

ti
m

e
(s

)

E

BiK

Coupling estimate
Edge swapping
Random walk

Wilson’s algorithm

Figure 27: Running times for biK graphs averaged over five runs, including the running time for computing the

optimistic coupling estimate, the running time for generating a spanning tree based on that estimate and on the edge

swapping algorithm, the running time for generating a spanning tree through a random walk, and also the running

time for Wilson’s algorithm.

41

Figure 27. Running times for biK graphs averaged over five runs, including the running time for
computing the optimistic coupling estimate, the running time for generating a spanning tree based on
that estimate, the edge-swapping algorithm, the running time for generating a spanning tree through a
random walk, and the running time for Wilson’s algorithm.

Algorithms 2018, 11, 53 28 of 34

0

10

20

30

40

50

60

70

80

90

100

2× 103 4× 103 6× 103 8× 103 1× 104 1× 104 1× 104 2× 104 2× 104 2× 104

ti
m

e
(s

)

E

Cycle

Coupling estimate
Edge swapping
Random walk

Wilson’s algorithm

Figure 28: Running times for cycle graphs averaged over five runs, including the running time for computing the

optimistic coupling estimate, the running time for generating a spanning tree based on that estimate and on the edge

swapping algorithm, the running time for generating a spanning tree through a random walk, and also the running

time for Wilson’s algorithm.

42

Figure 28. Running times for cycle graphs averaged over five runs, including the running time for
computing the optimistic coupling estimate, the running time for generating a spanning tree based on
that estimate, the edge-swapping algorithm, the running time for generating a spanning tree through a
random walk, and the running time for Wilson’s algorithm.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0× 100 2× 104 4× 104 6× 104 8× 104 1× 105 1× 105 1× 105 2× 105

ti
m

e
(s

)

E

Ladder

Coupling estimate
Edge swapping
Random walk

Wilson’s algorithm

Figure 29: Running times for sparse (ladder) graphs averaged over five runs, including the running time for com-

puting the optimistic coupling estimate, the running time for generating a spanning tree based on that estimate and

on the edge swapping algorithm, the running time for generating a spanning tree through a random walk, and also

the running time for Wilson’s algorithm.

43

Figure 29. Running times for sparse (ladder) graphs averaged over five runs, including the running
time for computing the optimistic coupling estimate, the running time for generating a spanning tree
based on that estimate, the edge-swapping algorithm, the running time for generating a spanning tree
through a random walk, and the running time for Wilson’s algorithm.

Algorithms 2018, 11, 53 29 of 34

0

1

2

3

4

5

6

7

8

9

10

0× 100 2× 103 4× 103 6× 103 8× 103 1× 104 1× 104 1× 104 2× 104 2× 104 2× 104

ti
m

e
(s

)

E

Torus

Coupling estimate
Edge swapping
Random walk

Wilson’s algorithm

Figure 30: Running times for square torus graphs averaged over five runs, including the running time for computing

the optimistic coupling estimate, the running time for generating a spanning tree based on that estimate and on

the edge swapping algorithm, the running time for generating a spanning tree through a random walk, and also the

running time for Wilson’s algorithm.

44

Figure 30. Running times for square torus graphs averaged over five runs, including the running
time for computing the optimistic coupling estimate, the running time for generating a spanning tree
based on that estimate, the edge-swapping algorithm, the running time for generating a spanning tree
through a random walk, and the running time for Wilson’s algorithm.

0

1

2

3

4

5

6

7

1× 103 2× 103 3× 103 4× 103 5× 103 6× 103 7× 103 8× 103 9× 103 1× 104

ti
m

e
(s

)

E

Torus

Coupling estimate
Edge swapping
Random walk

Wilson’s algorithm

Figure 31: Running times for rectangular torus graphs averaged over five runs, including the running time for

computing the optimistic coupling estimate, the running time for generating a spanning tree based on that estimate

and on the edge swapping algorithm, the running time for generating a spanning tree through a random walk, and

also the running time for Wilson’s algorithm.

45

Figure 31. Running times for rectangular torus graphs averaged over five runs, including the running
time for computing the optimistic coupling estimate, the running time for generating a spanning tree
based on that estimate, the edge-swapping algorithm, the running time for generating a spanning tree
through a random walk, and the running time for Wilson’s algorithm.

Algorithms 2018, 11, 53 30 of 34

0

50

100

150

200

250

300

0× 100 5× 104 1× 105 2× 105 2× 105 2× 105 3× 105 4× 105 4× 105 5× 105 5× 105 6× 105

ti
m

e
(s

)

E

Duplication model

Coupling estimate
Edge swapping
Random walk

Wilson’s algorithm

Figure 32: Running times for dmP graphs averaged over five runs, including the running time for computing the

optimistic coupling estimate, the running time for generating a spanning tree based on that estimate and on the edge

swapping algorithm, the running time for generating a spanning tree through a random walk, and also the running

time for Wilson’s algorithm.

46

Figure 32. Running times for dmP graphs averaged over five runs, including the running time for
computing the optimistic coupling estimate, the running time for generating a spanning tree based on
that estimate, the edge-swapping algorithm, the running time for generating a spanning tree through a
random walk, and the running time for Wilson’s algorithm.

5. Related Work

For detailed information on probabilities for trees and networks, see Lyons and Peres [14]
(Chapter 4). As far as we know, the initial work on generating uniform spanning trees was performed
by Aldous [15] and Broader [16], who obtained spanning trees by performing a random walk on the
underlying graph. The former author also further studied the properties of such random trees [17],
namely giving general closed formulas for the counting argument we presented in Section 2. In the
random walk process a vertex v of G is chosen and at each step this vertex is swapped by an adjacent
vertex, where all neighboring vertexes are selected with equal probability. Each time a vertex is visited
by the first time, the corresponding edge is added to the growing spanning tree. The process ends
when all vertices of G get visited at least once. This amount of steps is known as the cover time of G.

To obtain an algorithm that is faster than the cover time, Wilson [18] proposed a different approach.
A vertex r of G is initially chosen uniformly and the goal is to hit this specific vertex r from a second
vertex, also chosen uniformly from G. This process is again a random walk, but with a loop erasure
feature. Whenever the path from the second vertex intersects itself, all the edges in the corresponding
loop must be removed from the path. When the path eventually reaches r it becomes part of the
spanning tree. The process then continues by choosing a third vertex and also computing a loop erasure
path from it, but this time it is not necessary to hit r precisely: it is enough to hit any vertex on the
branch that is already linked to r. The process continues by choosing random vertices and computing
loop erasure paths that hit the spanning tree that is already computed.

We implemented the above algorithms as they are accessible. Although several theoretical results
have been obtained in recent years, we are not aware of an implementation of such algorithms. We will
now survey these results. Another approach to this problem relies on a Theorem by Kirchhoff [19]
that counts the number of spanning trees by computing the determinant of a certain matrix, related
to the graph G. This relation was studied by Guénoche [20] and Kulkarni [21], who yielded an
O(EV3) time algorithm. This result was improved to O(V2.373) by Colbourn et al. [22,23], where the
exponent corresponds to the fastest algorithm to compute matrix multiplication. Improvements on

Algorithms 2018, 11, 53 31 of 34

the random walk approach were obtained by Kelner and Mądry [24], and Mądry [25], culminating
in an Õ(Eo(1)+4/3) time algorithm by Madry et al. [26], which relies on insight provided by the
effective resistance metric. Interestingly, the initial work by Broader [16] contains a reference to the
edge-swapping chain we presented in this paper (Section 5, named the swap chain). The author
mentions that the mixing time of this chain is EO(1), although the details are omitted. This chain
was extensively studied by several authors, namely in the context of balanced matroids [27–29].
The most recent upper bound on the mixing time is O(EV log V) [30]. Using Theorem 1 yields an
O(EV log2 V) algorithm.

Even though link-cut trees are well known [5,31] their application to this problem was not
established prior to this work. Their initial application was to network flows [32]. We also found
another reference to the edge swap in the work of Sinclair [8]. In the proposal of the canonical path
technique the author mentions this particular chain as a motivating application for the canonical path
technique, although the details are omitted and we were not able to obtain such an analysis.

We considered an LCT version where the auxiliary trees are implemented with splay trees as per
Sleator and Tarjan [5], i.e., whereby the auxiliary data structures we mentioned in Section 3 are splay
trees. This means that in step 5 of Algorithm 1 all the vertices involved in the path C \ {(u, v)} get
stored in a splay tree. This path-oriented approach of link-cut trees makes them suitable for our goals,
as opposed to other dynamic connectivity data structures such as Euler tour trees [33].

Splay trees are self-adjusting binary search trees, and therefore the vertices are ordered in such a
way that the in-order traversal of the tree coincides with the sequence of the vertices that are obtained
by traversing C \ {(u, v)} from u to v. This also justifies why the size of this set can also be obtained
in O(log V) amortized time. Each node simply stores the size of its sub-tree and these values are
efficiently updated during the splay process, which consists of a sequence of rotations. Moreover,
these values can also be used to Select an edge from the path. By starting at the root and comparing
the tree sizes to i we can determine if the first vertex of the desired edge is on the left sub-tree, on the
root, or on the right sub-tree. Likewise we can do the same for the second vertex of the edge in question.
These operations splay the vertices that they obtain and therefore the total time depends on the Splay
operation. The precise total time of the Splay operation is O((V + 1) log n), however the V log V
term does not accumulate over successive operations, thus yielding the bound of O((V + τ) log V) in
Theorem 1. In general the V log V term should not be a bottleneck because for most graphs we should
have τ > V. This is not always the case; if G consists of a single cycle then τ = 1, but V may be large.
Figure 16 shows an example of such a graph.

We finish this section by reviewing the formal definitions of variational distance and mixing
time τ [6].

Definition 1. The variation distance between two distributions D1 and D2 on a countable space S is given by

||D1 − D2|| = ∑
x∈S

|D1(x)− D2(x)|
2

(2)

Definition 2. Let π be the stationary distribution of a Markov chain with state space S. Let pt
x represent the

distribution of the state of the chain starting at state x after t steps. We define

∆x(t) = |pt
x − π| (3)

∆(t) = max
x∈S

∆s(t) (4)

That is, ∆x(t) is the variation distance between the stationary distribution, and pt
x and ∆(t) is the

maximum of these values over all states x. We also define

τx(ε) = min{t : ∆x(t) ≤ ε} (5)

Algorithms 2018, 11, 53 32 of 34

τ(ε) = max
x∈S

τx(ε) (6)

When we refer only to the mixing time we mean τ(1/4). Finally the coupling Lemma justifies the
coupling approach:

Lemma 4. Let Zt = (Xt, Yt) be a coupling for a Markov chain M on a state space S. Suppose that there exists
a T such that, for every x, y ∈ S,

Pr(XT 6= YT |X0 = x, Y0 = y) ≤ ε (7)

Then τ(ε) ≤ T. That is, for any initial state, the variation distance between the distribution of the state of
the chain after T steps and the stationary distribution is at most ε.

If there is a distance d defined in S then the property XT 6= YT can be obtained using the
condition d(XT , YT) ≥ 1. For this condition we can use the Markovian inequality Pr(d(XT , YT) ≥
1) ≤ E[d(XT , YT)]. The path-coupling technique [9] constructs a coupling by chaining several chains,
such that the distance between then is 1. Therefore we obtain d(XT , YT) = d(X0

T , X1
T) + d(X1

T , X2
T) +

. . . + d(XD−1
T , XD

T) = 1 + 1 + . . . + 1, where XT = X0
T and YT = XD

T .

6. Conclusions and Future Work

In this paper we studied a new algorithm to obtain the spanning trees of a graph in a uniform
way. The underlying Markov chain was initially sketched by Broader [16] in the early study of this
problem. We further extended this work by proving the necessary Markov chain properties and using
the link-cut tree data structure. This allows for a much faster implementation than repeating the DFS
procedure. This may actually be the reason why this approach has gone largely unnoticed during
this time.

Using link-cut trees it is possible to generate a spanning tree in O(EV log2 V) time for any graph,
according to the latest bound on the mixing time of the Markov chain we used. However this result is
not competitive against existing alternatives. Instead we studied a coupling approach that yielded
much better bounds for graphs consisting of cycles and can be simulated in practice for any graph.
We implemented our approach and compared it against existing alternatives. The experimental results
show that it is very competitive.

On the one hand, computing the mixing time of the underlying chain is complex, time-consuming
and hard to analyze in theory. On the other hand the user of this process can fix a certain number
of steps to execute. This is a very useful parameter, as it can be used to swap randomness for time.
Depending on the type of application the user may sacrifice the randomness of the underlying trees
to obtain faster results or on the contrary spend some extra time to guarantee randomness. Existing
algorithms do not provide such a possibility.

As a final note, we point out that our approach can be generalized by assigning weights to the
edges of the graph. The edge to be inserted can then be selected with a probability that corresponds to
its weight, divided by the global sum of weights. Moreover, the edge to remove from the cycle should
be removed according to its weight. The probability should be its weight divided by the sum of the
cycle weights. The ergodic analysis of Section 4.1 generalizes easily to this case, so this chain also
generates spanning trees uniformly, although the analysis of the coupling of Section 4.2 might need
some adjustments. A proper weight selection might obtain a faster mixing timer, possibly something
similar to the resistance of the edge.

Acknowledgments: This work was partly supported by the BacGenTrack (TUBITAK/0004/2014) project funded
by FCT (Fundação para a Ciência e a Tecnologia) and TUBITAK (Scientific and Technological Research Council of
Turkey), by PRECISE (LISBOA-01-0145-FEDER-016394) project co-funded by FEEI (Fundos Europeus Estruturais
e de Investimento) from “Programa Operacional Regional Lisboa 2020” and by national funds from FCT

Algorithms 2018, 11, 53 33 of 34

(UID/CEC/500021/2013 and Pest-OE/EEI/LA0021/2014) and European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No 690941.

Author Contributions: Luís M. S. Russo and Alexandre P. Francisco conceived the study, performed the theoretical
analysis and designed the experiments; Luís M. S. Russo implemented the prototype; Andreia Sofia Teixeira
and Alexandre P. Francisco constructed the test cases, performed the experiments and the experimental analysis;
Luís M. S. Russo and Alexandre P. Francisco wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Aigner, M.; Ziegler, G.M.; Quarteroni, A. Proofs from the Book; Springer: Berlin/Heidelberg, Germany, 2010;
Volume 274.

2. Borchardt, C.W. Über Eine Interpolationsformel für Eine Art Symmetrischer Functionen und über Deren Anwendung;
Math. Abh. der Akademie der Wissenschaften zu Berlin: Berlin, Germany, 1860; pp. 1–20.

3. Cayley, A. A theorem on trees. Q. J. Math. 1889, 23, 376–378.
4. Galler, B.A.; Fisher, M.J. An improved equivalence algorithm. Commun. ACM 1964, 7, 301–303. [CrossRef]
5. Sleator, D.D.; Tarjan, R.E. Self-adjusting binary search trees. J. ACM 1985, 32, 652–686. [CrossRef]
6. Mitzenmacher, M.; Upfal, E. Probability and Computing: Randomized Algorithms and Probabilistic Analysis;

Cambridge University Press: New York, NY, USA, 2005.
7. Levin, D.A.; Peres, Y. Markov Chains and Mixing Times; American Mathematical Society: Providence, RI, USA,

2017; Volume 107.
8. Sinclair, A. Improved bounds for mixing rates of Markov chains and multicommodity flow.

Comb. Probab. Comput. 1992, 1, 351–370. [CrossRef]
9. Bubley, R.; Dyer, M. Path coupling: A technique for proving rapid mixing in Markov chains.

In Proceedings of the 38th Annual Symposium on Foundations of Computer Science, Miami Beach, FL, USA,
20–22 October 1997; pp. 223–231.

10. Kumar, V.S.A.; Ramesh, H. Markovian coupling vs. conductance for the Jerrum-Sinclair chain.
In Proceedings of the 40th Annual Symposium on Foundations of Computer Science, New York, NY, USA,
17–19 October 1999; pp. 241–251.

11. Jerrum, M.; Sinclair, A. Approximating the permanent. SIAM J. Comput. 1989, 18, 1149–1178. [CrossRef]
12. Chung, F.R.K.; Lu, L.; Dewey, T.G.; Galas, D.J. Duplication models for biological networks. J. Comput. Biol.

2003, 10, 677–687. [CrossRef]
13. Chung, F.R.; Lu, L. Complex Graphs and Networks; American Mathematical Society: Providence, RI, USA, 2006;

No. 107.
14. Lyons, R.; Peres, Y. Probability on Trees and Networks; Cambridge University Press: Cambridge, UK, 2016;

Volume 42.
15. Aldous, D.J. The random walk construction of uniform spanning trees and uniform labelled trees. SIAM J.

Discret. Math. 1990, 3, 450–465. [CrossRef]
16. Broader, A. Generating random spanning trees. In Proceedings of the IEEE Symposium on Fondations of

Computer Science, Research Triangle Park, NC, USA, 30 October–1 November 1989; pp. 442–447.
17. Aldous, D. A random tree model associated with random graphs. Random Struct. Algorithms 1990, 1, 383–402.

[CrossRef]
18. Wilson, D.B. Generating random spanning trees more quickly than the cover time. In Proceedings of the

Twenty-Eighth Annual ACM Symposium on Theory of Computing (STOC ’96), Philadelphia, PA, USA,
22–24 May 1996; ACM: New York, NY, USA, 1996; pp. 296–303.

19. Kirchhoff, G. Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen
vertheilung galvanischer ströme geführt wird. Ann. Phys. 1847, 148, 497–508. [CrossRef]

20. Guénoche, A. Random spanning tree. J. Algorithms 1983, 4, 214–220. [CrossRef]
21. Kulkarni, V. Generating random combinatorial objects. J. Algorithms 1990, 11, 185–207. [CrossRef]
22. Colbourn, C.J.; Day, R.P.J.; Nel, L.D. Unranking and ranking spanning trees of a graph. J. Algorithms 1989,

10, 271–286. [CrossRef]
23. Colbourn, C.J.; Myrvold, W.J.; Neufeld, E. Two algorithms for unranking arborescences. J. Algorithms 1996,

20, 268–281. [CrossRef]

http://dx.doi.org/10.1145/364099.364331
http://dx.doi.org/10.1145/3828.3835
http://dx.doi.org/10.1017/S0963548300000390
http://dx.doi.org/10.1137/0218077
http://dx.doi.org/10.1089/106652703322539024
http://dx.doi.org/10.1137/0403039
http://dx.doi.org/10.1002/rsa.3240010402
http://dx.doi.org/10.1002/andp.18471481202
http://dx.doi.org/10.1016/0196-6774(83)90022-6
http://dx.doi.org/10.1016/0196-6774(90)90002-V
http://dx.doi.org/10.1016/0196-6774(89)90016-3
http://dx.doi.org/10.1006/jagm.1996.0014

Algorithms 2018, 11, 53 34 of 34

24. Kelner, J.A.; Mądry, A. Faster generation of random spanning trees. In Proceedings of the 2009 50th Annual
IEEE Symposium on Foundations of Computer Science, Atlanta, GA, USA, 24–27 October 2009; pp. 13–21.

25. Mądry, A. From Graphs to Matrices, and Back: New Techniques For Graph Algorithms. Ph.D. Thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 2011.

26. Mądry, A.; Straszak, D.; Tarnawski, J. Fast generation of random spanning trees and the effective resistance
metric. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2015), San Diego, CA, USA, 4–6 January 2015; Indyk, P., Ed.; pp. 2019–2036.

27. Feder, T.; Mihail, M. Balanced matroids. In Proceedings of the Twenty-Fourth Annual ACM Symposium on
Theory of Computing, Victoria, BC, Canada, 4–6 May 1992; ACM: New York, NY, USA, 1992; pp. 26–38.

28. Jerrum, M.; Son, J.-B.; Tetali, P.; Vigoda, E. Elementary bounds on poincaré and log-sobolev constants for
decomposable markov chains. Ann. Appl. Probab. 2004, 14, 1741–1765. [CrossRef]

29. Mihail, M. Conductance and convergence of markov chains-a combinatorial treatment of expanders.
In Proceedings of the 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park,
NC, USA, 30 October–1 November 1989; pp. 526–531.

30. Jerrum, M.; Son, J.-B. Spectral gap and log-sobolev constant for balanced matroids. In Proceedings of the 43rd
Annual IEEE Symposium on Foundations of Computer Science, Vancouver, BC, Canada, 19 November 2002;
pp. 721–729.

31. Sleator, D.D.; Tarjan, R.E. A data structure for dynamic trees. In Proceedings of the Thirteenth Annual ACM
Symposium on Theory of Computing (STOC ’81), Milwaukee, WI, USA, 11–13 May 1981; ACM: New York,
NY, USA, 1981; pp. 114–122.

32. Goldberg, A.V.; Tarjan, R.E. Finding minimum-cost circulations by canceling negative cycles. J. ACM 1989,
36, 873–886. [CrossRef]

33. Henzinger, M.R.; King, V. Randomized dynamic graph algorithms with polylogarithmic time per operation.
In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, Las Vegas,
NV, USA, 29 May–1 June 1995; ACM: New York, NY, USA, 1995; pp. 519–527.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1214/105051604000000639
http://dx.doi.org/10.1145/76359.76368
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Challenge
	Main Idea
	The Details
	Ergodic Analysis
	Coupling
	d(x,y) = 0
	d(x,y) = 1

	Experimental Results
	Convergence Testing
	Coupling Simulation

	Related Work
	Conclusions and Future Work
	References

