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Abstract: A k-colouring of a graph G with colours 1, 2, . . . , k is canonical with respect to an ordering
π = v1, v2, . . . , vn of the vertices of G if adjacent vertices are assigned different colours and,
for 1 ≤ c ≤ k, whenever colour c is assigned to a vertex vi, each colour less than c has been assigned
to a vertex that precedes vi in π. The canonical k-colouring graph of G with respect to π is the graph
Canπ

k (G) with vertex set equal to the set of canonical k-colourings of G with respect to π, with two of
these being adjacent if and only if they differ in the colour assigned to exactly one vertex. Connectivity
and Hamiltonicity of canonical colouring graphs of bipartite and complete multipartite graphs is
studied. It is shown that for complete multipartite graphs, and bipartite graphs there exists a vertex
ordering π such that Canπ

k (G) is connected for large enough values of k. It is proved that a canonical
colouring graph of a complete multipartite graph usually does not have a Hamilton cycle, and that
there exists a vertex ordering π such that Canπ

k (Km,n) has a Hamilton path for all k ≥ 3. The paper
concludes with a detailed consideration of Canπ

k (K2,2,...,2). For each k ≥ χ and all vertex orderings π,
it is proved that Canπ

k (K2,2,...,2) is either disconnected or isomorphic to a particular tree.
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1. Introduction

One definition of a k-colouring of a graph G is as a function f : V(G) → {1, 2, . . . , k} such
that f (x) 6= f (y) whenever xy ∈ E(G). Under this definition, k-colourings f1 and f2 are different
whenever there exists a vertex x such that f1(x) 6= f2(x). Each k-colouring f is equivalent to a k-tuple
( f−1(1), f−1(2), . . . , f−1(k)) in which the set of non-empty components is a partition of V(G) into
independent sets.

A k-colouring f : V(G)→ {1, 2, . . . , k} is canonical with respect to an ordering π = v1, v2, . . . , vn

of the vertices of G if, whenever f (vi) = c, every colour less than c has been assigned to some vertex
that precedes vi in π. Thus v1 is necessarily assigned colour 1, and colour 3 can only be assigned
to some vertex after colour 2 has been assigned to a vertex that appears earlier in the sequence π.
Note that canonical colourings may be very different than the colourings arising from applying the
usual greedy colouring algorithm to G using the vertex ordering π.

Define an equivalence relation ∼ on the set of k-colourings of G by f1 ∼ f2 if and only if f1 and
f2 determine the same partition of V(G) into independent sets. The set of canonical k-colourings
of G with respect to π is then the set of representatives of the equivalence classes of ∼ that are
lexicographically least with respect to π. Thus, canonical k-colourings exist for every k ≥ χ(G) and
every proper colouring is equivalent to a canonical colouring.
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For an ordering π of the vertices of a graph G, the canonical k-colouring graph of G, denoted Canπ
k (G),

has vertex set equal to the set of canonical k-colourings of G with respect to π, with two of these being
adjacent when they differ in the colour assigned to exactly one vertex. While every ordering gives
a set of representatives of the possible k-colourings, different orderings can lead to different canonical
k-colourings graphs. Examples of the canonical 3-colouring graph of the path on 4 vertices are given
in Figure 1 for three different orderings of the vertices of the path. When a canonical colour graph
is connected, any given canonical k-colouring can be reconfigured into any other via a sequence of
recolourings which each change the colour of exactly one vertex. When it is Hamiltonian, there is
a cyclic list that contains all of the k-colourings of G and consecutive elements of the list differ in the
colour of exactly one vertex, that is, there is a cyclic Gray code of the k-colourings of G.
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Figure 1. Three different vertex orderings of P4 with associated Canπ
3 (P4). In each case the colourings

are canonical with respect to the given vertex ordering from left to right.

This paper is organized as follows. Relevant definitions and background information are reviewed
in Section 2. A generalization of a lemma of [1] concerning vertex orderings such that Canπ

k (G) is
disconnected for all k ≥ χ(G) is proved. Connectivity and Hamiltonicity of canonical colouring graphs
of unions and joins of graphs are considered in Section 3. The main focus is on the situation where one
of the graphs involved is a complete graph or a complement of a complete graph. For n ≥ 1 and any
vertex ordering π, canonical k-colourings of Kn correspond exactly to partitions of {1, 2, . . . , n} with at
most k cells. Our results give a Gray code listing of these partitions similar to that of Kaye [2]. Since the
complete multipartite graph Kn1,n2,...,nr is the join of Kn1 , Kn2 , . . . , Knr , our results show that there are
vertex orderings π for which Canπ

k (Kn1,n2,...,nr ) is connected whenever k ≥ r. In Section 4, we first
show that there exists a vertex ordering π such that the canonical k-colouring graph of a bipartite
graph is connected whenever k ≥ 1 + |V|/2, and then give an example showing that this bound is
the best possible. We then prove a negative result which implies that complete multipartite graphs
with at least two nontrivial parts can not have Hamiltonian canonical colouring graphs, and there
cannot be a Hamilton path if there are at least three parts of size that have at least two. This leaves
open the possibility that canonical colouring graphs of complete bipartite graphs may have a Hamilton
path. We show that there exists an ordering π such that Canπ

k (Km,n) has a Hamilton path for all k ≥ 3.
In the final section of the paper, we study the canonical k-colouring graph of the complete multipartite
graph in which each part has exactly two vertices. We show that, for any vertex ordering π and any
integer k at least as large as the number of parts, the canonical k-colouring graph is either disconnected,
or isomorphic to a particular tree.

Throughout the paper, proofs of existence results are constructive and lead to algorithms which
generate the desired sequences.

2. Background, and a Preliminary Result

For basic definitions in graph theory, we refer to the text of Bondy and Murty [3].
Before briefly surveying some previous research on colour graphs we recall the definition of

col(G), the colouring number of G. Let π = x1, x2, . . . , xn be an ordering of the vertices of G. Let Hi be
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the subgraph of G induced by {x1, x2, . . . , xi}, for i = 1, 2, . . . , n. Define Dπ = max1≤i≤n dHi (xi).
Then col(G) = minπ Dπ + 1. Equivalently, col(G) = 1 + max δ(H), where the maximum is
taken over all subgraphs of G. The quantity col(G) is an upper bound on the number of colours
needed if the greedy colouring algorithm is applied to G and vertices are coloured in the order π.
Hence χ(G) ≤ col(G) ≤ ∆(G) + 1.

For k ≥ 1, letFk(G) be the set of k-colourings of a graph G. The k-colouring graph of G, denoted Ck(G),
has vertex set Fk(G), with two k-colourings being adjacent if and only if they differ in the colour
of exactly one vertex. For example, the 3-colouring graph of a path on four vertices is given in
Figure 2. This is an example of a reconfiguration graph in which vertices represent feasible solutions to
a problem and there is an edge between two solutions if one can be transformed to the other by some
allowable reconfiguration rule. There is a vast literature on the complexity of reconfiguration problems,
for example see [4,5]. The graph Ck(G) is the most studied of the various colour graphs (that is,
among the different allowable sets of colourings, and different reconfiguration rules). Connectivity
of Ck(G) arises in random sampling of k-colourings, and approximating the number of k-colourings,
for example see [6–8]. Dyer, Flaxman, Frieze and Vigoda proved that there is a least integer
c0 ≤ col(G) + 1 such that k-colouring graph of G is connected for all k ≥ c0 [6] (also see [9]).
It is NP-complete to decide if the 3-colouring graph of a bipartite graph is connected [10],
but polynomial-time to decide if two 3-colourings of a bipartite graph belong to the same component
of C3(G) [11]. Hamiltonicity of the k-colouring graph was first considered in [12], wherein it was
proved that there is always a least integer k0 ≤ col(G) + 2 such that the k-colouring graph of the graph
G is Hamiltonian for all k ≥ k0. The number k0 is known for complete graphs, trees and cycles [12],
2-trees [13], complete bipartite graphs [14], and some complete multipartite graphs [15]. For other
results on Ck(G), see [16], and for related results concerning the graph of L(2, 1)-labellings (colourings
with additional conditions), see [17].
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Figure 2. C3(P4), the 3-Colouring Graph of P4. The vertices are labeled by the colourings of the path.

The Bell k-colouring graph of G, denoted Bk(G), has as vertices the partitions of V(G) into at
most k independent sets, with two of these being adjacent when there is a vertex x such that these
partitions are equal when restricted to G− x. The Bell 3− colouring graph of the path on four vertices
is given in Figure 3. Bell k-colouring graphs are staudied in [18], as is the Stirling `-colouring graph
of G, the subgraph of B|V|(G) induced by the partitions with exactly ` cells. It is proved that B|V|(G) is
Hamiltonian for every graph G except Kn and Kn − e, and the quantity |V| is the best possible. It is
also proved that the Bell k-colouring graph of a tree with at least four vertices is Hamiltonian for all
k ≥ 3, and the Stirling `-colouring graph of a tree on at least n ≥ 1 vertices is Hamiltonian for all ` ≥ 4.
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Figure 3. B3(P4), the 3-Bell colouring graph of P4. The vertices are labeled by the partition of the path abcd.

The graph Canπ
k (G) is a spanning subgraph of Bk(G); the restriction to canonical colourings

eliminates some edges of Bk(G). Thus results asserting connectivity or Hamiltonicity of Canπ
k (G) imply

connectivity or Hamiltonicity of Bk(G), respectively. Since at most n colours can be assigned to the
vertices of an n-vertex graph G, it follows that Bk(G) = Bn(G) and Canπ

k (G) = Canπ
n (G) for all k ≥ n.

Canonical k-colouring graphs were first considered in [1]. For every tree T there exists an ordering
π of the vertices such that the canonical k-colouring graph of T with respect to π is Hamiltonian for
all k ≥ 3. The canonical 3-colouring graph of the cycle Cn is disconnected for all vertex orderings π,
while for each k ≥ 4 there exists an ordering π for which Canπ

k (Cn) is connected. It is an open problem
to find general conditions on k and π such that Canπ

k (G) is connected. Most results are negative
assertions about certain vertex orders π. In [1] it was proved that if G is connected, but not complete
then there is always a vertex ordering π such that Canπ

k (G) is disconnected for all k ≥ χ(G) + 1.
In particular, the graph Canπ

k (G) is disconnected whenever the first three vertices u, v, w of the vertex
ordering π are such that uv 6∈ E but uw, vw ∈ E. Our first proposition generalizes that statement.

Proposition 1. Let π = v1, v2, . . . , vn be a vertex ordering of G. If there exists i ≥ 3 such that vi is adjacent
to each of v1, v2, . . . , vi−1, and the subgraph of G induced by {v1, v2, . . . , vi} is not complete, then Canπ

k (G) is
disconnected for all k ≥ χ(G) + 1.

Proof. Let Hi be the subgraph of G induced by {v1, v2, . . . , vi}. Since Hi is not complete, χ(Hi) < i.
Let c1 be a canonical χ(G)-colouring of G with respect to π. Then c1(vi) = 1 +

max{c1(v1), c1(v2), . . . , c1(vi−1}. Furthermore, if c2 is an adjacent colouring in Canπ
k (G) then it differs on

only one vertex. The colour of vi cannot change (because we are only considering canonical colourings)
so c2 must differ on a vertex other than vi. It follows that the vertex vi is assigned the same colour in
any canonical colouring that is joined to c1 by a path.

Suppose first that c1 assigns the same colour to two of v1, v2, . . . , vi−1, say c1(va) = c1(vb) for
some a, b < i. Then, there is a (non-canonical) χ(G) + 1 colouring of G in which vb is coloured with
colour χ(G) + 1, and all other vertices, vj for j < i are assigned the same colour as in c1. Let c2

be the equivalent canonical colouring to this with respect to π (defines the same partition of V(G)).
Then c2(vi) = 1 + c1(vi). Hence, there is no path in Canπ

k (G) joining c1 and c2.
Now assume c1 assigns distinct colours to each of v1, v2, . . . , vi−1. Since Hi is not complete, it has

a pair of non-adjacent vertices. There is a χ(G) + 1 colouring of G in which these two vertices are
assigned the same colour, and all other vertices are assigned the same colour as in c1. Let c3 be the
canonical version of this colouring. Then c3(vi) = c1(vi)− 1. Hence, there is no path in Canπ

k (G)

joining c1 and c3.
In both cases, Canπ

k (G) is disconnected. This completes the proof.

3. Unions and Joins

In this section we explore connectivity and Hamiltonian properties of graphs constructed by the
operations of disjoint union and join. Our main focus is the situation where one of the graphs involved
is complete, or has no edges.
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Recall that the disjoint union of disjoint graphs G1 and G2 is the graph G1 ∪ G2 with vertex set
V(G1)∪V(G2) and edge set E(G1)∪ E(G2). The join of disjoint graphs G1 and G2 is the graph G1 ∨G2

with vertex set V(G1) ∪ V(G2) and edge set E(G1) ∪ E(G2) ∪ {x1x2 : x1 ∈ V(G1) and x2 ∈ V(G2)}.
We shall consider unions first, and joins second.

Observe that the canonical k-colouring graph of Kn = K1 ∪ K1 ∪ · · · ∪ K1 is the graph of partitions
of an n-set into at most k parts. Hence the number of vertices is the sum of Stirling numbers of the
second kind, S(n, 1) + S(n, 2) + · · ·+ S(n, k). A Hamilton cycle in this graph corresponds to a cyclic
Gray code for set partitions. Many different Gray codes, cyclic and otherwise, for set partitions are
known to exist [19]; our method gives a different point of view and leads to a recursive algorithm
similar to that of Kaye [2]. A related method that gives Hamilton paths rather than Hamilton cycles is
given in Theorem 4.

Theorem 1. Let π be a vertex ordering such that Canπ
k (G) is Hamiltonian. Then, for the vertex ordering π′ of

G ∪ K1 obtained by placing the vertex of K1 at the end of π, the graph Canπ′
k (G ∪ K1) is Hamiltonian.

Proof. Since Canπ
k (G) has at least three vertices, we have k ≥ 2.

Suppose k = 2. Then, G is bipartite and has at least three components. Let X1 be the component
of G containing the first vertex of π. Then Canπ

k (G) is isomorphic to the cube of dimension equal
to the number of components of G− X1, and Canπ′

k (G ∪ K1) is isomorphic to the cube of one higher
dimension. Since the t-cube is Hamiltonian for all t ≥ 2, the statement follows.

Now suppose k ≥ 3. If c is a canonical k-colouring of G∪K1 with respect to π′, then the restriction
of c to G is a canonical k-colouring of G. We will say that the colouring c on G ∪ K1 is an extension
of the colouring on G. Furthermore, each canonical k-colouring of G has at least two extensions to
a canonical k-colouring of G ∪ K1, and there are exactly two extensions if and only if G ∼= Kn and only
one colour is used on the vertices of G. Notice that the set of canonical k-colourings of G ∪ K1 which
agree on their restriction to V(G) induces a complete subgraph of Canπ′

k (G ∪ K1).
By hypothesis, Canπ

k (G) has a Hamilton cycle c1, c2, . . . , ct, c1. Thus t ≥ 3, and there exists i
such that ci and ci+1 both use at least two colours. Without loss of generality, i = t. Thus, the
canonical k-colourings ct and c1 each have at least three extensions to canonical k-colouring of G ∪ K1.
For i = 1, 2, . . . , t, let ci · ` denote the extension of ci to a canonical k-colouring of G ∪ K1 in which
the vertex of K1 is assigned colour `. Observe that ci · 1 and ci · 2 are adjacent to ci+1 · 1 and ci+1 · 2,
respectively, 1 ≤ i ≤ t− 1 and ct · 1, ct · 2 and ct · 3 are adjacent to c1 · 1, c1 · 2 and c1 · 3, respectively.

A Hamilton cycle in Canπ′
k (G ∪ K1) can be constructed as follows. The first vertex is c1 · 1. Then,

for i = 2, 3, . . . , t− 1, list all extensions of ci such that ci · 1 is first and ci · 2 is last if i is even, and ci · 2
is first and ci · 1 is last if i is odd. Observe that any pair of consecutive vertices in the list are adjacent.
Let ct−1 · z be the last vertex listed according to this procedure. The Hamilton cycle is completed by
listing ct · z, then all other extensions of ct in such a way that ct · 3 is listed last and, finally, c1 · 3 and all
extensions of c1 in such a way that c1 · 1 is listed last (recall that c1 · 1 was the first vertex listed).

This completes the proof.

Corollary 1. Let π be a vertex ordering such that Canπ
k (G) is Hamiltonian. Then, for the vertex ordering π′

of G ∪ Kn obtained by placing the vertices of Kn at the end of π, the graph Canπ′
k (G ∪ Kn) is Hamiltonian.

The Gray code for set partitions implied by the following is similar to the one found by Kaye [2].

Corollary 2. For all n ≥ 3 and k ≥ 2, and any vertex ordering π, the graph Canπ
k (Kn) is Hamiltonian.

We now turn our attention to connectivity of the canonical k-colouring graph of the disjoint union
of graphs G1 and G2. Since it is an open problem to determine general conditions under which the
canonical k-colouring graph of a (connected) graph G is connected, in the results that follow we assume
the canonical k-colouring graph of G1 is connected and give conditions under which a canonical
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colouring graph of G1 ∪ G2 is connected, no matter how the vertices of G2 are ordered following the
vertex ordering of G1.

Theorem 2. Let G1 and G2 be disjoint graphs such that χ(G1) ≥ 1 + col(G2). Suppose there exists an integer
k, and an ordering φ of the vertices of G1, such that Canφ

k (G1) is connected. Then, for any ordering π of the
vertices of G1 ∪ G2 obtained by putting an ordering of the vertices of G2 after φ, the graph Canπ

k (G1 ∪ G2)

is connected.

Proof. Let c be some particular canonical colouring of G1 ∪ G2 with χ(G1) = χ(G1 ∪ G2) colours such
that colours 1, 2, . . . , χ(G1) appear on the vertices of G1 (as they must), and colours 1, 2, . . . , χ(G2)

appear on the vertices of G2. Let c2 be the restriction of c to V(G2).
We complete the proof by showing that any canonical k-colouring of G1 ∪ G2 can be transformed

into c by a finite number of steps corresponding to edges in Canπ
k (G1 ∪ G2). Suppose a canonical

k-colouring d of G1 ∪ G2 is given. Let M be the largest colour which d assigns to a vertex of G1. Let H2

be the subgraph of G2 induced by the set of vertices on which colours 1, 2, . . . , M appear.
Since M ≥ χ(G1) ≥ 1 + col(G2) ≥ 1 + col(H2), the (ordinary) M-colouring graph of H2 is

connected [6,9]. Hence there is a sequence of steps corresponding to edges in Canπ
k (G1 ∪ G2) that

transforms d to a canonical colouring d′ which agrees with c2 on V(H2). The following step can then
be repeated until d′ is transformed into a canonical colouring that agrees with c2 on V(G2). If the
current colouring does not agree with c2 on V(G2), then let x be the last vertex of G2 which is not
coloured c2(x), and recolour x with c2(x) (Note that any the colour of any such x is greater than M).
The resulting colouring is proper because of the recolouring of H2 done earlier, and canonical by the
maximality of the position of x.

Finally, since Canφ
k (G1) is connected and χ(G1) ≥ χ(G2), the subgraph of Canπ

k (G1 ∪ G2)

induced by the set of (canonical) colourings for which the restriction to V(G2) is c2 is isomorphic
to Canφ

k (G1), and is therefore connected. Hence there is a sequence of steps corresponding to
edges in Canπ

k (G1 ∪ G2) that transforms a canonical colouring which agrees with c2 on V(G2) into c.
This completes the proof.

The hypothesis of the above theorem can be relaxed slightly to χ(G1) ≥ 1 + c0(G2), where c0

is the least integer such that k-colouring graph of G is connected for all k ≥ c0. By the result of [6],
c0(G2) ≤ col(G2).

Corollary 3. Let k, n ≥ 1 and G be a graph with at least one edge. If there exists a vertex ordering π such that
Canπ

k (G) is connected, then there exists an order π′ for which Canπ′
k (G ∪ Kn) is connected.

Proof. The colouring number of K1 equals 1. Apply Theorem 2 inductively.

We conclude this section by considering the join operation. Observe that in any colouring of
G1 ∨G2, the set of colours that appear on the vertices of G1 is disjoint from the set of colours that appear
on the vertices of G2. With this observation, the proof of the first proposition below is straightforward,
and hence is omitted.

Proposition 2. Let π be a vertex ordering of the graph G. If π′ is the vertex ordering obtained by inserting the
vertices of the Kr at the beginning of π, then Canπ

t (G) ∼= Canπ′
t+r(G ∨ Kr).

Corollary 4. If Canπ
t (G) is connected (resp. has a Hamilton path, has a Hamilton cycle) then there exists

an order π′ such that Canπ′
t+r(G ∨ Kr) is connected (resp. has a Hamilton path, has a Hamilton cycle).

In contrast, by Proposition 1, in almost any ordering π′ of the vertices that does not begin with all
the vertices of Kr the corresponding Canπ′

t+r(G ∨ Kr) will be disconnected.
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Corollary 5. Let T be a tree with at least three vertices, and k ≥ 4. For any integer n > 1, there exists a vertex
ordering π′ such that Canπ′

k+n(T ∨ Kn) is Hamiltonian.

Proof. For any such k, there is a vertex ordering π such that Canπ
k (T) is Hamiltonian [1].

The next corollary implies, among other things, that the canonical c-colouring graph of a wheel
on n spokes is connected for all c ≥ 4.

Corollary 6. Let k ≥ 4, t ≥ 3 and n ≥ 1. There exists a vertex ordering π′ such that Canπ′
k+n(Ct ∨ Kn)

is connected.

Proof. For any such k, there is a vertex ordering π such that Canπ
k (Ct) is connected [1].

Proposition 3. Let k, n ≥ 1. Suppose there exists a vertex ordering π such that Canπ
k (G) is connected.

Then there exists an order π′ for which Canπ′
k+i(G ∨ Kn) is connected for all i ≥ 1.

Proof. Let π′ be the order obtained from π by inserting one vertex of Kn at the beginning of the
ordering and all the others at the end. Note that the subgraph of Canπ′

k+i(G ∨ Kn) induced by the set of
canonical colourings in which every vertex of Kn is coloured 1 is isomorphic to Canπ

k (G). Since, for any
canonical colouring c, there is a path in Canπ′

k+i(G ∨ Kn) to a canonical colouring in which every vertex
of Kn is coloured 1 and the colour of every vertex of G is the same as in c, the result follows.

We note that connected cannot be replaced by Hamiltonian in the above proposition. It follows
from Proposition 4 that, for example, there is no vertex ordering π such that Canπ

k (K2,2) has a Hamilton
cycle for any k ≥ 3, and no ordering π′ such that Canπ′

k (K2,2,2) has a Hamilton path for any k ≥ 4.

Corollary 7. Let H be a complete multipartite graph with p parts. For any k ≥ p, there exists a vertex ordering
π such that Canπ

k (H) is connected.

Proof. Suppose one of the maximal independents sets has size s. Take G = Ks in Proposition 3, and apply
the proposition inductively to construct H and π.

4. Bipartite Graphs

We now show that, once k is sufficiently large, there is always a vertex ordering such that the
canonical k-colouring graph of a bipartite graph is connected. We then show that the bound given is
the best possible.

Theorem 3. Let G be a bipartite graph on n vertices, then there exists an ordering π of the vertices such that
Canπ

t (G) is connected for t ≥ n/2 + 1.

Proof. Suppose G has bipartition (A, B), where |A| ≥ |B|. Choose a ∈ A, b ∈ B, such that ab ∈ E(G).
Define π to be a, b, B− b, A− a. That is vertex a is coloured first, b is coloured second, the rest of B
are the third through (|B|+ 1)st vertices to be coloured, the rest of A are the (|B|+ 2)nd through nth
vertices to receive colours. Label the vertices v1, v2, . . . vn according to this order.

The standard two colouring s : V → {1, 2} is s(vj) = 1 if j = 1 or j ≥ |B|+ 2, and s(vj) = 2
otherwise. The method will be to show that any colouring c : V → {1, 2, . . . , t} can be obtained from
the standard 2-colouring s in a finite number of steps.

First, suppose colour 1 is only used on vertices of A. In this case the colouring c can be transformed
into s as follows. Recolour (if necessary) each vertex of A to colour 1 by recolouring from vertex vn

down to v|B|+2, and then recolour each vertex of B to colour 2 by recolouring from vertex v|B|+2 down
to v2. It is clear that at every stage there is a proper colouring.
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If colour 1 is used on vertices in both parts then the number of colours used on B is at most
|B| ≤ n/2. Suppose exactly r ≤ n/2 < t colours (including colour 1) are used on vertices in B, and let
xi be the number of the first vertex to receive colour i, i = 1, . . . r. That is c(vxi ) = i and for all j < i,
c(vj) < i. Clearly x1 = 1, x2 = 2, and since c is a canonical colouring x1 < x2 < x3 < · · · < xr.
Set xr+1 = |B|+ 2.

We will use the xi to define an intermediate colouring c′ by c′(vj) = i if xi ≤ j < xi+1 ≤ n,
for j = 1, 2, . . . , n. This is a proper colouring because no colour is used on vertices in both parts B
and A. It uses r + 1 ≤ t colours in total. The colours are used in numerical order, so it is canonical.

The proof is completed by showing that the standard colouring s can be transformed to colouring
c′ and colouring c′ can be transformed to colouring c. Since colouring c′ does not use any colour
on both parts, the standard colouring s can be transformed to c′ by changing the colours on v1 to
vn in order, if needed. That is change the colour on vertex vm from s(vm) to the colour c′(vm) for
m = 1, . . . , n.

Next transform c′ to c. Do this by passing through the vertices from v1 to vn r times, once for each
of the r colours used in c. On the kth pass change vertices to colour k if they are colour k in c. That is,
in pass k, step m we will change the colour of vertex vm, only if c(vm) = k. We need to show that this
gives a proper canonical colouring at every step. Let skm be the colouring obtained after the mth step
in the kth pass. Then

skm(vj) =

{
c(vj) if c(vj) < k, or if c(vj) = k and j ≤ m,
c′(vj) otherwise.

To see that each skm is proper, we must show that, {vj|skm(vj) = i}, the set of vertices coloured
i, is independent for all colours i = 1, 2, . . . , r + 1 and all skm. For i < k, the set of vertices coloured
i in skm equals the set of vertices coloured i in c. Thus {vj|skm(vj) = i} is an independent set for
i ≤ k− 1. For i > k, the set of vertices coloured i in skm is a subset of the set of vertices coloured i in
c′ thus {vj|skm(vj) = i} is an independent set for i ≥ k + 1. It remains to consider {vj|skm(vj) = k}.
The vertices coloured k under skm are {vj|skm(vj) = k} = {vj|j ≤ m, c(vj) = k} ∪ {vj|j > m, c′(vj) = k}.

When k = 1 then since x1 = 1 and x2 = 2, we get {vj|skm(vj) = 1} ⊆ {vj|c(vj) = 1}, for all m
so this is an independent set. At the other end, when xk ≥ |B|+ 2 all vertices coloured k by either
colouring c or c′ will be in part A. So {vj|skm(vj) = k} is independent for all m.

If 2 ≤ xk ≤ |B| + 1 then c′ only assigns colour k to vertices in part B. No vertex in part A is
coloured k until the only vertices coloured k on part B are those coloured k under c. There are two cases.

• If m ≤ |B|+ 1 then all vertices coloured k in skm are in B so the set is independent.
• If m > |B|+ 1, this means that the only vertices in B that are still coloured k are coloured k under

c, that is: |B| ∩ {vj|skm(vj) = k} = |B| ∩ {vj|c(vj) = k}. No vertices in A are coloured k under
c′ so if vj ∈ A and skm(vj) = k, then m > j and skm(vj) = c(vj) = k. Thus {vj|skm(vj) = k} ⊆
{vj|c(vj) = k} which is independent.

Finally we show the colourings are canonical. By construction, for all colours, i, c(vxi ) = c′(vxi ) =

skm(vxi ) = i, and no vertex before vxi is coloured i + 1 or higher in any of the colourings. Thus each of
skm is a canonical proper colouring.

Consider the graph Ln = Kn,n − F, where F is a perfect matching. In the n-colouring of Ln where
the opposite ends of edges in F are assigned the same colour, every vertex has a neighbour of any
different colour. Thus, if c is the canonical version of this colouring with respect to a vertex ordering π,
then c is an isolated vertex in Canπ

n (Ln). Since Ln has 2n vertices, it follows that the lower bound in
the above theorem is the best possible.

By Corollary 7, there is always a vertex ordering π such that Canπ
k (Kn1,n2,...,nr ) is connected.

We now show that there is no Hamilton cycle, and frequently no Hamilton path, in the canonical
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k-colouring graph of a complete multipartite graph. By Corollary 4 it suffices to consider the case
where ni ≥ 2 for all i. The specific example of Canπ

k (K2,2,...,2) will be considered in detail in Section 5.

Proposition 4. Let G = Kn1,n2,...,nr , where ni ≥ 2, for all i. Then, for all vertex orderings π and k ≥ r + 1,

1. Canπ
k (G) has a cut vertex and hence has no Hamilton cycle;

2. if r ≥ 3 then Canπ
k (G) has no Hamilton path.

Proof. We first prove statement 1. The colouring c where every vertex in the ith part gets colour i
is a cut vertex. Note that no colour can be used on vertices in more than one part. Any colouring ci
where a vertex vi in part i gets colour r + 1 cannot change to a colouring cj where a vertex vj in part j
gets coloured r + 1 without first changing the colour of vi. If the colour r + 1 is removed from part i
then no higher colour can be used without violating canonicity. So if there is a path from ci to cj, it
must pass through c.

We now prove statement 2. If π does not start with a maximum clique, then Canπ
k (G) is

disconnected by Proposition 1. Hence assume the first r vertices of π induce a maximum clique.
The argument above shows that the cut vertex c actually partitions the colourings into r cells,
corresponding to using the r + 1 colour in each of the r independent sets. Thus there can be no
Hamilton path if there are at least three independent sets with at least two vertices each.

By Proposition 4, for m, n ≥ 2 and k ≥ 3, the graph Canπ
k (Km,n) has a cut vertex, and hence no

Hamilton cycle. On the other hand, for n ≥ 2, the graph Canπ
k (K1,n) has a Hamilton cycle for all

k ≥ 3 [1]. The possibility remains that the canonical k-colouring graphs of complete bipartite graphs
which are not stars have a Hamilton path. We show next that Canπ

k (Kn,m) in fact has a Hamilton
path for all admissible values of m, n, k. To do so, we first give a Gray code (not cyclic) for Canπ

k (Kn)

which has certain properties. The proof is recursive and similar to, but more elaborate than, that of
Theorem 1.

Theorem 4. For all n ≥ 2 and k ≥ 2, and any vertex ordering π, the graph Canπ
k (Kn) has a Hamilton path

x1, x2, . . . , xt such that:

(i) the colouring x1 = 11 . . . 1, and the colouring xt uses all k colours.
(ii) For each 1 < i < t, the set of colours used by xi is identical to the set used by either xi−1, xi+1.

Proof. The sequences 11 and 11, 12 clearly work for Canπ
1 (K2) and Canπ

2 (K2) respectively. We induct
first on n and then on k. Note that because colourings are canonical we only consider n ≥ k.

Let c1, c2, . . . , ct be a Hamilton path in Canπ
k (Kn) with properties (i) and (ii). For i = 1, 2, . . . , t,

let ci · ` denote the extension of ci to a canonical k-colouring of Kn+1 in which the last vertex is assigned
colour `. Observe that ci · ` is adjacent to ci+1 · ` whenever both of these are canonical colourings.

First the special case k = 2. For n ≥ k = 2 a Hamilton path in Canπ
k (Kn+1) is constructed from the

one for Canπ
k (Kn) as follows: c1 · 1, c1 · 2, c2 · 2, c2 · 1, c3 · 1, c3 · 2, . . . c2i · 2, c2i · 1, c2i+1 · 1, c2i+1 · 2 · · · .

For n ≥ k ≥ 3, a Hamilton path in Canπ
k (Kn+1) can be constructed from the one for Canπ

k (Kn)

as follows. The first vertices are c1 · 1, c1 · 2, c2 · 2, c2 · 1, c2 · 3, c3 · 3, c3 · 2, c3 · 1. Starting with i = 4,
and then repeating for the next unused prefix ci, suppose ci, ci+1, . . . , ci+j is a maximal sequence such
that each ci+m uses exactly the same set of colours, and suppose the maximum allowable colour
that can be added to each of them is `i. We construct a Hamilton path on the subgraph induced
by {ci+m · `|m = 0, 1, . . . , j; 1 ≤ ` ≤ `i}. These will be pieced together to get the Hamilton path for
Canπ

k (Kn+1). This path must start with ci · 1 and end with ci+j · 1.
Suppose j is odd. Take everything from each prefix ci+m before proceeding to the next prefix.

In particular take the Hamilton path starting at ci+2p · 1 and ending with ci+2p · `i for p = 0, 1, . . . , j/2 and
in the reverse order ci+2p+1 · `i and ending with ci+2p+1 · 1 for p = 0, 1, . . . , j/2.
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Suppose j is even. Recall that for 1 ≤ m ≤ j, the subgraph induced by {ci+m · ` : 1 ≤ ` ≤ `i}
is complete, and by assumption `i ≥ 3. First use any Hamilton path through the subgraph induced
by {ci · `|1 ≤ ` ≤ `i} ∪ {ci+1 · `|1 ≤ ` ≤ `i} which starts at ci · 1, and ends at ci+1 · `i and satisfies
property (ii). Next, proceed as in the odd case alternating the direction of the Hamilton path, so that
again the path through {ci + m · `|m = 0, 1, . . . , j} ends at ci+j · 1.

In either case, the set of colours used on ci+m · ` is identical for all m, ` except possibly when
` = `i, and the set of colours used on ci+2p · `i is identical to the set of colours used on ci+2p+1 · `i and
these colourings are adjacent in the path. That the last colouring in the path uses all k colours follows
from the induction hypothesis.

The Hamilton path for Canπ
n+1(Kn+1) is obtained from the one of Canπ

n (Kn+1) by appending
ct · (n + 1) to the last vertex in Canπ

n (Kn+1), which will be of the form ct · `.

The properties for the Hamilton paths required in the above proof are similar to those studied
by various authors in the context of Gray codes for set partitions. In [19] the authors give Gray
codes for the set of restricted growth functions, which is the set of non-negative integer sequences
{a1a2 . . . an : ai+1 ≤ max{a1, a2, . . . , ai}+ 1}. While these Gray codes start with 11 . . . 1 and end with
123 . . . n, they do not have the property that at least two sequences in a row use the same set
of integers (see for example Figure 5 in [19]). The set of bounded restricted growth functions is
Rb(n) = {a1a2 . . . an : ai+1 ≤ max{a1, a2, . . . , ai}+ 1 and ai ≤ b}. Ruskey and Savage also considered
Gray codes on Rb(n), but restrict their attention to strict and weak Gray codes which have the further
property that successive elements can differ by only 1 (if strict) or 2 (weak) in the one position in which
they differ. They show that such codes cannot exist. In the Gray codes considered here, successive
sequences can differ in only one position, but the elements can differ by any amount. In other words,
Theorem 4 says there is a (non strict, non weak) Gray Code for the set of bounded restricted growth
functions, Rb(n), that satisfies properties (i) and (ii).

Theorem 5. There exists a vertex ordering π such that Canπ
k (Kn,m) has a Hamilton path for n, m ≥ 2, k ≥ 3.

Proof. Let Kn,m have bipartition (A, B), where A = {a1, . . . an}, B = {b1, . . . bm}. Let the vertex
ordering π = a1b1a2a3 . . . anb2b3 . . . bm.

By Theorem 4 there is a Hamilton path, x1, x2, . . . xt, with properties (i) and (ii), in the canonical
k-colouring graph of the subgraph induced by the restriction of π to its first n + 1 vertices,
a1b1a2a3 . . . an (since {a1, a2, . . . , an} is an independent set, and b1 will always be assigned the same
colour in any canonical colouring). For each such colouring xi, let G(xi) be the subgraph of Canπ

k (Kn,m)

consisting of the canonical colourings which are extensions of xi. Note that each subgraph G(xi) is
isomorphic to a graph Canπ

k−r(Km), corresponding to the colourings of the vertices b1b2b3 . . . bm in the
k− r colours not used on a1, a2, a3 . . . an (starting with 2 which was the colour used on b1), and also
that V(Canπ

k (Kn,m)) = ∪i≤i≤tV(G(xi)).
The Hamilton path in Canπ

k (Kn,m) will be constructed by piecing together Hamilton paths from
the G(xi) in the order i = 1, 2, . . . , t. In order to be able to piece these paths together, the first colouring
in the Hamilton path of G(xi+1) must be identical to the last colouring in the Hamilton path of G(xi).
Note that if xi and xi+1 use different colours then the only colouring that G(xi) and G(xi+1) will have
in common is 22 . . . 2. For each G(xi) there is a Hamilton path that satisfies the conditions of Theorem 4,
in this case one end is 22 . . . 2 and the other uses all the colours of xi.

Suppose that xi, xi+1, . . . xi+j is a maximal sequence which use the same set of colours, and further
that neither i 6= 1 nor i + j 6= t. The Hamilton path from G(xi) that is used must start with 22 . . . 2 and
the one from G(xi+j) must end with 22 . . . 2. If j is odd, this is accomplished by taking the Hamilton
path starting at 22 . . . 2 for G(xi+2p), for p = 0, 1, . . . , bj/2c, and ending with 22 . . . 2 for G(xi+2p+1)

for p = 0, 1, . . . , bj/2c. If j is even, then first use a Hamilton path through the subgraph induced by
V(G(xi)) ∪ V(G(xi+1)) which starts with 22 . . . 2 and ends in a colouring that uses all the colours.
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Then proceed as in the even case alternating the direction of the Hamilton path, so that the Hamilton
path through G(xi+j) can end with 22 . . . 2.

We finish the argument by reiterating the conditions that must hold for the construction to succeed.
The Hamilton path x1, x2, . . . , xt in the subgraph induced by the canonical k-colourings of the first
n + 1 vertices of π needs the property that for each i 6= 1, the set of colours used for xi is identical to
the set used on either xi−1, or xi+1. In addition, for each xi, there should be a Hamilton path in G(xi)

that starts with 22 . . . 2. These are precisely the conditions guaranteed by our choice of the Hamilton
path x1, x2, . . . , xt.

5. Canπ
k (T2n,n)

For n ≥ 1, let T2n,n be the complete n-partite graph on 2n vertices in which each independent set
is size two. Then T2,1

∼= K2, T4,2
∼= K2,2 ∼= C4, T6,3 ∼= K2,2,2, and so on.

The purpose of this section is to study the canonical k-colouring graphs of T2n,n. The results
proved in this section are summarized in Theorem 6 below. In the cases where the canonical colour
graph is connected, we describe it completely.

Theorem 6. Let n ≥ 1. Then

1. Canπ
n (T2n,n) ∼= K1 for any vertex ordering π.

2. If k ≥ 2n, then Canπ
k (T2n,n) ∼= Canπ

2n(T2n,n) for any vertex ordering π.
3. If n < k and the subgraph of T2n,n induced by the first n vertices in the vertex ordering π is not complete,

then Canπ
k (T2n,n) is disconnected.

4. If n < k and the subgraph of T2n,n induced by the first n vertices in the vertex ordering π is complete,
then Canπ

k (T2n,n) is a tree. Further, if Canπ
k (T2n,n) and Canφ

k (T2n,n) are both trees, then Canπ
k (T2n,n) ∼=

Canφ
k (T2n,n).

5. Canπ
2n(T2n,n) never has a Hamilton cycle and has a Hamilton path only when n = 2, k = 2.

Statements 1 and 2 are clear. Statement 3 is immediate by Proposition 1. The proof of statement 4
is partitioned into a sequence of propositions. First, we consider the graphs Canπ

2n(T2n,n), for vertex
orderings π that start with a maximal clique. The graphs Canπ

k (T2n,n), with n < k < 2n, will be
considered later. According to statement 2 we need not consider the situations in which k > 2n.

Proposition 5. Let n ≥ 1. If the subgraph of T2n,n induced by the first n vertices in the sequence π is complete,
then Canπ

2n(T2n,n) is a tree on 2n vertices. Further, if the subgraph of T2n,n induced by the first n vertices in the
sequence φ is complete, then Canπ

2n(T2n,n) ∼= Canφ
2n(T2n,n).

Proof. In any colouring of T2n,n, a pair of independent vertices either has the same colour, or different
colours. In the latter case, each vertex in the pair is the only vertex to be assigned that colour. Suppose
that the last n vertices of π are x1, x2, . . . , xn. A canonical 2n-colouring with respect to π can be encoded
as a binary sequence b1b2 . . . bn of length n in which the i-th element is 0 if vertex xi is assigned the same
colour as its unique non-neighbour (which is one of the first n vertices of π), and 1 if it is assigned the
first colour not used on a vertex earlier in the sequence. Thus, Canπ

2n(T2n,n) has precisely 2n vertices.
We claim that an element bi of the binary sequence can change (from 0 to 1, or 1 to 0) if and only

if bj = 0 for all j > i. Suppose that xi is the only vertex of its colour, that is, it has a different colour
than its unique non-neighbour, w, and bi = 1. If there exists j > i such that xj also has a different
colour than its unique non-neighbour, then the colouring arising from assigning the colour of w to
xi is not canonical (because the colour of xi, which is smaller than the colour of xj, would not be
used on any vertex). Similarly, if xi has the same colour as its unique non-neighbour, then it can only
be assigned a different colour if there is no j > i such that xj has a different colour than its unique
non-neighbour. This proves the claim.
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We now show that, for any such sequence π, the graph Canπ
2n(T2n,n) is a tree. According to the

discussion above, the vertices of Canπ
2n(T2n,n) can be taken to be the binary sequences of length n,

with two sequences being adjacent if and only if they differ in exactly one position, and all entries to the
right of that position are zero. Since any binary sequence can be reached from 00 . . . 0 by introducing
1s from left to right, the graph Canπ

2n(T2n,n) is connected. The proof is complete once we show that
the sum of the vertex degrees equals 2(2n − 1). The degree of 00 . . . 0 is n. Any other binary sequence
contains at least one 1. If the rightmost 1 is in position i then the degree of b1b2 · · · bn is n− i + 1 and
the number of such sequences is 2i−1. Hence, the sum of the vertex degrees is

n + ∑n
i=1 2i−1(n− i + 1) = n + (n + 1)∑n

i=1 2i−1 −∑n
i=1 2i−1i

= n + (n + 1)(2n − 1)− ((n + 1)2n − (2n+1 − 1))
= 2 · 2n − 2.

Since the description of Canπ
2n(T2n,n) uses no properties of π other than that the subgraph of T2n,n

induced by the first n vertices of π is complete, it is clear that any two trees arising from such sequences
are isomorphic. This can also be proved by induction on n by using the observation that the subtree
induced by the set of sequences in which the first entry is 0 is isomorphic to Canπ

2(n−1)(T2(n−1),n−1),
as is the subtree induced by the set of sequences in which the first entry is 1.

The argument above shows that, for n > 1, the leaves of Canπ
2n(T2n,n) correspond to precisely

the binary sequences in which bn = 1. Thus, Canπ
2n(T2n,n) has exactly 2n−1 ≥ 2 leaves, and hence

never has a Hamilton cycle. There is a Hamilton path only when n ≤ 2 (recall that T2,1
∼= K2,

and T4,2
∼= K2,2 ∼= C4).

For an ordering π such that the subgraph induced by the first n vertices is complete, the tree
Canπ

6 (T6,3) is shown in Figure 4. For any such ordering, the tree Canπ
8 (T8,4) is constructed from two

copies of this tree, one arising from concatenating a 1 on the left of each sequence and the other arising
from concatenating a 0 on the left of each sequence, and then joining the vertices 0000 and 1000.

000

100 101

110 111

001

011010

Figure 4. The tree Canπ
6 (T6,3)

It remains to consider the graphs Canπ
k (T2n,n) for n < k < 2n and sequences π for which the first

n vertices is complete.

Proposition 6. Let n ≥ 1 and n < k < 2n. If the subgraph of T2n,n induced by the first n vertices in
the sequence π is complete, then Canπ

k (T2n,n) is a tree on (n−1
t ) + (n−1

t−1) + · · · + (n−1
0 ) vertices. Further,

if the subgraph of T2n,n induced by the first n vertices in the sequence φ is complete, then Canπ
k (T2n,n) ∼=

Canφ
2n(T2n,n).
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Proof. Observe that Canπ
k (T2n,n) is the subgraph of Canπ

2n(T2n,n) induced by the sequences with at
most t = k− n ones. There are ν = (n−1

k ) + (n−1
k−1) + · · ·+ (n−1

0 ) such sequences. Hence Canπ
k (T2n,n)

has exactly ν vertices.
As before, since any binary sequence with at most t ones can be reached from 00 . . . 0 by

introducing ones from left to right, the graph Canπ
k (T2n,n) is connected, and therefore is a tree.

In addition, as before, the description of Canπ
k (T2n,n) uses no properties of π other than that of

the subgraph of T2n,n induced by the first n vertices of π is complete. Thus, once again it is clear that
any two trees arising from such sequences are isomorphic.

For n > 1 and n < k ≤ 2n, the leaves of the tree Canπ
k (T2n,n) are the binary sequences with exactly

k ones and a zero in the last position, or with at most k ones and a one in the last position. Hence there
cannot be a Hamilton cycle, and there is a Hamilton path only when n = 2 and k = 2.

The proof of Theorem 6 is now complete.

6. Conclusions

In this paper we have continued the study of reconfiguration of canonical colourings. Our main
results are that for all bipartite graphs and complete multipartite graphs there exists a vertex ordering
π such that Canπ

k (G) is connected for large enough values of k. In addition, we have shown that
a canonical colouring graph of a complete multipartite graph usually does not have a Hamilton cycle,
but that there exists a vertex ordering π such that Canπ

k (Km,n) has a Hamilton path for all k ≥ 3.
The paper also gave a detailed consideration of Canπ

k (K2,2,...,2). For each k ≥ χ and all vertex orderings
π, Canπ

k (K2,2,...,2) is either disconnected or isomorphic to a particular tree.
Furthermore, the technical nature of these results leads us to believe that additional results about

reconfiguration of canonical colourings will require significant effort. In addition, we posit that unlike
for the k-colouring graph or the Bell k-colouring graph, there will be no criteria that ensure connectivity
for all base graphs.
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