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Abstract: This study proposes a modified convolutional neural network (CNN) algorithm that is
based on dropout and the stochastic gradient descent (SGD) optimizer (MCNN-DS), after analyzing
the problems of CNNs in extracting the convolution features, to improve the feature recognition
rate and reduce the time-cost of CNNs. The MCNN-DS has a quadratic CNN structure and adopts
the rectified linear unit as the activation function to avoid the gradient problem and accelerate
convergence. To address the overfitting problem, the algorithm uses an SGD optimizer, which is
implemented by inserting a dropout layer into the all-connected and output layers, to minimize cross
entropy. This study used the datasets MNIST, HCL2000, and EnglishHand as the benchmark data,
analyzed the performance of the SGD optimizer under different learning parameters, and found that
the proposed algorithm exhibited good recognition performance when the learning rate was set to
[0.05, 0.07]. The performances of WCNN, MLP-CNN, SVM-ELM, and MCNN-DS were compared.
Statistical results showed the following: (1) For the benchmark MNIST, the MCNN-DS exhibited
a high recognition rate of 99.97%, and the time-cost of the proposed algorithm was merely 21.95%
of MLP-CNN, and 10.02% of SVM-ELM; (2) Compared with SVM-ELM, the average improvement
in the recognition rate of MCNN-DS was 2.35% for the benchmark HCL2000, and the time-cost of
MCNN-DS was only 15.41%; (3) For the EnglishHand test set, the lowest recognition rate of the
algorithm was 84.93%, the highest recognition rate was 95.29%, and the average recognition rate
was 89.77%.
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1. Introduction

The convolutional neural network (CNN) has attracted considerable attention because of its
successful application in target detection, image classification, knowledge acquisition, and image
semantic segmentation. Consequently, improving its performance is a research hotspot [1]. When
solving the problem of image target detection, the central processing unit (CPU) controls the entire
process and the data scheduling of the CNN, and the graphics processing unit (GPU) improves
the convolution calculation in the neural network unit and the operation speed of the full-joint
layer-merging cell [2]. Although the learning speed of the neural network has been improved, data
conversion and scheduling between the CPU and the GPU lead to an increase in time-cost, and a
weak GPU platform is prone to process interruption. In [3], an improved CNN based on the immune
mechanism was obtained. Although a short recognition time of 108.501 s was obtained on the MNIST
dataset, the recognition rate was merely 81.6%. In [4], the optimal network structure algorithm for
the weighted value sharing of the multiple-input sigmoid activation function neural network of a
feature mapping model was obtained. In [5], different-sized neuron kernels were used to form a

Algorithms 2018, 11, 28; doi:10.3390/a11030028 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-8761-5195
http://dx.doi.org/10.3390/a11030028
http://www.mdpi.com/journal/algorithms


Algorithms 2018, 11, 28 2 of 15

feature graph by introducing neuron elements into the largest collection layer, thus mapping neurons
of different sizes to the collection layer. Although the method obtained a 96.33% recognition rate in
the feature character set, it consumed considerable time. The convolutional neural network with fully
connected Multilayer perceptron (MLP) (MLP-CNN) [6] improves the performance of the model by
increasing the number of neural network features and uses a random gradient descent algorithm to
optimize cross-entropy.

Studies have been conducted to mitigate overfitting. In [7], an adjoint objective function
was designed; additionally, an auxiliary listening mechanism and a normalized auxiliary listening
strategy, based on the convolution filter and nonlinear activation function, were established. Then,
a regularization strategy mechanism of the adjoint objective function was proposed to reduce this
problem in CNNs. However, this method must use end-to-end supervised learning to fine-tune the
regularization strategy, which requires additional time for the convolution filter and the nonlinear
activation function. In [8], the network parameters were optimized using the Laplace–Beltrami operator,
and good results were obtained in solving the weighted magnetic resonance image recognition problem.
However, the overfitting problem caused by the small sample data needed to use supervised learning
to fine-tune the training network. In [9], the CNN unsupervised learning function was used to
introduce a bilinear interpolation into the CNN structure and the fine-grained aesthetic quality for
predicting classification to achieve the automatic aesthetic evaluation of the photographs. Although
the model addressed the incapability of the CNN in fully extracting the entire picture features of
the high-quality photographs, a corresponding solution to the overfitting problem caused by the
small digital photographic picture set was not proposed. In [10], a modified convolutional neural
network was obtained by embedding a compute layer for local averaging and a quadratic feature
extraction in each convolution layer, and its unique two-time feature extraction structure reduced
the feature resolution. However, when the dataset scale was enlarged, the layer number of the CNN
increased, which easily led to overfitting. The weighted CNN (WCNN) [11] uses the sigmoid function
as the activation function to achieve the processing of the input signal by compounding multiple
convolutions and pool layers. Meanwhile, the mapping relationship between the connecting layer and
the output target is established, and the clustering algorithm is used to classify the features. In [12],
two consecutive convolution operations were appended to each layer of the CNN, thereby increasing
the recognition rate of image classification by doubling the number of feature extracts. However, this
procedure has high memory requirements from the system.

Focusing on the convergence speed of CNNs, reference [13] introduced multivariable maximum
product and interpolation operator theory into the CNN structure using operator theory as the
activation function. This study provided a detailed mathematical formula derivation but no application
test results. Lee et al. [14] proposed deeply-supervised nets by introducing companion objective
functions at all the hidden layers and an overall objective function at the output layer. The companion
objective functions are usually an additional constraint/regularization within the learning process.
Thus, the performance of this method relies on the design of a companion objective function, but , it is
not easy to do that.

The CNN technology provides a new method for image feature extraction. Although many
scholars have attempted to improve the performance of the classic CNN [15], the following deficiencies
in image feature extraction are still observed.

• The input value, which is originally changed considerably in a wide range to output within
the (0, 1) range, can be squeezed when the sigmoid function is used as an activation function.
When the training dataset is large, the sigmoid function easily causes gradient saturation and
convergence is slowed.

• In the CNN, the early stop and regularization strategies are often used to mitigate the overfitting
problem. The dataset in the early stop strategy is divided into the training and test sets. The
training set calculates the gradient and updates the connection and threshold. The test set
evaluates the error. The training stop sign reduces the training set error and increases the test set
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error. In the regularization strategy, the error objective function considers the factors that describe
the complexity. When the number of learning layers in the CNN increases, the capability of these
layers to solve the overfitting problem is reduced.

• In the training and evaluation phases, the CNN adjusts the cumulative error of the minimum
training set of the target gradient through the reverse propagation algorithm and the gradient
descent strategy. Not every level of training evaluates the cumulative error but evaluates it after a
given interval layer. Although the time lock decreases, the cumulative error increases.

To address these problems, this study designs an improved activation function to increase the
convergence rate by adding a dropout layer between the fully connected and output layers. This
resolves the overfitting problem caused by the increasing number of iterations and introduces the
stochastic gradient descent (SGD) optimizer to the gradient descent strategy to reduce the cumulative
error and improve the training speed. Thus, a modified CNN algorithm based on dropout and the
SGD optimizer (MCNN-DS) is proposed.

The remainder of this paper is organized as follows. Section 2 presents some related works.
Section 3 is devoted to the description of the fundamentals of our proposed algorithms, and
details the proposed algorithms. Section 4 presents the test environment, comparison algorithm,
comprehensive experiments, and analysis. Finally, Section 5 concludes this paper and suggests some
future research issues.

2. Related Works

2.1. Typical CNN Model

CNN is a multilayer perceptron inspired by the visual neural mechanism [16]. Figure 1 shows a
CNN with an input layer, a hidden layer, and an output layer. In the figure, the input layer generates
the mean value and normalizes the data through PCA/whitening. The hidden layer is composed
of the many neurons and connections between the input and output layers, and usually includes
the convolution, excitation, and pool layers. If the CNN has multiple hidden layers, then multiple
activation functions should be used. The commonly used activation functions include the ReLU and
sigmoid functions. The output layer achieves the output results during the transmission of information
after neuron connection, analysis, and balance.
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2.2. SGD Optimizer

In the neural network setting, the high cost of running a back propagation over the full training
set leads to a loss of optimization, which is a problem known to researchers. Batch methods such as
the L-BFGS (Limited-memory Broyden Fletcher Goldfarb Shanno) [17] employ the full training set
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to obtain the later update to parameters at every iteration. Thus, the computing time for the entire
training set can be very long on a single machine if the dataset is very big, and it is hard to incorporate
new data in an online environment.

Stochastic Gradient Descent (SGD) [18] is a stochastic approximation of the gradient descent
optimization and an iterative method for minimizing/maximizing an objective function, which
struggles to discover the minima or maxima by iteration. SGD outperforms those bath methods
by following the negative gradient of the objective after checking only a single or some training
examples. In other words, when the number of training datasets is high, SGD works quickly because it
does not use the whole training instances in each integration, which reduces the amount of calculation
and improves the computing speed. Furthermore, SGD can dynamically adjust the estimation of the
first- and second-order matrices of the gradient of each parameter according to the loss function. Thus,
the risk of the model converging to the local optimum can be reduced. Considering those advantages,
we speculate that the use of SGD can overcome the computing cost and lead to a fast convergence.

Setting the dataset is represented as S. xi ∈ Rn is a n-dimensional vector. yi ∈ {1, m− 1} is the
category of the ith training sample. Then, SGD can be detailed as follows [19].

Firstly, assign a zero vector to the weight value W1, and then randomly select a training sample
(xit , yit ) from the whole training set, where it ∈ {1, . . . , m} is the target of the selected training sample
at the tth iteration. The objective function is

min (W) =
λ

2
||W||2 + f (W, (xit , yit)). (1)

Secondly, calculate the gradient according to Formula (1), and then the gradient can be
expressed by

∇t = λWt − αtyit xit . (2)

where αt =

{
1, if yit

〈
Wt, xit

〉
< 1

0, Otherwise
.

The updated formula of matrix W is as follows.

Wt+1 = Wt − ηtαt. (3)

where ηt =
1

(λt) .
Then an updated weight matrix W based on Formulas (2) and (3) can be obtained by

Wt+1 =

(
1− 1

t

)
Wt + yit xit (4)

In practice, Formula (4) is used to find minima or maxima by iteration.

2.3. Dropout Layer

Dropout is a model average [20]. It is the weighted average of the estimated or predicted results
from different models. The combinatorial estimate and the combinatorial prediction are the most
commonly used methods. The random selection in the dropout may ignore the hidden layer nodes in
the training process, consequently, each training network is different, and each training can be regarded
as a new model. In particular, the hidden nodes randomly appear according to certain probabilities.
Any two hidden nodes are not guaranteed to appear in the model multiple times simultaneously;
thus, the updating of weights does not depend on the interaction of the implicit nodes of the fixed
relation and can avoid the possible dependence of several features on another particular feature.
Figure 2 compares neural network units with and without dropout layers. The nodes in each layer in
the middle of Figure 2a may be associated with any node in the other layer, and some of the nodes
in Figure 2b may be randomly ignored. These ignored, hidden layer nodes can reduce the cost of
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calculation. Moreover, these nodes can weaken the coupling between the nodes to reduce overfitting,
thus becoming conducive to discovering the most essential characteristics of the data.Algorithms 2018, 11, x FOR PEER REVIEW  5 of 14 
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3. Modified CNN Based on Dropout and the SGD Optimizer

3.1. Quadratic CNN Structure

This study constructs the nine-layer CNN model, as shown in Figure 3, which contains an input
layer, five hidden layers composed of convolution and pool layers, a fully connected layer, and an
output layer (softmax). In this structure, a dropout layer comes after the fully connected layer. The
probability of the neuron node in the test is p = 0.5 in the training phase, and p = 1 in the trial phase. The
activation functions of the layers, except the output, are all rectified linear unit (Leaky ReLU) functions.
The two-dimensional convolution operation is carried out by Conv2d function. The calculation
illustration is shown in Figure 4.
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The pooling operation (max pooling) is calculated using Formula (5).

xj
l = f (∑

j
xj

(l−1) ∗ w(l)
i,j + bi

(l)), (5)

where w(l)
i,j represents the weight of the i neuron in the j class of the l layer; bi represents the offset of

the i class; * represents the convolution operation; xj
(l) represents the output of j neurons in the l layer

convolution; xj
(l−1) represents the output of the j neuron in the l − 1 layer, i.e., the input data for the l

layer; and f (. . .) represents the activation function of the model that has nonlinear characteristics.

3.2. Activation Function Based on Leaky ReLU

A traditional CNN often uses nonlinear functions, such as Tanh [21], ReLU [22], and Sigmoid [4],
shown in Figure 5, to become an activation function.
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The sigmoid function, which maps a real number input to the [0, 1] scope, encounters two
problems as an activation function. (1) Gradient saturation: When the function activation value
approaches the extremum 0 or 1, the gradient of the function tends to become 0. For the cost of the

reverse propagation of the l layer neurons δ(l), the formula is δ(l) = (w(l))
T

δ(l+1) ∗ f ′(xl
j), where (w(l))T

represents the weight of the l neurons in the t layer. When the neuron reverse propagation cost in the
l + 1 layer δ(l+1) approaches 0, the computed gradient also approaches 0 to achieve the goal of not
adjusting the update parameters. (2) Constantly positive weight: The average value of the function
output is not 0, which causes the neuron layer to yield the signal input of the nonzero mean. This
activity makes the data of the input neuron positive. Consequently, the weight becomes positive.
These problems result in a slow parameter convergence and affect training efficiency and the model
recognition effect. The tanh function can map a real input into the [−1, 1] range but it is actually a
variant of the sigmoid function, i.e., tanh(x) = 2sigmoid(2x)− 1. Moreover, the tanh function also
exhibits the gradient saturation problem.
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The ReLU function f (x) = max(0, x) (x ∈ (0, +∞)) (Figure 5c) has the following features.
(1) Unsaturated gradient: The formula for the gradient is I{x > 0}. Therefore, the problem of gradient
dispersion in the reverse propagation process is alleviated, and the parameters in the first layer of the
neural network can be updated rapidly. (2) Low computational complexity: The ReLU function sets
the thresholds, i.e., if, x < 0 then f (x) = 0; if x > 0, then f (x) = x. Unfortunately, ReLU units can be fragile
during training and can “die” [23]. A “dead” ReLU always outputs the same value.

The Leaky ReLUs activation function [24] with a small positive gradient for negative inputs was
designed to solve the “dead” problem of ReLU. The formula of the Leaky ReLU is f = max(0.01x, x),
which has all the advantages of the ReLU activation function but without the “dead” problem.

This study uses the Leaky ReLU function as the activation function because of its advantages to
solve the gradient saturation problem and improve convergence speed.

3.3. Method Based on Dropout and SGD for Preventing Overfitting

The dropout is introduced into the CNN to improve the normalization capability of the network.
Any neuron in a neural network is temporarily discarded by the probability p, and the formula is
as follows:

p = (pa = 1|x)
= ∑

i,j∈Ba

exp(w(l)
i,j ∗ xj

(l−1) + bi
(l))/(1 + exp ∑

i,j∈Ba

w(l)
i,j ∗ xj

(l−1) + bi
(l)) (6)

To train the model, any indicator that makes the model “bad” is defined as a cost and cross
entropy is used as the cost function yθ′(θ), which is defined as follows:

yθ′(θ) = −∑
i

θ′i log(θi), (7)

where θ is the predicted probability distribution and θ′ is the actual distribution. In the model training
phase, the SGD optimizer is used to optimize the cross entropy at different learning rates.

3.4. Modified Convolutional Neural Network Based on Dropout and the SGD Optimizer

On the basis of the design of the CNN structure, the Leaky ReLU activation function, and the
overfitting prevention method that is based on dropout and the SGD, the Modified Convolutional
Neural Network based on Dropout and the SGD Optimizer (MCNN-DS) is developed, which has the
following main processes.

• Step 1: Pretrain the filter, and initialize the filter size pixel as P1 × P2.
• Step 2: Enter the image dataset for training. Process the image of the training set into the same

picture as the filter size, and read the data to form the image data matrix X.
• Step 3: Initialize the weight w(l)

i,j and bias bi and invoke the kernel function def Kernel() provided
by TensorFlow to initialize parallel operations.

• Step 4: The Conv2d is used for two-dimensional convolution operation to obtain the first layer
convolution feature matrix X(1).

• Step 5: The first layer convolution feature matrix X(1) is used as the input data of the pool layer.
Use Formula (5) for the pool operation to obtain the feature matrix X(2).

• Step 6: Use the SGD optimizer function expressed in Formula (4) to derive the learning rate of the
top-down tuning optimizer, and use the weights in TensorFlow and the update-biased interface
to update the weight wi and the bias bi, thus obtaining the feature matrix X(3).
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• Step 7: Generate the second convolution following Steps 4, 5, and 6 to derive the feature
matrix X(4).

• Step 8: Merge the feature matrix X(4) into a column vector as the input of the neuron at the
full-joint layer, multiply it with the weight matrix plus the bias, and then use the Leaky ReLU
activation function to obtain the eigenvector b1.

• Step 9: Use the eigenvector of the fully connected stratum as the input of the dropout layer,
compute the output probability of the neuron in the dropout layer using Formula (6), and the
eigenvector b2 is obtained.

• Step 10: Use the eigenvector b2 as the input and the Softmax classifier [25] output to achieve
the results.

Of note, in the convolution feature calculation for step 4 and step 5, the step length is 2 and
the margin is set to 0. The pooling operation uses a 3 × 3 matrix on the basis of a policy previously
presented in the literature [26] to ensure that the image input and output after feature extraction have
the same size. The Leaky ReLU activation function is used in each step to activate the neuron.

4. Experiment and Analysis

4.1. Test Environment

The Python programming language is used in a 64-bit Ubuntu 16.04.4 implemented with the
quadratic CNN learning algorithm. TensorFlow 1.5.0 is installed to evaluate the performance of
the designed algorithm. Under various SGD learning rates, the performance of the CNN algorithm
based on dropout and the SGD optimizer is tested, analyzed, and compared with that of four other
algorithms. The results are measured on the same model computers purchased in multiple batches of
the same batch and configured as follows: NVIDIA, GEFORCE GTX1080, with 8 GB internal storage.

4.2. Comparison Algorithm

The details of the four algorithms used for comparison are as follows.

(1) Algorithm 1: weighted CNN (WCNN) [11]. This algorithm uses a sigmoid function as the
activation function through compounded multiple convolutions and pooling layers to achieve
input signal processing. Simultaneously, the mapping relationship between the connection layer
and output target is established and the clustering algorithm is used to classify the feature.

(2) Algorithm 2: convolutional neural network with fully connected Multilayer perceptron (MLP)
(MLP-CNN) [6]. This algorithm improves model performance by increasing the characteristic
number of the neural networks and using the stochastic gradient descent algorithm to optimize
the cross entropy.

(3) Algorithm 3: extreme learning machine (ELM) for multi-classification called SVM-ELM(ELM
optimized with support vector machine) [27]. This calculation combines the fast learning machine
and SVM, reduces the number of hidden nodes as a class number, and optimizes the linear
decision function of each node through the SVM.

The structures of WCNN, MLP-CNN, and SVM-ELM are shown in Figure 6.
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4.3. Datasets and Settings

The dataset used in the test includes three categories: MNIST handwritten numeral sets, HCL2000
handwritten Chinese character datasets, and EnglishHand handwritten alphabet datasets, all of
which are grayscale images, as shown in Figure 7 (Table 1). MNIST was established by the National
Institute of Standards and Technology for the study of handwritten numeral recognition and contains
60,000 training samples and 10,000 test samples, each with 28 px × 28 px BMP images. HCL2000 is
a national standard database of off-line handwritten Chinese characters established by the Beijing
University of Posts and Telecommunications, funded by the National 863 Program, and it collects
1300 written handwritings for 3755 first-level Chinese characters to form 1300 × 3755 samples. Each
Chinese character has a sample of a 64 px × 64 px two-valued pixel. In this experiment, 3000 Chinese
characters are randomly selected to form the training or test set, which is divided into 10 categories.
The dataset is then adjusted to 28 px × 28 px size, and the pixel is normalized to [0,1]. EnglishHand
is a public, handwritten alphabet dataset downloaded from the network (https://pan.baidu.com/s/
1jJPtPSa). It mainly consists of 2860 lowercase letters and 2860 uppercase data samples, which are
divided into 26 categories.

The 60,000 test samples and 10,000 training samples selected from the MNIST dataset are divided
into 10 categories, i.e., 0–9 for a total of 10 characters corresponding to the training and test sets.
The 2000 test samples and 1000 training samples selected from the HCL2000 dataset are divided
into 10 categories, i.e., each Chinese character corresponds to the training and the test sets. The
1520 test samples and 5200 training samples selected from the EnglishHand dataset are divided into
26 categories, i.e., each alphabet character corresponds to the training and test sets. The volume kernel
size of the convolution layer is 7 × 7 and 5 × 5, the pool factor is 3 × 3, the maximum number of
iterations is 20,000, and the number of experiments is 10 times. The dropouts in the training and test
phases have probabilities of p = 0.5 and p = 1, respectively.

https://pan.baidu.com/s/1jJPtPSa
https://pan.baidu.com/s/1jJPtPSa
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Table 1. Test and training datasets.

Datasets Size of Training Set Size of Test Set Number of Image Category

MNIST 60,000 10,000 10
HCL2000 2000 1000 10

EnglishHand 4200 1520 26
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(c) EnglishHand dataset.

4.4. Experimental Results and Analysis of Recognition Performance under Different Learning Rates

According to the experimental settings presented in the previous section, a different learning
rate is provided to test the performance of the algorithm and determine the influences of the various
learning rates of the SGD optimizer on the performance of the algorithm. The SGD optimizer minimizes
the cross entropy learning rate, set to 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, and 0.10. The statistical
results and the boxplot of the recognition rate under each of the 10-time learning rates are shown in
Figures 8 and 9.
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Figure 8. Recognition value under different stochastic gradient descent (SGD) learning rates.
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Figure 9. Boxplot of the recognition rate obtained by MCNN-DS under different SGD learning rates.
(a) MNIST dataset; (b) EnglishHand dataset; (c) HCL2000 dataset.

For the three datasets tested, the recognition rate of the model increases with the learning rate
and the learning and recognition rates show a positive correlation when learning is in the [0.02, 0.05]
range (Figure 8). When the learning rate distribution of the SGD optimizer is 0.05–0.07, the recognition
rate of the model is in a relatively stable state. At this time, the recognition rate of the model shows
a weak growth trend with the learning rate. When the learning rate is increased to more than 0.06,
the recognition rate decreases significantly with any increase in learning rate. In particular, when the
learning rate reaches 0.1, the recognition rate reaches the lowest level of approximately 20%. According
to Figure 9, when the SGD learning rate is 0.06, the midline of the box diagram is higher and the
rectangular area is the smallest, and it has no outliers. Analysis and testing based on three data sets
show that tests conducted on this dataset show that the introduction of the SGD optimizer can affect the
recognition rate. When the learning rate is 0.05–0.07, the performance of the system is enhanced. In the
comparison experiment presented in the subsequent section, the learning rate of the SGD optimizer is
set to 0.06.

4.5. Comparison and Analysis of the Three Kinds of Algorithms

The proposed algorithm runs 10 times for each test set. The recognition rates of the algorithms
are shown in Table 2 and Figure 10. WCNN and MLP-CNN have no test results for the HCL2000
dataset. Thus, their data are not reflected in the figure. Table 3 is the time overhead of each algorithm
on the test set. It is worth noting that because the algorithm WCNN does not give the result of the
time overhead test, their data are not reflected in Table 3.
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Table 2. Algorithm recognition performance comparison.

Dataset Metric WCNN [11] MLP-CNN [6] SVM-ELM [27] MCNN-DS

MNIST

The lowest recognition rate (%) 95.11 97.82 89.5 97.36
The highest recognition rate (%) 95.71 98.96 91.35 99.97
The average recognition rate (%) 95.36 96.32 90.26 98.43
Standard deviation of recognition rate – – – 0.0084

HCL2000

The lowest recognition rate (%) – – 83.60 85.42
The highest recognition rate (%) – – 90.00 93.99
The average recognition rate (%) – – 88.63 90.98
Standard deviation of recognition rate – – – 0.0396

EnglishHand

The lowest recognition rate (%) – – – 84.93
The highest recognition rate (%) – – – 95.29
The average recognition rate (%) – – – 89.77
Standard deviation of recognition rate – – – 0.0280
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Table 3. Statistic results of time overhead.

Algorithms
Time/ms

MNIST HCL2000 EnglishHand

MLP-CNN 290,491 – –
SVM-ELM 132,634 316,372 –
MCNN-DS 13,236 20,531 21,617

For the MNIST test set, the averages of WCNN, MLP-CNN, SVM-ELM, and the 10 operations
of the proposed algorithm under the lowest recognition rate are 95.11%, 97.82%, 89.5%, and 97.36%,
respectively (Table 2). In this study, the performance of the proposed algorithm ranks first, MLP-CNN
ranks second, and SVM-ELM exhibits the worst performance. Under the highest and average
recognition rates, the performance of the proposed algorithm ranks first, that of WCNN ranks second,
and that of MLP-CNN shows the worst performance. According to the WCNN and MLP-CNN
models and the performance of the proposed algorithm in feature recognition, our model is better than
SVM-ELM in feature extraction and fusion even when it is the worst. Table 2 shows that the recognition
rate of the proposed algorithm is the best, reaching a maximum of 99.97%. Furthermore, the average
recognition rate of the MCNN-DS algorithm in the three databases is 98.4, 90.98, and 89.77, with a
standard deviation of 0.0084, 0.0396, and 0.0280, respectively. The standard deviation is small and
average recognition accuracy is high, which indicates that the MCNN-DS algorithm can stably extract
abundant feature information. The algorithm also has the same advantage in terms of time to unlock
precisely because of the implementation of the algorithm parallelization. Furthermore, the time-cost of
this algorithm is merely 21.95% of the MLP-CNN algorithm, and 10.02% of the SVM-ELM algorithm.
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Compared with the SVM-ELM algorithms, this algorithm has an advantage over the HCL2000
test set. The lowest recognition rate of the proposed model is 1.82% higher than that of SVM-ELM.
The highest recognition rate of the algorithm is 3.99% higher than that of SVM-ELM. The average
recognition rate of the algorithm is 2.35% higher than that of SVM-ELM. The time-cost of this algorithm
is merely 15.41% of the SVM-ELM. For the EnglishHand test set, the lowest recognition rate of this
algorithm is 84.93%, the highest recognition rate is 95.29%, the average recognition rate is 89.77%, and
its time overhead is 21.617 s. In fact, the time of computations strongly rely on the number of layers
and connections, and SGD follows the negative gradient of the objective after checking only a single or
some training examples. It is because the change of the structure, the use of the Leaky ReLU activation
function, and the overfitting prevention method based on Dropout and SGD result in the acceleration.

In summary, the algorithm proposed in this study is robust and superior to the algorithms used
for comparison in terms of recognition, time-cost, and rate.

5. Conclusions

To improve the accuracy of feature extraction while reducing time-cost, this study investigates
the structure of the CNN, the overfitting problem, and combines dropout and the SGD optimizer with
the CNN. An improved CNN algorithm based on dropout and the SGD optimizer is proposed, and
parallelization is achieved using TensorFlow. The use of SGD leads the MCNN-DS to work faster
because it does not use the whole training instances in each integration and can dynamically adjust
the estimation of the first- and second-order matrices of the gradient of each parameter according to
the loss function, which can reduce the amount of calculations and improve the computing speed.
Furthermore, by improving the activation function, the algorithm avoids the problem of the neuron
node output becoming 0, improves recognition accuracy, and reduces time-cost. As the present test
dataset is limited, future studies need to use additional test sets to improve the performance of the
algorithm. Moreover, the algorithm should be combined with the service robot system [28] established
by the research group to conduct application research and to develop and improve model robustness.
In addition, reducing the number of neurons in the CNN can lead to the reduction of computations at
the working and testing stages; however, the dropout algorithm used at the learning stage increases
the time of processing. We focused on improving the recognition accuracy at the beginning of the
research. The time consumption of both stages requires further investigation.
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