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Abstract: In this paper, the optimal designs of type-1 and interval type-2 fuzzy systems for the
classification of the heart rate level are presented. The contribution of this work is a proposed
approach for achieving the optimal design of interval type-2 fuzzy systems for the classification of
the heart rate in patients. The fuzzy rule base was designed based on the knowledge of experts.
Optimization of the membership functions of the fuzzy systems is done in order to improve the
classification rate and provide a more accurate diagnosis, and for this goal the Bird Swarm Algorithm
was used. Two different type-1 fuzzy systems are designed and optimized, the first one with
trapezoidal membership functions and the second with Gaussian membership functions. Once the
best type-1 fuzzy systems have been obtained, these are considered as a basis for designing the
interval type-2 fuzzy systems, where the footprint of uncertainty was optimized to find the optimal
representation of uncertainty. After performing different tests with patients and comparing the
classification rate of each fuzzy system, it is concluded that fuzzy systems with Gaussian membership
functions provide a better classification than those designed with trapezoidal membership functions.
Additionally, tests were performed with the Crow Search Algorithm to carry out a performance
comparison, with Bird Swarm Algorithm being the one with the best results.

Keywords: heart rate; blood pressure; optimization; Bird Swarm Algorithm (BSA); type-2
fuzzy systems

1. Introduction

Nowadays, bio-inspired algorithms are used for optimization in different application areas,
such as control [1], prediction [2], security [3], scheduling [4], etc. Optimization is defined as the
mathematical process to find the best solution to a problem [5]. Several metaheuristics have been
used to carry out this process, such as the Genetic Algorithm (GA) [6], Particle Swarm Optimization
(PSO) [7], Flower Pollination Algorithm (FPA) [8], and Social Spider Algorithm (SSA) [9], among
others. For this work, the Bird Swarm Algorithm (BSA) was used to optimize the membership function
parameters of the fuzzy systems.

The Bird Swarm Algorithm [10] was originally proposed by Xian-Bing Men in 2015 to solve
optimization problems. This algorithm mimics the behavior and social interaction of birds in a swarm.
The behaviors imitated by this algorithm are the way in which birds search for food, flight and vigilance
are performed.

BSA has been used to optimize the cost of power generation in the energy system network
of both wind energy and photovoltaic solar energy [11], and variants of this algorithm have also
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been made to improve its performance, such as the Enhanced Bird Swarm Algorithm (EBSA) [12]
for variable-strength combinatorial test data generation and the Chaotic Bird Swarm Optimization
Algorithm (CBSA) [13], which is proposed to avoid local minimums.

With regards to fuzzy systems, these have been widely used in the medical field, specifically to
provide diagnosis of diseases, such as malaria [14], leukemia [15], hepatitis [16], and meniscus tear [17],
among others. In this work, a fuzzy system is presented for the classification of the heart rate level of
the patients and with this, to be able to provide a medical diagnosis, in this case of the risk of having a
cardiovascular event.

Initially, a type-1 fuzzy system with trapezoidal membership functions was designed to obtain
the patient’s heart rate classification, which is based on the experience of the cardiologist. It has as
inputs the age and the trend of the heart rate, and as output has the patient’s heart rate level. Also,
a type-1 fuzzy system with Gaussian membership functions was designed, in the same way as the
aforementioned, to find out with which type of membership functions a better classification can
be provided.

To improve the classification rate and provide an even more precise diagnosis, it was proposed
to realize the optimization of the membership functions for both fuzzy systems, for which different
experiments are carried out using the Bird Swarm Algorithm.

Once the type-1 fuzzy systems were optimized, the problem was also addressed using interval
type-2 fuzzy systems that can theoretically handle higher levels of uncertainty. The use of type-2 can
consider if, in certain cases or for certain patients, the information can be very imprecise or has certain
changes that could be viewed as noise or with much uncertainty.

For the design of these fuzzy systems, the initial designs of the type-1fuzzy systems are considered
as the basis, and in this form an optimized and precise classification was obtained after performing
different experiments. For this, the parameters of the membership functions are used, and with BSA
the optimal representation of the uncertainty is search for, which means finding the optimal footprint
of uncertainty.

It can also be found that in different studies, the heart rate is used as an additional input for the
diagnosis of hypertension, while in this work, it is used in a separate fashion in conjunction with the
nocturnal profile to determine the risk that the patient has in having a cardiovascular event.

The main contribution of this paper is the design of fuzzy systems for the classification of the
heart rate level of patients. The fuzzy systems are designed based on the expert experience and tested
with different architectures. Once this was done, their optimization was performed to improve the
classification percentage, and for this, the Bird Swarm Algorithm was used. The reason is that when
compared to other optimization methods such as the Crow Search Algorithm (CSA), the best results
were obtained with BSA. Additionally, comparisons between the type-1 and interval type-2 fuzzy
systems were performed to find out with which method a more precise classification is obtained.

This paper is organized as follows: In Section 2 the basic concepts are presented, in Section 3 the
problem statement and proposed method are explained, in Section 4 the knowledge representation
of the different optimized type-1 and interval type-2 fuzzy systems are presented, in Section 5 the
results of different experiments are presented, and finally in Section 6 the conclusions and future work
are presented.

2. Basic Concepts

2.1. Heart Rate

The heart rate is the number of times the heart contracts for one minute (beats per minute). As we
age, changes in the rate and regularity of the heart rate may change and may signify a heart condition
or other condition that must be treated by a physician.



Algorithms 2018, 11, 206 3 of 35

Heart rate can be measured in different locations of the human, including: wrists, inside of the
elbow, top of the foot, and the side of the neck. To get a more accurate reading, we need to put the
finger on one of the above-mentioned parts of the body and count the number of beats in 60 s.

The resting heart rate is when the heart pumps the least amount of blood needed, which, in a
healthy person, is between 60 and 100 beats per minute; however, a heart rate lower than 60 beats per
minute is not necessarily a signal of a medical problem, as it may be due to some drug, or it could be a
well-trained athlete, since the heart rate in athletes tends to be as low as 40 beats per minute; in Table 1
the values of heart rate based on age and sex are presented [18,19].

Table 1. Heart rate values based on age and sex.

Age
Men Women

Ill Normal Good Excellent Ill Normal Good Excellent

20–29 86 or more 70–84 62–68 60 or less 96 or more 78–94 72–76 70 or less
30–39 86 or more 72–84 64–70 62 or less 98 or more 80–96 72–78 70 or less
40–49 90 or more 74–88 66–72 64 or less 100 or more 80–98 74–78 72 or less

50 or more 90 or more 76–88 68–74 66 o or less 104 or more 84–102 76–86 74 or less

Some of the factors that affect the heart rate are:
Air temperature: When temperatures and humidity soar, the heart pumps a little more blood, so

the heart rate may increase, but usually no more than five to ten beats per minute.
The position of the body: At rest, sitting or standing, the heart rate is usually the same.

Sometimes, when the person stands up for the first 15 to 20 s, the heart rate may go up a bit, but after a
couple of minutes, it should be set.

Emotions: If the person is stressed, anxious or “extraordinarily happy or sad” the emotions can
raise the heart rate.

Body size: Body size usually does not change pulse. If the person is very obese, it is possible to
see a resting heart rate greater than normal, but usually no more than 100 beats per minute.

The use of medications: Drugs that block adrenaline (beta blockers) tend to slow the heart rate,
while too much thyroid medicine or too high a dose tends to raise it [18].

When the heart rate is lower than 60 beats per minute, the condition is called bradycardia, which
means that the heart rate is slow or irregular, this can cause dizziness or shortness of breath in normal
activities or light exercises [20]. When the heart rate is greater than 100 beats per minute it is called
tachycardia, which means that the heart rate is fast or irregular. With such a high rate, the heart cannot
effectively pump blood with high levels of oxygen to the body [21].

2.2. Bird Swarm Algorithm

The Bird Swarm Algorithm (BSA) was proposed by Xian-Bing Men in 2015 [10], which is inspired
by the behavior and social interactions in swarm of birds, imitating feeding, flight and vigilance
compartments to solve optimization problems.

The social behaviors of birds are simplified in 5 rules, which are described below:
Rule 1: Each bird may change between vigilance and foraging behaviors. The foraging of birds or

their vigilance is modeled as a stochastic decision.
Rule 2: In foraging, each bird may record and update its best previous experience and the best

previous swarm experience on the food patch. This experience may be used again to search for food.
The social information is shared instantly between the entire swarm.

Rule 3: While vigilance is maintained, each bird tries to move to the center of the swarm, this
behavior may be affected by the interference induced from the competition in the swarm. Birds that
have higher provisions would be more likely to lie nearer to the center of the swarm than birds with
low provisions of food.
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Rule 4: Birds can habitually fly to another site; when this happens, they can switch among
producing and scrounging. The birds with the highest reserves of food will be producers, and those
that have the lowest provisions will be scroungers. Birds with intermediate provisions would randomly
choose to be a producer or scrounger.

Rule 5: Producers actively search for food. Scroungers would randomly follow a producer to
search for food.

The aforementioned rules are expressed mathematically as follows:
Foraging behavior, in which each bird seeks food according to its experience and the swarms’

experience, is expressed by:

xt+1
i,j = xt

i,j +
(

pi,j − xt
i,j

)
× C X× rand (0, 1) +

(
gj − xt

i,j

)
× S × rand (0, 1), (1)

where j means independent numbers uniformly distributed in (0,1).
C and S are positive numbers, which may be called cognitive and social acceleration coefficients

respectively. Pi,j is the best previous position in the ith bird and gj is the best previous position shared
in the swarm.

In vigilance behavior, each bird will try to move to the center of the swarm and compete; therefore,
each bird will not move directly to the center of the swarm. This is expressed as follows:

xt+1
i,j = xt

i,j + A1
(

meanj − xt
i,j

)
× rand(0, 1) + A2

(
pk,j − xt

i,j

)
× rand(−1, 1) (2)

A1 = a1× exp
(
− pFiti

sumFit + ε
× N

)
(3)

A2 = a2 × exp
((

pFiti − pFitk
|pFitk − pFiti|+ ε

)
N × pFitk
sumFit + ε

)
(4)

where k is a positive integer, chosen randomly among 1 and N. pFiti corresponds to the best value
fitness in the ith position and sumFit signifies the sum of the best fitness value of the swarms. ε is used
to avoid the error in zero-division. meanj is the jth element of the average place of the entire swarm. a1

and a2 are positive constants in (0,2).
Given the fact that each bird wants to stand in the center of the swarm, the product of A1 and

rand (0,1) should not be more than 1. A2 is used to simulate the direct effect induced by a specific
interference when a bird moves towards the center of the swarm.

In flight behavior, birds can fly to an alternative site in response to predation threats, foraging,
or for any other reason. At the new site, the birds will look again for food. The producing birds look
for patches of food, while the scroungers try to feed on the food patch found by the producers. The
behaviors of producers and scroungers are described as follows:

xt+1
i,j = xt

i,j + randn(0, 1)× xt
i,j, (5)

xt+1
i,j = xt

i,j +
(

xt
k,j − xt

i,j

)
× FL× rand(0, 1), (6)

where randn (0,1) denotes a Gaussian distributed random number with mean 0 and standard deviation
1, k ∈ [1,2,3 . . . N], k 6= i. FL (FL ∈ [0, 2]) represents that the scrounger would follow the producer to
search for food.

The authors assume, for the sake of simplicity, that each bird flies to another place every FQ unit
interval, where FQ is a positive integer.

The BSA pseudo code is presented in Figure 1.
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Figure 1. BSA pseudocode. 

2.3. Blood Pressure 

Blood pressure is defined as the force exerted against the walls of the arteries as the heart 
pumps blood through the body in order to carry the necessary oxygen and nutrients. Blood 
pressure is divided into two components, the first is systolic blood pressure, this refers to when the 
heart contracts and can be identified by the largest number at the time of examining the blood 
pressure. The second component is diastolic pressure, which is when the heart relaxes and is 
identified as the smallest number, and this is measured in millimeters of mercury (mmHg) [22–25]. 

The normal blood pressure in an adult is the one that goes from below 139 mmHg in systolic 
pressure and below 89 mmHg in diastolic pressure [26].  

2.4. High Blood Pressure 

Hypertension is the sustained elevation of blood pressure above normal limits, which 
according to the European guidelines for the management of hypertension are above 140 mmHg in 
systolic pressure or above 90 mmHg in diastolic pressure [26]. 
  

Pseudocode of the Bird Swarm Algorithm 
Input N: the number of individuals (birds) contained by the population 
          M: the maximum number of iterations 
          FQ: the frequency of birds’ flight behaviors 
          P: the probability of foraging for food 
          C, S, a1, a2, FL: five constant parameters 
t=0; Initialize the population and define the related parameters 
Evaluate the N individuals’ fitness value, and find the best solution 
While (t < M) 
       If (t % FQ ≠ 0) 
            For  i = 1 : N 
                If rand (0,1) < P 
                     Birds forage for food (eq. 1) 
                 Else 
                      Birds keep vigilance (eq. 2) 
                End if  
           End for 
       Else 
           Divide the swarm into two parts: producers and scroungers. 
            For i = 1 : N 
                if i is a producer 
                      Producing (eq. 5) 
                      Else 
                      Scrounging (eq. 6) 
            End if     End For 
    End If   Evaluate new solutions 
    if the new solutions are better than their previous ones, update then 
    Find the best solutions  
t=t+1; End while 
Output: the individual with the best objective function value in the population 
 

Figure 1. BSA pseudocode.

2.3. Blood Pressure

Blood pressure is defined as the force exerted against the walls of the arteries as the heart pumps
blood through the body in order to carry the necessary oxygen and nutrients. Blood pressure is divided
into two components, the first is systolic blood pressure, this refers to when the heart contracts and
can be identified by the largest number at the time of examining the blood pressure. The second
component is diastolic pressure, which is when the heart relaxes and is identified as the smallest
number, and this is measured in millimeters of mercury (mmHg) [22–25].

The normal blood pressure in an adult is the one that goes from below 139 mmHg in systolic
pressure and below 89 mmHg in diastolic pressure [26].

2.4. High Blood Pressure

Hypertension is the sustained elevation of blood pressure above normal limits, which according
to the European guidelines for the management of hypertension are above 140 mmHg in systolic
pressure or above 90 mmHg in diastolic pressure [26].
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2.5. Type-1 Fuzzy Logic

Fuzzy logic was proposed by Lofti A. Zadeh [27] in 1965, and implies approximate ways of
reasoning instead of exact ones, using vague, imprecise or incomplete information, which can be
viewed as an attempt to construct a model of human reasoning reflecting its approximate character. Its
objective is to provide a basis for approximate reasoning using imprecise propositions based on the
theory of fuzzy sets.

2.6. Interval Type-2 Fuzzy Logic

This is an extension of type-1 fuzzy systems proposed by Zadeh in 1975. These were designed to
mathematically represent the vagueness and uncertainty of linguistic problems. A type-2 fuzzy set is
characterized by a fuzzy membership function, that is, the membership degree for each element of this
set is a fuzzy set in (0,1), unlike a type-1, where the membership grade is established as a crisp number
in (0,1) [28].

2.7. Related Works

Different works have been carried out in the medical area using type-1 and interval type-2 fuzzy
systems (IT2FS) [28–33], which we will briefly describe next.

Sadat et al. [15] designed a type-2 fuzzy system for the diagnosis of leukemia, in which they use
14 inputs which correspond to the symptoms of leukemia and as output the diagnosis of the disease,
obtaining a 94% correct classification.

For the diagnosis of hepatitis, Sotudian et al. [16] designed a type-1 and IT2FS to perform
classification comparison; the fuzzy systems have ten inputs, which are attributes related to the disease,
and one output, obtaining 90.0% classification with the type-1 fuzzy system and 93.94% of classification
with the interval type-2 fuzzy system.

Zarandi et al. [17] presented a type-2 fuzzy expert system for the diagnosis of meniscal tears
using magnetic resonance imaging. For segmentation, first, the interval type-2 fuzzy C-means is
applied to the images, whose outputs are then used by interval type-2 possibilistic C-means to perform
postprocessing. Finally, a neural network with two hidden layers is used for the classification stage.
The results of the proposed type-2 expert system were compared with a well-known segmentation
algorithm, confirming the superiority of the proposed system in the recognition of meniscal tears.

For dengue diagnosis, Varinder Pabbi [34] proposed a fuzzy system with 5 input variables
corresponding to age, blood pressure, and other variables necessary to identify the disease, and the
type of dengue that the patient has as output. The author reports having obtained good results in
the diagnosis.

Mohamed and Hussein [14] designed a fuzzy system for the diagnosis and treatment of malaria,
using as inputs the temperature, body mass index and pulse of the patient. The first output determines
if the patient is free of malaria or, if the patient has it, the degree of complication; the second output
determines the type of medication to be prescribed, obtaining as a result a high percentage of precision
in the diagnosis.

3. Problem Statement and Proposed Method

A hybrid neural model, described in [35–37], was previously designed for the same problem,
using 3 fuzzy systems: the first provides the classification of the patient’s blood pressure level [38–40],
the second classifies the heart rate level and a third classifies the night profile of the patient [41]. Now,
in this paper, we are using the Bird Swarm Algorithm for finding the optimal design of type-1 and
type-2 fuzzy systems for the classification of the heart rate level of patients.

Because the improvement in classification is aimed at providing an accurate diagnosis to
patients, it was decided to use a bio-inspired algorithm, such as the Bird Swarm Algorithm, for
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the optimization of fuzzy systems, in order for the algorithm to make the necessary adjustment in the
membership functions.

Figure 2 shows the proposed methodology for what is being addressed in this work and which is
explained below:

Figure 2 shows the proposed methodology for what is being addressed in this work and which 
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Figure 2. Proposed methodology.

A database with readings of the heart rate of a set of patients was used, which were obtained
through the Ambulatory Blood Pressure Monitoring device (ABPM) [42]. To perform the optimization,
30 patients were taken from the database. The necessary information is the age and the tendency of
the heart rate, and these are the inputs to the fuzzy system.

Regarding optimization, the individuals, in this case the birds, are the ones that will be moving
the membership functions in the search space, until fuzzy system is found that provides a classification
with less error, and for this reason, the mean square error is used as an objective function, as presented
in Equation (7).

The algorithm will provide the fuzzy system with the least error in the classification, and this is
tested with different sets of patients to observe its performance.

Once this is done with type-1 fuzzy systems with Gaussian and trapezoidal membership functions
and the best fuzzy systems are obtained, they are taken as a basis to perform the optimization of the
interval type-2 fuzzy system for which the BSA algorithm will adjust the footprint of uncertainty; for
this, the procedure described above is also performed.

3.1. Design of the Type-1 Fuzzy Inference System with Trapezoidal Membership Functions for the Classification
of the Heart Rate Level

A Mamdani fuzzy inference system is designed for the classification of the heart rate level based
on [19] and the experience of the cardiologist, the inputs and output of which are described below and
illustrated in Figure 3:
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Figure 5. Input heart rate.

The output is the heart rate level, which ranges from 0 to 100%; this indicates how high or low
the patient’s heart rate is, and is granulated into 5 membership functions, with the linguistic variables
“Low”, “BelowAV”, “Excellent”, “AboveAV” and “VeryHigh”. As a defuzzification method, the
centroid of area was used. The fuzzy system output is illustrated in Figure 6.
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The output is the heart rate level, which has values in the range from 0 to 100%. This indicates how 
high or low the heart rate of the patient is, which is granulated into 5 membership functions, using the 
linguistic values “Low”, “BelowAV”, “Excellent”, “AboveAV” and “VeryHigh”. As a defuzzification 
method, the centroid of area was used. The fuzzy system output is presented in Figure 9.  

Figure 8. Input heart rate.

The output is the heart rate level, which has values in the range from 0 to 100%. This indicates how
high or low the heart rate of the patient is, which is granulated into 5 membership functions, using the
linguistic values “Low”, “BelowAV”, “Excellent”, “AboveAV” and “VeryHigh”. As a defuzzification
method, the centroid of area was used. The fuzzy system output is presented in Figure 9.
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Figure 9. Output heart rate level. 
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Figure 9. Output heart rate level.

The fuzzy system is formed by 20 rules, which depend on the age and heart rate to define the
heart rate level of the patient, and are presented below:

1. If (Age is Child) and (Pulse is VeryLow) then (PLevels is Low) (1)
2. If (Age is Child) and (Pulse is Low) then (PLevels is Low) (1)
3. If (Age is Child) and (Pulse is Normal) then (PLevels is Excellent) (1)
4. If (Age is Child) and (Pulse is High) then (PLevels is Excellent) (1)
5. If (Age is Child) and (Pulse is VeryHigh) then (PLevels is AboveAV) (1)
6. If (Age is Young) and (Pulse is VeryLow) then (PLevels is Low) (1)
7. If (Age is Young) and (Pulse is Low) then (PLevels is BelowAV) (1)
8. If (Age is Young) and (Pulse is Normal) then (PLevels is Excellent) (1)
9. If (Age is Young) and (Pulse is High) then (PLevels is AboveAV) (1)
10. If (Age is Young) and (Pulse is VeryHigh) then (PLevels is Very_High) (1)
11. If (Age is Adult) and (Pulse is VeryLow) then (PLevels is Low) (1)
12. If (Age is Adult) and (Pulse is Low) then (PLevels is BelowAV) (1)
13. If (Age is Adult) and (Pulse is Normal) then (PLevels is Excellent) (1)
14. If (Age is Adult) and (Pulse is High) then (PLevels is AboveAV) (1)
15. If (Age is Adult) and (Pulse is VeryHigh) then (PLevels is Very_High) (1)
16. If (Age is Elder) and (Pulse is High) then (PLevels is Very_High) (1)
17. If (Age is Elder) and (Pulse is VeryHigh) then (PLevels is Very_High) (1)
18. If (Age is Elder) and (Pulse is VeryLow) then (PLevels is Low) (1)
19. If (Age is Elder) and (Pulse is Low) then (PLevels is Excellent) (1)
20. If (Age is Elder) and (Pulse is Normal) then (PLevels is Excellent) (1)

3.3. Optimization of the Type-1 Fuzzy Inference System with the BSA

The fuzzy systems were optimized to improve their performance using the BSA, where a search
for the best parameter values for the membership functions was made with the aim of obtaining an
improvement in the classification of the patients. Thirty experiments were carried out in which the
parameters of the BSA were varied, as presented in Table 2.
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Table 2. Parameters used in BSA for each experiment.

No M pop DimT DimG FQ c1 c2 a1 a2

1 1000 20 56 28 19 0.5 0.5 2 2
2 870 24 56 28 28 0.8 0.8 1.5 1.5
3 714 28 56 28 18 1.2 1.2 0.4 0.4
4 625 32 56 28 15 1.5 1.5 0.1 0.1
5 571 36 56 28 6 1.8 1.8 0.8 0.8
6 574 38 56 28 21 2 2 1 1
7 454 44 56 28 25 2.33 2.33 1.3 1.3
8 416 48 56 28 6 2.48 2.48 0.6 0.6
9 400 50 56 28 28 2.76 2.76 0.9 0.9

10 357 56 56 28 20 3 3 1.1 1.1
11 338 60 56 28 10 3.18 3.18 1.9 1.9
12 322 62 56 28 21 3.22 3.22 0.5 0.5
13 307 66 56 28 1 3.45 3.45 1.5 1.5
14 285 70 56 28 13 3.56 3.56 0.7 0.7
15 278 72 56 28 2 4 4 1.3 1.3
16 256 78 56 28 24 0.4 0.4 1.8 1.8
17 250 80 56 28 19 0.7 0.7 0.3 0.3
18 235 86 56 28 1 1.15 1.15 0.9 0.9
19 227 88 56 28 24 1.34 1.34 1 1
20 208 96 56 28 22 1.45 1.45 2 2
21 202 100 56 28 15 1.67 1.67 0.6 0.6
22 166 120 56 28 4 1.78 1.78 0.3 0.3
23 133 150 56 28 16 1.92 1.92 1.5 1.5
24 111 180 56 28 2 2.18 2.18 1.2 1.2
25 100 200 56 28 2 2.39 2.39 1.8 1.8
26 95 210 56 28 21 2.56 2.56 0.7 0.7
27 90 220 56 28 22 2.83 2.83 0.9 0.9
28 87 230 56 28 15 3.4 3.4 1.5 1.5
29 83 240 56 28 19 3.7 3.7 1.7 1.7
30 80 250 56 28 20 4 4 2 2

Figure 10 presents the representation of the fuzzy system with Trapezoidal membership functions,
and in Figure 11, the representation of the fuzzy system with Gaussian membership functions is
illustrated, with each one of the points of the membership functions adjusted by the BSA.
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representation of individuals is presented in Figure 10, which is the same as for the type-1 fuzzy system. 
Each of these represents the points related to the footprint of uncertainty of the membership functions to 
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For these fuzzy systems, the footprint of uncertainty is optimized; this is to obtain its correct 
adjustment, and thus classification can be satisfactorily performed. Figure 18 presents the representation 
of the Gaussian membership functions, and for the trapezoidal membership functions, the 
representation of individuals is presented in Figure 10, which is the same as for the type-1 fuzzy system. 
Each of these represents the points related to the footprint of uncertainty of the membership functions to 
be optimized. It is worth mentioning that the 20 rules above are also used in these fuzzy systems. 

Figure 17. Output heart rate level with Gaussian MFs.

For these fuzzy systems, the footprint of uncertainty is optimized; this is to obtain its
correct adjustment, and thus classification can be satisfactorily performed. Figure 18 presents the
representation of the Gaussian membership functions, and for the trapezoidal membership functions,
the representation of individuals is presented in Figure 10, which is the same as for the type-1 fuzzy
system. Each of these represents the points related to the footprint of uncertainty of the membership
functions to be optimized. It is worth mentioning that the 20 rules above are also used in these
fuzzy systems.
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Figure 18. IT2FS representation in the BSA with Gaussians MFS. 
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In the same way as for the optimization of type-1 fuzzy systems, the mean square error is used as
a fitness function in order to minimize classification error, as found in Equation (7).

4. Knowledge Representation

4.1. Knowledge Representation of the Optimized Type-1 Fuzzy System with Trapezoidal Membership Functions

In this section, the knowledge representation of the inputs and output of the optimized
type-1 fuzzy system for the classification of the pulse level with trapezoidal membership functions
is presented.

4.1.1. Input Variables

4.1.1.1. Input Age

This input variable has the linguistic values “Child”, “Young”, “Adult” and “Elder”. The fuzzy
values for the given functions are presented as follows:

µchild(x) =



0,x ≤ 0

1,0 ≤ x ≤ 5.684
13.76− x

8.076
,5.684 ≤ x ≤ 13.76

0,13.76 ≤ x

(8)

µyoung(x) =



0,x ≤ 9
x− 9
6.85

,9 ≤ x ≤ 15.85

1,15.85 ≤ x ≤ 31.12
33.85− x

2.73
,31.12 ≤ x ≤ 33.85

0,33.85 ≤ x

(9)

µadult(x) =



0,x ≤ 32.15
x− 32.15

11.6
,32.15 ≤ x ≤ 43.75

1,43.75 ≤ x ≤ 55.35
60.91− x

5.56
,55.35 ≤ x ≤ 60.91

0,60.91 ≤ x

(10)
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µelder(x) =



0,x ≤ 54.18
x− 54.18

31.1
,54.18 ≤ x ≤ 85.28

1,85.28 ≤ x ≤ 100

0,100 ≤ x

(11)

4.1.1.2. Input Heart Rate

This variable has the linguistic values “Very Low”, “Low”, “Normal”, “High” and “VeryHigh”. The
fuzzy values for the given functions are presented as follows:

µverylow(x) =



0,x ≤ 0

1,0 ≤ x ≤ 12.38
32.45− x

19.07
,13.38 ≤ x ≤ 32.45

0,32.45 ≤ x

(12)

µlow(x) =



0,x ≤ 26.32
x− 26.32

7.38
,26.32 ≤ x ≤ 33.7

1,33.7 ≤ x ≤ 48.51
62.5− x

13.99
,48.51 ≤ x ≤ 62.5

0,62.5 ≤ x

(13)

µnormal(x) =



0,x ≤ 58.63
x− 58.63

10.13
,58.63 ≤ x ≤ 68.76

1,68.76 ≤ x ≤ 85.12
98.71− x

13.59
,85.12 ≤ x ≤ 98.71

0,98.71 ≤ x

(14)

µhigh(x) =



0,x ≤ 90.12
x− 90.12

23.58
,90.12 ≤ x ≤ 113.7

1,113.7 ≤ x ≤ 143.2
158.9− x

15.7
,143.2 ≤ x ≤ 158.9

0,158.9 ≤ x

(15)

µveryhigh(x) =



0,x ≤ 143.5
x− 143.5

50.1
,143.5 ≤ x ≤ 193.6

1,193.6 ≤ x ≤ 220

0,220 ≤ x

(16)
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4.1.2. Output Variable

This fuzzy inference system has an output variable, which corresponds to the heart rate level of
the patients and has the following linguistic values: “Low”, “BelowAV”, “Excelent”, “AboveAV” and
“VeryHigh”. The fuzzy values for the functions are given below:

µlow(x) =



0,x ≤ 0

1,0 ≤ x ≤ 4.977
13.4− x

8.423
,4.977 ≤ x ≤ 13.4

0,13.4 ≤ x

(17)

µbelowav(x) =



0,x ≤ 10.97
x− 10.97

5.77
,10.97 ≤ x ≤ 16.74

1,16.74 ≤ x ≤ 23.96
27.17− x

3.21
,23.96 ≤ x ≤ 27.17

0,27.17 ≤ x

(18)

µexcellen t(x) =



0,x ≤ 26.55
x− 26.55

4.46
,26.55 ≤ x ≤ 31.01

1,31.07 ≤ x ≤ 39.06
43.84− x

4.78
,39.06 ≤ x ≤ 43.84

0,43.84 ≤ x

(19)

µaboveav(x) =



0,x ≤ 39.42
x− 39.42

8.54
,39.42 ≤ x ≤ 47.96

1,47.96 ≤ x ≤ 62.98
71.81− x

8.83
,62.98 ≤ x ≤ 71.81

0,71.81 ≤ x

(20)

µveryhigh(x) =



0,x ≤ 66.87
x− 66.87

20.57
,66.87 ≤ x ≤ 87.44

1,87.44 ≤ x ≤ 100

0,100 ≤ x

(21)

4.2. Knowledge Representation of the Optimized Type-1 Fuzzy System with Gaussian Membership Functions

The knowledge representation of the optimized type-1 fuzzy system with Gaussian membership
functions is presented below.
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4.2.1. Input Variables

4.2.1.1. Input Age

This input variable has the linguistic values “Child”, “Young”, “Adult” and “Elder”. The fuzzy
values for the given functions are presented as follows:

µchild(x) = e− 1
2

(
x− 0
4.84

)2
(22)

µyoung(x) = e− 1
2

(
x− 24.43

8.493

)2
(23)

µadult(x) = e− 1
2

(
x− 49.28

6.81

)2
(24)

µelder(x) = e− 1
2

(
x− 100
24.66

)2
(25)

4.2.1.2. Input Heart Rate

This variable has the linguistic values “Very Low”, “Low”, “Normal”, “High” and “VeryHigh”. The
fuzzy values for the given functions are presented as follows:

verylow(x) = e− 1
2

(
x− 0
11.1

)2
(26)

low(x) = e− 1
2

(
x− 44.02

8.602

)2
(27)

normal(x) = e− 1
2

(
x− 74.97

9.143

)2
(28)

high(x) = e− 1
2

(
x− 125
18.69

)2
(29)

veryhigh(x) = e− 1
2

(
x− 220
38.02

)2
(30)

4.2.2. Output Variable

This fuzzy inference system has an output variable, which corresponds to the heart rate level of
the patient’s and has the following linguistic values: “Low”, “BelowAV”, “Excelent”, “AboveAV” and
“VeryHigh”. The fuzzy values for the given functions are given below:

low(x) = e− 1
2

(
x− 0
5.635

)2
(31)

belowav(x) = e− 1
2

(
x− 18.56

5.282

)2
(32)

excellent(x) = e− 1
2

(
x− 37.16

7.14

)2
(33)

aboveav(x) = e− 1
2

(
x− 58.74

7.182

)2
(34)



Algorithms 2018, 11, 206 18 of 35

verryhigh(x) = e− 1
2

(
x− 100
17.21

)2
(35)

4.3. Knowledge Representation of the Optimized Interval Type-2 Fuzzy System with Trapezoidal Membership
Functions

The knowledge representation of the interval type-2 fuzzy system with trapezoidal membership
functions is presented below.

4.3.1. Input Variables

4.3.1.1. Input Age

This input variable has the linguistic values “Child”, “Young”, “Adult” and “Elder”, for each of
the upper and lower membership functions. The fuzzy values for the given functions are presented
as follows:

µchild1(x) = max
(

min
(

x− 0
0

, 1,
11.53− x

5.88

)
, 0
)

(36)

µchild2(x) = max
(

min
(

x− 3.214
2.47

, 1,
13.76− x

6.396

)
, 0
)

(37)

µyoung1(x) = max
(

min
(

x− 9
6.86

, 1,
31.43− x

13.09

)
, 0
)

(38)

µyoung2(x) = max
(

min
(

x− 14.02
17.01

, 1,
33.85− x

0.65

)
, 0
)

(39)

µadult1(x) = max
(

min
(

x− 32.15
11.6

, 1,
52.19− x

4.26

)
, 0
)

(40)

µadult2(x) = max
(

min
(

x− 35.58
19.77

, 1,
60.91− x

2.97

)
, 0
)

(41)

µelder1(x) = max
(

min
(

x− 57.01
28.29

, 1,
94.1− x

4.6.6

)
, 0
)

(42)

µelder2(x) = max
(

min
(

x− 61.5
32.2

, 1,
100− x

5.7

)
, 0
)

(43)

4.3.1.2. Input Heart Rate

This variable has the linguistic values “Very Low”, “Low”, “Normal”, “High” and “VeryHigh”, for
each of the upper and lower membership functions. The fuzzy values for the given functions are
presented as follows:

µverylow1(x) = max
(

min
(

x− 0
0

, 1,
27.35− x

21.713

)
, 0
)

(44)

µverylow2(x) = max
(

min
(

x− 5.637
6.743

, 1,
32.45− x

14.15

)
, 0
)

(45)

µlow1(x) = max
(

min
(

x− 26.32
7.38

, 1,
54.08− x

13.69

)
, 0
)

(46)

µlow2(x) = max
(

min
(

x− 32.18
15.7

, 1,
62.5− x

7

)
, 0
)

(47)

µnormal1(x) = max
(

min
(

x− 58.63
10.13

, 1,
92.074− x

17.13

)
, 0
)

(48)
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µnormal2(x) = max
(

min
(

x− 66.39
18.73

, 1,
98.71− x

7.62

)
, 0
)

(49)

µhigh1(x) = max
(

min
(

x− 90.12
23.58

, 1,
148− x

25.1

)
, 0
)

(50)

µhigh2(x) = max
(

min
(

x− 95.77
38.43

, 1,
158.9− x

24.7

)
, 0
)

(51)

µveryhigh1(x) = max
(

min
(

x− 153.9
28.1

, 1,
210− x

23

)
, 0
)

(52)

µveryhigh2(x) = max
(

min
(

x− 165
33

, 1,
220− x

22

)
, 0
)

(53)

4.3.2. Output Variable

This fuzzy system has an output variable, which corresponds to the heart rate level of the patient’s
and has the following linguistic values: “Low”, “BelowAV”, “Excelent”, “AboveAV” and “VeryHigh”,
for each of the lower and upper membership functions. The fuzzy values for the given functions are
given below:

µlow1(x) = max
(

min
(

x− 0
0

, 1,
12− x
9.861

)
, 0
)

(54)

µlow2(x) = max
(

min
(

x− 1.918
3.059

, 1,
13.4− x

6.254

)
, 0
)

(55)

µbelowav1(x) = max
(

min
(

x− 10.97
5.77

, 1,
22.99− x

3.97

)
, 0
)

(56)

µbelowav2(x) = max
(

min
(

x− 12.63
11.33

, 1,
27.17− x

0.72

)
, 0
)

(57)

µexcellent1(x) = max
(

min
(

x− 26.55
4.46

, 1,
40.47− x

5.04

)
, 0
)

(58)

µexcellent2(x) = max
(

min
(

x− 28.63
10.43

, 1,
43.84− x

2.87

)
, 0
)

(59)

µaboveav1(x) = max
(

min
(

x− 41.55
8.6

, 1,
65.95− x

5.3

)
, 0
)

(60)

µaboveav2(x) = max
(

min
(

x− 44.85
12.4

, 1,
68.65− x

3.7

)
, 0
)

(61)

µveryhigh1(x) = max
(

min
(

x− 65.74
21.76

, 1,
95.3− x

5.4

)
, 0
)

(62)

µveryhigh2(x) = max
(

min
(

x− 70.8
20.7

, 1,
100− x

8.5

)
, 0
)

(63)

4.4. Knowledge Representation of the Optimized Interval Type-2 Fuzzy System with Gaussian Membership
Functions

In this section, knowledge representation of the inputs and output of the optimized interval
type-2 fuzzy system for the classification of the heart rate level with Gaussian membership functions
is presented.
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4.4.1. Input Variables

4.4.1.1. Input Age

This input variable has the linguistic values “Child”, “Young”, “Adult” and “Elder”, for each of
the upper and lower membership functions. The fuzzy values for the given functions are presented
as follows:

µchild(x) = α exp

[
−1

2

(
x− 0
7.72

)2
]

(64)

µchild(x) = exp

[
−1

2

(
x− 0
7.72

)2
]

(65)

µyoung(x) = α exp

[
−1

2

(
x− 23.54

7.72

)2
]

(66)

µyoung(x) = exp

[
−1

2

(
x− 23.54

7.72

)2
]

(67)

µadult(x) = α exp

[
−1

2

(
x− 46.13

5.426

)2
]

(68)

µadult(x) = exp

[
−1

2

(
x− 46.13

5.426

)2
]

(69)

µelder(x) = α exp

[
−1

2

(
x− 100
24.82

)2
]

(70)

µelder(x) = exp

[
−1

2

(
x− 100
24.82

)2
]

(71)

4.4.1.2. Input Heart Rate

This variable has the linguistic values “Very Low”, “Low”, “Normal”, “High” and “VeryHigh”, for
each of the upper and lower membership functions. The fuzzy values for the given functions are
presented as follows:

µverylow(x) = α exp

[
−1

2

(
x− 0
10.91

)2
]

(72)

µverylow(x) = exp

[
−1

2

(
x− 0
10.91

)2
]

(73)

µlow(x) = α exp

[
−1

2

(
x− 42.25

9.739

)2
]

(74)

µlow(x) = exp

[
−1

2

(
x− 42.25

9.739

)2
]

(75)

µnormal(x) = α exp

[
−1

2

(
x− 77.94

9.381

)2
]

(76)

µnormal(x) = exp

[
−1

2

(
x− 77.94

9.381

)2
]

(77)
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µhigh(x) = α exp

[
−1

2

(
x− 127.5

18.94

)2
]

(78)

µhigh(x) = exp

[
−1

2

(
x− 127.5

18.94

)2
]

(79)

µveryhigh(x) = α exp

[
−1

2

(
x− 220
40.86

)2
]

(80)

µveryhigh(x) = exp

[
−1

2

(
x− 220
40.86

)2
]

(81)

4.4.2. Output Variable

This fuzzy system has an output variable, which corresponds to the heart rate level of the patient’s
and has the following linguistic values: “Low”, “BelowAV”, “Excelent”, “AboveAV” and “VeryHigh”,
for each of the lower and upper membership functions. The fuzzy values for the given functions are
given below:

µlow(x) = α exp

[
−1

2

(
x− 0
4.432

)2
]

(82)

µlow(x) = exp

[
−1

2

(
x− 0
4.432

)2
]

(83)

µbelowav(x) = α exp

[
−1

2

(
x− 19.55

4.236

)2
]

(84)

µbelowav(x) = exp

[
−1

2

(
x− 19.55

4.236

)2
]

(85)

µexcellent(x) = α exp

[
−1

2

(
x− 35.38

4.649

)2
]

(86)

µexcellent(x) = exp

[
−1

2

(
x− 35.38

4.649

)2
]

(87)

µaboveav(x) = α exp

[
−1

2

(
x− 60.25

7.076

)2
]

(88)

µabovav(x) = exp

[
−1

2

(
x− 60.25

7.076

)2
]

(89)

µaboveav(x) = α exp

[
−1

2

(
x− 100
17.09

)2
]

(90)

µabovav(x) = exp

[
−1

2

(
x− 100
17.09

)2
]

(91)

5. Results

5.1. Optimization of Type-1 Fuzzy Systems

To carry out the optimization of the fuzzy systems, 30 experiments were performed, changing
the parameters of the BSA in each case. These parameters are presented in Table 2, where M is the
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number of iterations, pop the population of birds, DimT is the number of dimensions used to optimize
the fuzzy inference system with trapezoidal membership functions, DimG the dimensions used to
optimize the fuzzy system with Gaussian membership functions, FQ (FL) is the frequency of bird
behavior, c1 and c2 are the cognitive and social accelerated coefficients, respectively, and a1 and a2 are
parameters related to the indirect and direct effects of bird vigilance behavior.

In Table 3, the parameters with the best results when performing the optimization are presented,
being the same for both fuzzy inference systems.

Table 3. Parameters of the best experiment.

Parameter Value

M 285
pop 70

DimT 56
DimG 28

FQ 13
c1 3.56
c2 3.56
a1 0.7
a2 0.7

The percentage of classification of each experiment for both fuzzy systems are presented in Table 4,
in column 2, referring to the experiments with trapezoidal membership functions. The experiments
14 and 28 were the best, with 100% classification, while column 3 refers to the experiments with
Gaussian membership functions, where experiment 14 was the best, with 95% classification. The best
experiments are highlighted in green.

The average classification of the 30 experiments in the fuzzy systems with trapezoidal membership
functions was 94.58%, while for the Gaussian membership functions it was 90.33%.

In Figures 19 and 20, the inputs of the fuzzy system with optimized trapezoidal membership
functions are illustrated. Likewise, in Figure 21 the output with optimized trapezoidal membership
functions is presented.

Table 4. Percentage of classification in each experiment with BSA. 

No. MFTra MFGauss 

1 97.50% 87.50% 
2 95% 87.50% 
3 97.50% 92.50% 
4 90% 87.50% 
5 97.50% 87.50% 
6 90% 92.50% 
7 92.50% 90% 
8 87.50% 92.50% 
9 92.50% 92.50% 
10 95% 90% 
11 95% 92.50% 
12 90% 95% 
13 92.50% 90% 
14 100% 95% 
15 97.50% 90% 
16 95% 90% 
17 95% 87.50% 
18 97.50% 90% 
19 92.50% 92.50% 
20 95% 92.50% 
21 95% 92.50% 
22 92.50% 85% 
23 95% 90% 
24 95% 87.50% 
25 100% 90% 
26 95% 87.50% 
27 97.50% 92.50% 
28 100% 87.50% 
29 92.50% 90% 
30 90% 92.50% 

The average classification of the 30 experiments in the fuzzy systems with trapezoidal 
membership functions was 94.58%, while for the Gaussian membership functions it was 90.33%. 

 

Figure 19. Optimized input age. 
Figure 19. Optimized input age.
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Figure 21. Optimized output heart rate level. 

In Figure 19 and Figure 20, the inputs of the fuzzy system with optimized trapezoidal 
membership functions are illustrated. Likewise, in Figure 21 the output with optimized trapezoidal 
membership functions is presented. 

In the same way, in Figure 22 and Figure 23 the inputs of the optimized fuzzy system with 
Gaussian membership functions are presented. In Figure 24, the output of the optimized fuzzy 
system with Gaussian membership function is presented. In both cases, the adjustment in each of 
the membership functions accomplished with the BSA can be observed. 

 

Figure 22. Optimized input age with Gaussian MFs. 

 

Figure 23. Optimized input heart rate with Gaussian MFs. 

Figure 20. Optimized input heart rate.
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Table 4. Percentage of classification in each experiment with BSA.

No. MFTra MFGauss

1 97.50% 87.50%
2 95% 87.50%
3 97.50% 92.50%
4 90% 87.50%
5 97.50% 87.50%
6 90% 92.50%
7 92.50% 90%
8 87.50% 92.50%
9 92.50% 92.50%

10 95% 90%
11 95% 92.50%
12 90% 95%
13 92.50% 90%
14 100% 95%
15 97.50% 90%
16 95% 90%
17 95% 87.50%
18 97.50% 90%
19 92.50% 92.50%
20 95% 92.50%
21 95% 92.50%
22 92.50% 85%
23 95% 90%
24 95% 87.50%
25 100% 90%
26 95% 87.50%
27 97.50% 92.50%
28 100% 87.50%
29 92.50% 90%
30 90% 92.50%

 

Figure 20. Optimized input heart rate. 

 

Figure 21. Optimized output heart rate level. 

In Figure 19 and Figure 20, the inputs of the fuzzy system with optimized trapezoidal 
membership functions are illustrated. Likewise, in Figure 21 the output with optimized trapezoidal 
membership functions is presented. 

In the same way, in Figure 22 and Figure 23 the inputs of the optimized fuzzy system with 
Gaussian membership functions are presented. In Figure 24, the output of the optimized fuzzy 
system with Gaussian membership function is presented. In both cases, the adjustment in each of 
the membership functions accomplished with the BSA can be observed. 

 

Figure 22. Optimized input age with Gaussian MFs. 

 

Figure 23. Optimized input heart rate with Gaussian MFs. 

Figure 21. Optimized output heart rate level.

In the same way, in Figures 22 and 23 the inputs of the optimized fuzzy system with Gaussian
membership functions are presented. In Figure 24, the output of the optimized fuzzy system with
Gaussian membership function is presented. In both cases, the adjustment in each of the membership
functions accomplished with the BSA can be observed.
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Figure 23. Optimized input heart rate with Gaussian MFs.

Figure 24. Optimized output heart rate level with Gaussian MFs.

Tests with the CSA were performed. In the same way as with BSA, 30 experiments were performed
using the same population and iterations of Table 2, also obtaining the percentage of classification of
the patients. In Table 5, the percentage of classification for each experiment is presented; column 2
presents the results with trapezoidal membership functions, while column 3 presents the results with
Gaussian membership functions, in both cases presented with the type-1 fuzzy system.

The average classification of the 30 experiments in the fuzzy systems with trapezoidal membership
functions was 88.33%, while for the Gaussian membership functions it was 89.66%.

In Table 6, the comparison of the averages of the experiments performed with CSA and BSA is
presented; it can be seen that a higher percentage of classification was obtained when the optimization
was done with the BSA.
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Table 5. Percentage of classification in each experiment with CSA.

No. MFTra MFGauss

1 87.5% 87.5%
2 87.5% 92.5%
3 87.5% 92.5%
4 85% 87.5%
5 87.5% 90%
6 85% 90%
7 87.5% 90%
8 87.5% 90%
9 87.5% 90%

10 85% 90%
11 90% 87.5%
12 90% 90%
13 90% 90%
14 90% 90%
15 87.5% 90%
16 85% 90%
17 87.5% 90%
18 90% 90%
19 87.5% 87.5%
20 90% 87.5%
21 90% 92.5%
22 97.5% 90%
23 90% 90%
24 90% 90%
25 87.5% 87.5%
26 87.5% 87.5%
27 90% 90%
28 87.5% 90%
29 87.5% 90%
30 87.5% 90%

Table 6. Comparison of BSA and CSA averages.

Trapezoidal Membership Functions Gaussians Membership Functions

BSA CSA BSA CSA
94.58% 88.33% 90.33% 89.66%

5.2. Optimization of the Interval Type-2 Fuzzy Systems

For the optimization of the interval type-2 fuzzy systems, 30 different experiments were carried
out, using the parameters in Table 2. Experiment 21 was the one with the best classification results for
the fuzzy system with trapezoidal membership functions, with 97.5% classification. In Table 7, the
parameters of the aforementioned experiment are presented.

Table 7. Parameters of the best experiment with trapezoidal membership functions.

Parameter Value

M 202
pop 100

DimT 56
FQ 15
c1 1.67
c2 1.67
a1 0.6
a2 0.6
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Meanwhile, for the interval type-2 fuzzy system with Gaussian membership functions, experiment
28 was the best, with a 100% classification. In Table 8, the parameters of that experiment are presented.

Table 8. Parameters of the best experiment with trapezoidal membership functions.

Parameter Value

M 87
pop 230

DimG 28
FQ 15
c1 3.4
c2 3.4
a1 1.5
a2 1.5

Table 9 presents the percentage of classification in each experiment for both membership functions,
having a classification average for interval type-2 fuzzy systems with trapezoidal membership
functions of 92.92%, while for the interval type-2 fuzzy system with Gaussian membership functions
an average rating of 92.78%. The best experiments are highlight in green.

Table 9. Percentage of classification in each experiment with BSA.

No MFTra MFGauss

1 92.50% 92.50%
2 92.50% 90%
3 92.50% 87.50%
4 95% 90%
5 92.50% 87.50%
6 92.50% 92.50%
7 92.50% 95%
8 92.50% 90%
9 92.50% 92.50%

10 92.50% 95%
11 92.50% 97.50%
12 92.50% 87.50%
13 92.50% 95%
14 92.50% 92.50%
15 95% 92.50%
16 92.50% 85%
17 95% 92.50%
18 92.50% 92.50%
19 92.50% 92.50%
20 95% 97.50%
21 97.50% 90%
22 87.50% 97.50%
23 92.50% 100%
24 92.50% 92.50%
25 92.50% 87.50%
26 92.50% 90%
27 92.50% 97.50%
28 92.50% 100%
29 92.50% 97.50%
30 95% 92.50%

The optimized inputs with trapezoidal membership function are presented in Figures 25 and 26,
while the output is presented in Figure 27.
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membership functions of 92.92%, while for the interval type-2 fuzzy system with Gaussian 
membership functions an average rating of 92.78%. The best experiments are highlight in green. 

Table 9. Percentage of classification in each experiment with BSA. 

No MFTra MFGauss 
1 92.50% 92.50% 
2 92.50% 90% 
3 92.50% 87.50% 
4 95% 90% 
5 92.50% 87.50% 
6 92.50% 92.50% 
7 92.50% 95% 
8 92.50% 90% 
9 92.50% 92.50% 
10 92.50% 95% 
11 92.50% 97.50% 
12 92.50% 87.50% 
13 92.50% 95% 
14 92.50% 92.50% 
15 95% 92.50% 
16 92.50% 85% 
17 95% 92.50% 
18 92.50% 92.50% 
19 92.50% 92.50% 
20 95% 97.50% 
21 97.50% 90% 
22 87.50% 97.50% 
23 92.50% 100% 
24 92.50% 92.50% 
25 92.50% 87.50% 
26 92.50% 90% 
27 92.50% 97.50% 
28 92.50% 100% 
29 92.50% 97.50% 
30 95% 92.50% 

The optimized inputs with trapezoidal membership function are presented in Figure 25 and 
Figure 26, while the output is presented in Figure 27. 
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Similarly, in Figures 28 and 29, the inputs of optimized interval type-2 fuzzy system with Gaussian
membership functions are presented. The output of this fuzzy system is presented in Figure 30.
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Figure 30. Optimized output heart rate level with Gaussian MFs.

In this case, the adjustment in the footprint of uncertainty is more noticeable than the optimizations
of the type-1 fuzzy systems.

30 experiments with the CSA were performed, using the same population and iterations presented
in Table 2, and also obtaining the percentage of classification of the patients. In Table 10, the percentage
of classification for each experiment is presented; column 2 presents the results with trapezoidal
membership functions, while column 3 presents the results with Gaussian membership functions in
both cases being presented with the interval type-2 fuzzy system.

The average classification of the 30 experiments in the fuzzy systems with trapezoidal membership
functions was 92.83%, while for the Gaussian membership functions it was 88.33%.

In Table 11, the comparison of the averages of the experiments performed with CSA and BSA is
presented, it can be seen that a higher percentage of classification was obtained when the optimization
was done with the BSA.
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Table 10. Percentage of classification in each experiment with CSA.

No MFTra MFGauss

1 92.50% 92.50%
2 90% 92.50%
3 90% 92.50%
4 90% 95%
5 90% 92.50%
6 90% 95%
7 90% 92.50%
8 90% 92.50%
9 90% 92.50%

10 90% 87.50%
11 90% 95%
12 90% 92.50%
13 90% 95%
14 90% 92.50%
15 90% 95%
16 90% 92.50%
17 90% 95%
18 90% 95%
19 90% 92.50%
20 90% 95%
21 90% 95%
22 90% 95%
23 90% 92.50%
24 90% 92.50%
25 90% 87.50%
26 90% 92.50%
27 90% 92.50%
28 90% 92.50%
29 90% 87.50%
30 90% 92.50%

Table 11. Comparison of BSA and CSA averages.

Tapezoidal Membership Functions Gaussians Membership Functions

BSA CSA BSA CSA
92.92% 92.83% 92.78% 88.33%

5.3. Tests with Patients Using the Type-1 Fuzzy Systems

Tests were carried out with 15 random patients; this is because in our group of patients, there is
not much variation in age and, usually, the level of the pulse is found to be in the excellent range, and
we wanted to observe that the fuzzy system made classifications correctly for different ages and heart
rate levels.

Table 12 presents the age and pulse of the randomized patients when BelowAV is the value
below average, Excnt is excellent, AboveAV is above average and Vhigh is very high value. In this
case, the non-optimized fuzzy system with trapezoidal membership functions classified 13 patients
correctly, and the optimized fuzzy system classified all 15 patients correctly. On the other hand, the
non-optimized Gaussian fuzzy system classified 12 patients correctly, and the optimized fuzzy system
classified 14 patients correctly. The patients classified incorrectly are highlighted in red.
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Table 12. Test with random patients.

No. Age Pulse Real

Trapezoidal Gaussian

No Optimized
FIS

Optimized
FIS

No Optimized
FIS

Optimized
FIS

1 25 84 Excnt Excnt Excnt Excnt Excnt
2 83 95 AboveAV Excnt AboveAV AboveAV AboveAV
3 15 114 AboveAV AboveAV AboveAV AboveAV AboveAV
4 34 72 Excnt Excnt Excnt Excnt Excnt
5 42 135 AboveAV AboveAV AboveAV AboveAV AboveAV
6 91 97 VHigh AboveAV VHigh AboveAV VHigh
7 45 60 BelowAV BelowAV BelowAV Excnt Excnt
8 56 87 Excnt Excnt Excnt AboveAV Exc
9 75 102 VHigh VHigh VHigh VHigh VHigh
10 9 120 Excnt Excnt Excnt Excnt Excnt
11 14 92 Excnt Excnt Excnt Excnt Excnt
12 38 78 Excnt Excnt Excnt Excnt Excnt
13 29 80 Excnt Excnt Excnt Excnt Excnt
14 21 62 Excnt Excnt Excnt Excnt Excnt
15 6 115 Excnt Excnt Excnt Excnt Excnt

Table 13 presents the results of the classification of 20 patients from our database, with the
non-optimized fuzzy system with trapezoidal membership functions correctly classifying 19 patients,
as well as the optimized fuzzy system. In the case of the non-optimized fuzzy system with Gaussian
membership functions, 19 patients were classified correctly, while the optimized fuzzy system did not
have a single error in the classification.

Table 13. Test with real patients.

No. Age Pulse Real

Trapezoidal Gaussian

No Optimized
FIS

Optimized
FIS

No Optimized
FIS

Optimized
FIS

1 46 75 Excnt Excnt Excnt Excnt Excnt
2 28 88 Excnt Excnt Excnt Excnt Excnt
3 30 69 Excnt Excnt Excnt Excnt Excnt
4 33 59 BelowAV BelowAV BelowAV Excnt BelowAV
5 31 68 Excnt Excnt Excnt Excnt Excnt
6 32 71 Excnt Excnt Excnt Excnt Excnt
7 32 66 Excnt Excnt Excnt Excnt Excnt
8 27 66 Excnt Excnt Excnt Excnt Excnt
9 31 72 Excnt Excnt Excnt Excnt Excnt
10 30 76 Excnt Excnt Excnt Excnt Excnt
11 32 81 Excnt Excnt Excnt Excnt Excnt
12 28 76 Excnt Excnt Excnt Excnt Excnt
13 31 85 Excnt Excnt Excnt Excnt Excnt
14 26 85 Excnt Excnt Excnt Excnt Excnt
15 31 77 Excnt Excnt Excnt Excnt Excnt
16 29 77 Excnt Excnt Excnt Excnt Excnt
17 45 69 Excnt Excnt Excnt Excnt Excnt
18 27 63 Excnt Excnt Excnt Excnt Excnt
19 25 107 AvobeAV AvobeAV AvobeAV AvobeAV AvobeAV
20 25 95 AvobeAV Excnt Excnt Excnt AvobeAV

5.4. Tests with Patients Using Interval Type-2 Fuzzy Systems

In the same way as with the type-1 fuzzy systems, interval type-2 (optimized and non-optimized)
fuzzy systems were tested to compare their results, considering the classification results of 15 random
patients in Table 14. In this case, the fuzzy system with non-optimized trapezoidal membership
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functions classified 13 patients correctly, as did the optimized fuzzy system. The fuzzy system with
non-optimized Gaussian membership functions classified 12 patients correctly, while the optimized
one classified all 15 patients correctly.

Table 14. Test with random patients using the IT2FS.

No. Age Pulse Real

Trapezoidal Gaussian

No Optimized
FIS

Optimized
FIS

No Optimized
FIS

Optimized
FIS

1 25 84 Excnt Excnt Excnt Excnt Excnt
2 83 95 AvobeAV AvobeAV AvobeAV AvobeAV AvobeAV
3 15 114 AvobeAV AvobeAV AvobeAV AvobeAV AvobeAV
4 34 72 V Exc Exc Exc Exc
5 42 135 AvobeAV AvobeAV AvobeAV AvobeAV AvobeAV
6 91 97 VHigh AboveAV VHigh AboveAV VHigh
7 45 60 BelowAV Excnt Excnt Excnt BelowAV
8 56 87 Excnt Excnt Excnt AboveAV Excnt
9 75 102 VHigh VHigh VHigh VHigh VHigh
10 9 120 Excnt Excnt Excnt Excnt Excnt
11 14 92 Excnt Excnt AboveAV Excnt Excnt
12 38 78 Excnt Excnt Excnt Excnt Excnt
13 29 80 Excnt Excnt Excnt Excnt Excnt
14 21 62 Excnt Excnt Excnt Excnt Excnt
15 6 115 Excnt Excnt Excnt Excnt Excnt

Table 15 presents classification results with interval type-2 fuzzy systems with our patients. As can
be seen, the non-optimized fuzzy system with trapezoidal membership functions classified 19 patients
correctly, the non-optimized fuzzy system with Gaussian membership functions classified 18 patients
correctly, while optimized fuzzy systems classified all patients correctly.

Table 15. Test with real patients.

No. Age Pulse Real

Trapezoidal Gaussian

No Optimized
FIS

Optimized
FIS

No Optimized
FIS

Optimized
FIS

1 46 75 Excnt Excnt Excnt Excnt Excnt
2 28 88 Excnt Excnt Excnt Excnt Excnt
3 30 69 Excnt Excnt Excnt Excnt Excnt
4 33 59 BelowAV Excnt BelowAV Excnt BelowAV
5 31 68 Excnt Excnt Excnt Excnt Excnt
6 32 71 Excnt Excnt Excnt Excnt Excnt
7 32 66 Excnt Excnt Excnt Excnt Excnt
8 27 66 Excnt Excnt Excnt Excnt Excnt
9 31 72 Excnt Excnt Excnt Excnt Excnt
10 30 76 Excnt Excnt Excnt Excnt Excnt
11 32 81 Excnt Excnt Excnt Excnt Excnt
12 28 76 Excnt Excnt Excnt Excnt Excnt
13 31 85 Excnt Excnt Excnt Excnt Excnt
14 26 85 Excnt Excnt Excnt Excnt Excnt
15 31 77 Excnt Excnt Excnt Excnt Excnt
16 29 77 Excnt Excnt Excnt Excnt Excnt
17 45 69 Excnt Excnt Excnt Excnt Excnt
18 27 63 Excnt Excnt Excnt Excnt Excnt
19 25 107 AboveAV AboveAV AboveAV AboveAV AboveAV
20 25 95 AboveAV AboveAV AboveAV Excnt AboveAV
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Table 16 summarizes the percentages of classification of the fuzzy inference systems for the 15
random patients.

Table 16. Classification with type-1 and interval type-2 fuzzy systems with random patients.

FST1 No Optimized FST1 Optimized FST2 No Optimized FST2 Optimized

Trap Gauss Trap Gauss Trap Gauss Trap Gauss
86.6% 80% 100% 93.3% 86.6% 80% 86.6% 100%

Table 17 presents the percentages of classification in the fuzzy inference systems for the 20
real patients.

Table 17. Classification with type-1 and interval type-2 fuzzy systems with real patients.

FST1 No Optimized FST1 Optimized FST2 No Optimized FST2 Optimized

Trap Gauss Trap Gauss Trap Gauss Trap Gauss
95% 90% 95% 100% 95% 90% 100% 100%

It can be observed in Tables 16 and 17 that the fuzzy systems, both type-1 and interval type-2
with Gaussian membership functions, achieved a 100% classification in most of the experiments
performed with the different sets of patients, and in which the improvement of classification when
optimized was also remarkable, given that the lowest value for the non-optimized fuzzy system was
80% correct classification.

6. Discussion

Optimization has been applied in a large number of areas using different bio-inspired algorithms
to find the best solution to different types of problems. In industry, we can find how genetic algorithms
are implemented to maximize the useful life of a high-performance controller in the drilling process,
as well as the material removal rate [43]. With regard to the optimization of artificial neural networks,
the harmony search algorithm has been used to train the echo estate neural networks [44], which are a
special form of recurrent neural networks.

Optimization of fuzzy controllers has been carried out applying the gray wolf optimizer, to find
the best parameters of a Takagi-Sugeno proportional-integral fuzzy controllers for a class of non-linear
servo systems [45], and in another case was used to optimize a Takagi-Sugeno fuzzy PI controller for
the flux and conductivity control of Reverse Osmosis Desalination Plants [46].

In this work, BSA was used for the optimization of the membership function parameters in type-1
and interval type-2 fuzzy systems, with the aim of improving the performance at the moment of
classifying the heart level of different patients. The optimization was performed in the same way
with the CSA; in Table 6 the comparison of the results is presented when the type-1 fuzzy systems
are optimized, showing that for both membership functions, using the BSA provides a better result.
Meanwhile, in Table 11, the results are presented when optimizing the footprint of uncertainty of
interval type-2 fuzzy systems. In the case when the trapezoidal membership functions were optimized,
the improvement is minimal when the BSA algorithm is compared with the CSA; on the contrary,
for optimization of fuzzy system with Gaussian membership functions, it is observed that the BSA
was better.

Different tests were performed with patients in order to decide which of the optimized fuzzy
systems yields a better classification, and the results were compared with non-optimized fuzzy systems,
as presented in Tables 16 and 17, noting that, for the different sets of patients, better results were
obtained with the fuzzy systems optimized with Gaussian membership functions, since they classified
100% of patients correctly in both cases.
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7. Conclusions

In this work, the design, implementation, and optimization of fuzzy systems for the classification
of the heart level is presented. The algorithm chosen for this optimization was the BSA, with which a
total of 30 different experiments were carried out with type-1 and IT2FS, varying the parameters of
the algorithm until good results were obtained. The experiments described above were made in the
same way as with the CSA, and when performing the comparison of results, a better classification was
obtained when optimizing with the BSA.

Experiments were performed with different sets of patients, testing the fuzzy systems, which
produced a better percentage of classification when optimized, as well as the non-optimized fuzzy
systems to compare the classification provided.

Once this was done and the results were compared, it could be observed that a better classification
was obtained with fuzzy systems in both type-1 and IT2FS with Gaussian functions, with the IT2FS
model showing the best results. When the BSA algorithm was compared with the CSA algorithm,
better results were obtained with the former algorithm.

With the experimentation carried out, based on the obtained results, a reliable fuzzy classifier can
be provided, which correctly classifies the different heart rate levels that a patient can have based on
their age and heart rate tendency provided by a modular neuronal network, and which, when used by
an expert, will provide an accurate final diagnosis of any condition that the patient may have.

When comparing the proposed fuzzy system with some of those found in the literature, we could
observe that the granulation in the membership functions is carried out in a simpler way, giving our
fuzzy system a more extensive pulse level classification.

As future work, we envision the following: general type-2 fuzzy logic can be used to enhance
uncertainty management in the fuzzy model of diagnosis, other optimization methods can be used for
comparison of results, and the model of diagnosis can be adapted to other medical diagnostic problems.
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