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Abstract: The stability and robustness of quadrotors are always influenced by unknown or
immeasurable system parameters. This paper proposes a novel adaptive parameter estimation
technology to obtain high-accuracy parameter estimation for quadrotors. A typical mathematical
model of quadrotors is first obtained, which can be used for parameter estimation. Then, an expression
of the parameter estimation error is derived by introducing a set of auxiliary filtered variables.
Moreover, an augmented matrix is constructed based on the obtained auxiliary filtered variables,
which is then used to design new adaptive laws to achieve exponential convergence under the
standard persistent excitation (PE) condition. Finally, a simulation and an experimental verification
for a typical quadrotor system are shown to illustrate the effectiveness of the proposed method.
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1. Introduction

Adaptive control and parameter estimation have been hot topics in the control fields [1,2], since,
in control engineering practice, many unknown or immeasurable parameters and dynamics exist
in a wide range of control plants. In order to address this problem, adaptive control was proposed
as an effective and powerful method [3–5]. In this methodology, the unknown or immeasurable
parameters and dynamics can be updated online or estimated by using control errors to ensure a
closed-loop system’s stability [5]. Nevertheless, in the past few years, standard adaptive control with
a gradient-based algorithm has focused mainly on tracking a given reference trajectory rather than
guaranteeing that the estimated parameters converge to their true values [6]. However, according to
the equivalence theorem [7], accurate parameter estimation can be essential to enhancing the stability
and robustness of adaptive systems for the purpose of tracking control. Hence, developing adaptive
laws with guaranteed convergence is always a critical issue in adaptive control designs.

Recently, in order to solve the problems of parameter estimation, some scholars have made great
efforts, and many well-recognized results have been reported; e.g., the gradient descent, least squares
(LS) [3–5], neural network [8,9], and projection algorithms [10]. Moreover, a new adaptive parameter
estimation framework has recently been proposed and applied in many applications [11–14], where the
adaptive laws are driven by the parameter estimation error such that exponential or even finite-time
convergence can be achieved. In [6], a new adaptive law was also studied to reconstruct unknown
system parameters when an intermediate matrix is positive. However, most of the existing results
are suitable for linearly parameterized systems only, and cannot be directly used for nonlinearly
parameterized systems.

In parameter estimation, the parameter error convergence rate is also an important issue.
To address this issue, a finite-time sliding neural network observer was studied in [8], where the
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observed state derivatives are used to estimate parameters, and some known nonlinear functions
in the system are needed. Moreover, the inverse of these matrices should exist and be available.
In a recent research work [6], under the condition that the persistent excitation (PE) is satisfied, a
novel parameter estimation was given, which allows exact reconstruction of the unknown parameters.
However, this method needs to verify online the inevitability for a matrix and compute its inverse
when it is appropriate. Besides this, an observer is needed to be designed for this parameter estimation
method, such that the corresponding computational cost is also increased.

Nowadays, quadrotors are playing a more and more important role in daily life, since they
can perform versatile maneuvers and are able to complete various missions [15]. Therefore, a lot
of attention has been paid to the modeling and control of quadrotors in the past few years [16–19].
However, some parameters in quadrotors are unknown for the controller’s design. In particular, the
stability and robustness of control systems for quadrotors are always influenced by the unknown
or immeasurable parameters. Hence, inspired by the above facts, in this paper, we will propose
an adaptive parameter estimation technology for quadrotors with unknown parameters to enhance
the stability and robustness of quadrotors. Firstly, a typical quadrotor mathematical model is given,
and then an expression of the parameter estimation error is derived by introducing auxiliary filtered
variables. Moreover, an augmented matrix is constructed based on the auxiliary filtered variables,
which is further used to design the adaptive law to achieve convergence under the standard persistent
excitation (PE) condition. Finally, simulation and experimental verification results for quadrotors are
shown to illustrate the effectiveness of the proposed method.

The main contributions for this paper can be summarized as:

(1) A parameter estimation is developed to obtain the parameter error information by using system
dynamics and the estimated parameters with simple filter operations.

(2) Novel parameter-error-based adaptive parameter estimation algorithms are suggested for
quadrotors to guarantee fast convergence.

(3) A constructive method is suggested to validate the standard persistent excitation (PE)
condition online.

2. Adaptive Parameter Estimation

In this section, an adaptive parameter estimation technology is proposed for quadrotors.
The schematic diagram of a ground coordinate system and a body axes coordinate system is given in
Figure 1. Consider the following typical quadrotor mathematical model [20]

..
x = (cos ψ sin θ cos φ + sin ψ sin φ)U1/m
..
y = (sin ψ sin θ cos φ + sin φ sin ψ)U1/m
..
z = (cos θ cos φ)U1/m− g
..
φ = [lU2 +

.
θ

.
ψ(Jz − Jx)]/Jy

..
θ = [lU3 +

.
φ

.
ψ(Jy − Jz)]/Jx

..
ψ = [U4 +

.
φ

.
θ(Jx − Jy)]/Jz

(1)

where x is the displacement of the x-axis direction, y is the displacement of the y-axis direction, z is the
displacement of the z-axis direction, ψ denotes the yaw angle, φ means the rolling angle, and θ defines
the pitching angle. U1, U2, U3 and U4 denote the control actions of the vertical direction, roll direction,
pitch direction, and the yaw direction, respectively, m denotes the total mass of the quadrotor, J is the
moment inertia of the quadrotor, and g denotes the gravitational acceleration.
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In order to facilitate the parameter estimation, Equation (1) can be rewritten as

..
x = a1(cos ψ sin θ cos φ + sin ψ sin φ)U1
..
y = a1(sin ψ sin θ cos φ + sin φ sin ψ)U1
..
z = a1(cos θ cos φ)U1 − g
..
φ = a2U2 + a3

.
θ

.
ψ

..
θ = a4U3 + a5

.
φ

.
ψ

..
ψ = a6U4 + a7

.
φ

.
θ

(2)

where a1 = 1/m, a2 = l/Jy, a3 = (Jz − Jx)/Jy, a4 = l/Jx, a5 = (Jy − Jz)/Jx, a6 = 1/Jz, and
a7 = (Jx − Jy)/Jz. a1, a2, a3, a4, a5, a6 and a7 are the unknown parameters to be estimated.

The aim of this paper is to suggest a novel parameter estimation methodology and a novel
adaptive law for estimating a1, a2, a3, a4, a5, a6 and a7 of system (2).

In this section, we will introduce a new adaptive parameter error framework, which is driven by
the estimation error as [11–13]. In order to complete the parameter estimation, the filtered variables
.
x f ,

.
φ f ,

.
θ f ,

.
ψ f of

.
x,

.
φ,

.
θ and

.
ψ can be defined as

k
..
x f +

.
x f =

.
x,

.
x f (0) = 0

k
..
φ f +

.
φ f =

.
φ,

.
φ f (0) = 0

k
..
θ f +

.
θ f =

.
θ,

.
θ f (0) = 0

k
..
ψ f +

.
ψ f =

.
ψ,

.
ψ f (0) = 0

(3)

where k > 0 is the filtered parameter.
Then, we can obtain the following equation from (2) and (3)

..
x f =

.
x− .

x f

k
= a1 · F1 f ·U1

..
φ f =

.
φ−

.
φ f

k
= a2 ·U2 + a3F2 f

..
θ f =

.
θ −

.
θ f

k
= a4 ·U3 + a5 · F3 f

..
ψ f =

.
ψ−

.
ψ f

k
= a6 ·U4 + a7 · F4 f

(4)
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where F1 = cos ψ sin θ cos φ + sin ψ sin φ, F2 =
.
θ

.
ψ, F3 =

.
φ

.
ψ, and F4 =

.
φ

.
θ. F1, F2, F3, and F4 are the

defined functions, and F1 f , F2 f , F3 f , and F4 f are the filtered variables of F1, F2, F3, and F4, respectively.
In order to complete the parameters estimation, Equation (4) can be rewritten in a more compact
form as

X = YZ (5)

where

X =



.
x− .

x f
k.

φ−
.
φ f

k.
θ−

.
θ f

k.
ψ−

.
ψ f

k

, Y =


F1 f U1 0 0 0 0 0 0

0 U2 F2 f 0 0 0 0
0 0 0 U3 F3 f 0 0
0 0 0 0 0 U4 F4 f

, Z =



a1

a2

a3

a4

a5

a6

a7


. (6)

We can define an auxiliary filtered and ‘integrated’ regressor matrix P and a vector Q as{ .
P = −`P + YTY, P(0) = 0
.

Q = −`Q + YTX, Q(0) = 0
(7)

where P ∈ Rb×b and Q ∈ Rb×n, ` > 0 is a design parameter, and the terms `P and `Q can be taken as
the forgetting factors, which can make P and Q bounded in a compact set Ω [21].

Considering that (7) is a differential equation, we can calculate the solution of (7) as{
P(t) =

∫ t
0 e−`(t−r)YT(r)Y(r)dr

Q(t) =
∫ t

0 e−`(t−r)YT(r)X(r)dr
. (8)

Hence, it can be verified that P and Q are bounded for any given bounded Y and X due to the
introduced forgetting factors `P and `Q in (7).

One defines an auxiliary vector W ∈ Rb×n calculated based on P(t), Q(t) given in (8) as

W(t) = P(t)Ẑ−Q(t) (9)

where Ẑ is the estimation for the unknown parameter Z, which can be updated online via the following
Equation (12).

According to Equations (4) and (8), Equation (9) can be rewritten as

Q = PZ. (10)

Then, the auxiliary matrix W can be represented as

W = PẐ− PZ = −PZ̃ (11)

with the estimated error Z̃ = Z− Ẑ.
From Equation (11), one knows that the vector W can be applied to estimate the unknown matrix

Z as analyzed in [21].
Then, the estimation algorithm of the unknown parameters can be designed as

.
Ẑ = −ΓW (12)

where Γ > 0 is a positive learning gain.
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To solve the parameter estimation convergence, the positive definiteness property of P(t) should
be firstly studied. One defines λmax(·) and λmin(·) as the maximum and minimum eigenvalues of the
corresponding matrices, respectively. Then, we can obtain the following Lemmas:

Lemma 1 ([13]): The matrix Y defined in (8) is persistently excited (PE), then the matrix P defined in (8) is
positive definite, i.e., λmin(P) > σ > 0 for a positive constant σ.

Proof of Lemma 1. Please refer to [13]. �

Theorem 1 ([22,23]). Consider Equation (5) with adaptation law (12), one supposes that the regressor matrix
Y is PE, then the estimation error Z̃ = Ẑ − Z exponentially converges to zero with the convergence rate
µ = 2σ/λmax(Γ−1).

Proof of Theorem 1. Assume that Y is PE, one knows λmax(P) > σ > 0 based on Lemma 1. Choose
the Lyapunov function as V = 1

2 Z̃TΓ−1Z̃, then one knows Q = PZ and W = −PZ̃ according to
Equations (9)–(12). Hence, we can obtain the derivative

.
V as

.
V = Z̃TΓ−1

.
Z̃ = Z̃TW = −Z̃T P(t)Z̃ ≤ −µV (13)

where µ = 2σ/λmax(Γ−1) is positive for all t > 0. From Equation (13), one knows that the exponential
convergence of the error Z̃ to zero with the rate µ is guaranteed, which depends on the excitation level
σ and learning rate Γ. �

Remark 1. The purpose of this paper is using the adaptive law for estimating parameters online. Therefore,
the regressor Y defined in (6) should be known. In fact, this condition has been well-recognized in the system
identification field. For those systems without a fully known regress Y, the adaptive algorithm may not be
suitable. In this case, other artificial intelligent algorithms (e.g., particle swarm optimization (PSO), genetic
algorithm (GA)) may have to be used, which should be run offline.

Remark 2. To implement the proposed parameter estimation scheme, we need to measure the attitude of the
quadrotors, e.g., x, φ, θ, ψ and

.
x,

.
φ,

.
θ,

.
ψ, to construct the parameterized form (5). In practical quadrotors, they

can be obtained by using the configured transducers.

3. Simulation

In this section, the proposed method is applied to a quadrotor model for simulations. In order to
complete the simulation, some parameters should be chosen for the quadrotor model (1), which are
displayed in Table 1.

Table 1. Some physical parameters for the quadrotor.

Parameter Value Unit Parameter Value Unit

m 0.25 Kg Jz 0.061 Kg·m2

l 0.25 m g 9.8 m/s2

Jx 0.033 Kg·m2 ------- ------- -------
Jy 0.033 Kg·m2 ------- ------- -------

The purpose of this paper is to estimate the parameters of quadrotors to enhance the stability and
robustness of quadrotors. According to Equation (2), one knows that the parameters to be estimated are:
a1, a2, a3, a4, a5, a6, and a7. From Table 1, we have a1 = 4, a2 = 7.57, a3 = 0.85, a4 = 7.57, a5 = −0.85,
a6 = 4.10, and a7 = 0. The other parameters used in the simulations can be set as k = 0.001, ` = 1, and
Γ = 10.
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Figure 2 shows the response of the estimated matrix Ẑ with the adaptive law (12), which implies
that the estimated parameter converges to the true value Z. In order to further verify the effectiveness
of the proposed technology, the estimation error Z̃ of Z is displayed in Figure 3, which indicates that
the estimation error Z̃ converges to zero in about 3 seconds. The flight trajectory of the quadrotor is
also given in Figure 4. Figures 2 and 3 show that the proposed online adaptive estimation method is
very effective, and the estimated parameters converge to their true values faster, which can contribute
to enhancing the system stability and robustness of quadrotors.
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4. Experimental Verification

In this section, experiments are conducted to validate the proposed method. The experimental
equipment is shown in Figure 5. In this case, the wireless serial port communication module and the
serial port receiving terminal of the host computer are used to collect the attitude angle data. The main
hardware components of the quadrotor include: a microcontroller (flying control board), a brushless
motor, electrical adjustment (ESC), a propeller, a lithium battery, an MPU6050 (an acceleration sensor,
a gyroscope, and a barometer, produced by InvenSense, Sunnyvale, CA, USA) receiver, a rack, and
other components. The diagram of the structure of the adopted quadrotor is given in Figure 6.
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Figure 6. The diagram of the structure of the quadrotor.

In this experimental study, we collected 977 groups of data for the control actions of the vertical
direction U1, roll direction U2, pitch direction U3, and the yaw direction U4 to validate the proposed
method. The test environment’s temperature is 20± 2 ◦C, and the environment humidity is about 30%.
The sampling time is 0.005 ms. The parameters that need to be estimated are the same as those shown
in Table 1.

We can obtain the vertical direction, roll direction, pitch direction, and the yaw direction data
via the wireless serial port communication module and the serial port receiving terminal of the host
computer. Then, the obtained data is input into the proposed estimator to conduct the parameter
estimation. The response of the estimated matrix Ẑ with the adaptive law (12) is given in Figure 7,
which shows that the estimated parameter converges to the true value Z. In order to further verify
the effectiveness of the proposed adaptive law, the estimation error Z̃ of Z is given in Figure 8, which
indicates that the estimation error Z̃ converges to zero in about 1.2 s. Nevertheless, the flight trajectory
of the quadrotor is given in Figure 9, which indicates that the quadrotor is taking-off.
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5. Conclusions

In this paper, an online adaptive parameter estimation method for quadrotors is proposed to
improve the accuracy of the parameter estimation, which contributes to improving the stability and
robustness of control systems for quadrotors. A scheme to obtain an expression of the estimation error
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is derived by introducing auxiliary filtered variables, and then an augmented matrix is constructed
based on the derived filtered variables, which is further used to design the adaptive law to achieve
convergence under the standard persistent excitation (PE) condition. Finally, a simulation example and
experimental verification for quadrotors are displayed to indicate the effectiveness of the proposed
method. Future work will focus on the estimation of time-varying parameters involved in the system.
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