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Abstract: In order to improve the performance of the hydraulic support electro-hydraulic control
system test platform, a self-tuning proportion integration differentiation (PID) controller is proposed
to imitate the actual pressure of the hydraulic support. To avoid the premature convergence and to
improve the convergence velocity for tuning PID parameters, the PID controller is optimized with
a hybrid optimization algorithm integrated with the particle swarm algorithm (PSO) and genetic
algorithm (GA). A selection probability and an adaptive cross probability are introduced into the
PSO to enhance the diversity of particles. The proportional overflow valve is installed to control the
pressure of the pillar cylinder. The data of the control voltage of the proportional relief valve amplifier
and pillar pressure are collected to acquire the system transfer function. Several simulations with
different methods are performed on the hydraulic cylinder pressure system. The results demonstrate
that the hybrid algorithm for a PID controller has comparatively better global search ability and
faster convergence velocity on the pressure control of the hydraulic cylinder. Finally, an experiment
is conducted to verify the validity of the proposed method.

Keywords: self-tuning PID controller; genetic algorithm; particle swarm optimization algorithm;
pressure control

1. Introduction

The complexity of the dynamic system makes it generally urgent to develop process
control technology. Numerous control methods have been proposed, such as fuzzy control [1],
neural control [2] and adaptive control [3]. Among these, the proportion integration differentiation
(PID) controller is the most popular. Thanks to its simple structure, easy implementation and robust
performance, the PID controller was widely used in many different fields, including process control [4],
flight control [5], motor drives [6] and instrumentation [7]. Modern industrial systems often suffered
from problems of high orders, nonlinearities and time delays [8,9]. In order to improve the control
accuracy of systems, many intelligence methods were researched and compared [10]. The main object
of the PID controller is to adjust the response signals to be as close as possible to the drive signals.
Thus, it is important to optimally adjust the controller’s parameters.

The past decades have witnessed the proposal of many methods to improve the capacity of
parameters’ optimization. The first classical tuning method was proposed by Ziegler and Nichols
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(Z-N). However, the performance of Z-N on the practical engineering was poor [11]. In recent
decades, artificial intelligence algorithms have developed and play an important role in optimization
fields, such as artificial neural network (ANN) [12], genetic algorithm (GA) [13], fuzzy logic [1] and
neural-fuzzy system [2]. Due to the poor performance of the Z-N method, intelligence algorithms were
put into use for tuning the PID controller. The above theoretical tuning methods were proven to have
better applications in acquiring optimal parameters.

Particle swarm optimization (PSO) was an evolutionary computation derived from the behavior of
birds flocking, insects swarming and fish schooling [14]. All particles were updated by their positions
and velocities during iterations [15]. The optimal solution was searched for in particles’ cooperation
and information sharing. Thanks to its high capacity for acquiring the optimal solution within shorter
iteration time and stable convergence property, PSO was widely applied in the areas of system
identification [16], feature selection [17], function optimization [18], neural network training [19]
and fuzzy systems control [20]. Thus, PSO is an excellent method for solving the problem of
self-tuning the PID controller. As for the particular weaknesses and advantages of different algorithms,
many researches proposed the theory of algorithm fusion to increase the optimization efficiency [21,22].
GA had outstanding global search ability on account of the genetic operation [23]. Similar to other
optimization algorithms, PSO was easily trapped in the local optimum [24,25]. In order to improve
the global search ability and convergence characteristics, this paper combined GA and PSO for
self-tuning the PID controller. The simulation and experiment were conducted on a hydraulic cylinder
pressure system. The results showed the obvious improvement in optimizing the parameters of the
PID controller.

The paper is organized as follows. Section 2 describes the related work about the PID controller
and PSO algorithm. The basic theories of the PID controller and PSO are presented in Section 3.
The specific process for tuning PID parameters and the flow of pressure control for the hydraulic
cylinder are described in Section 4. Section 5 shows the simulation and experiment results. Finally,
a brief conclusion is illustrated in Section 6.

2. Literature Review

Publications relevant to this paper can be divided into two research streams: proportion
integration differentiation controller and particle swarm optimization algorithm.

2.1. Proportion Integration Differentiation Controller

As the superior control performance on industrial process control, the PID controller was used as
the most domain form of control [26]. More than 90% of the controllers were PID type [27]. The tuning
of the parameter was a complex problem for the PID controller [28]. The vast majority of research
work has been conducted in this field.

The methods for parameter tuning mainly consist of two types. One is the practical tuning method.
Since 1942, when Ziegler-Nichols (Z-N) straightforward tuning was proposed, many improved
methods, based on the Z-N, have been studied [29–33]. Another is the intelligence algorithm for tuning
parameters tuning. In [34], GA was used as an optimal method for the parameters of the PID controller.
Through the comparison of simulation results, GA was more efficient than practical Z-N tuning in
tuning parameters. In [35], a self-tuning PID controller combining GA and fuzzy logic was proposed
for anti-lock braking systems. The paper utilized three decoupled modules for PID parameters.
The optimal selection of the fuzzy modules was obtained using a modified GA. The PSO algorithm was
introduced into the PID controller to acquire the optimal parameters. The simplicity and convenience
of PSO made the controller quickly seek out the optimal output value [36]. In [37], four intelligent
methods including fuzzy logic, artificial neural network, adaptive neural fuzzy inference system and
GA for tuning the PID controller were compared. Simulation results showed the merits of each method
in different characteristics of PID optimization.
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2.2. Particle Swarm Optimization Algorithm

The PSO algorithm was developed in 1995 by Kennedy and Eberhart [38]. Although PSO had
an effective application in optimization problems in a variety of fields, some problems still exist,
such as a low convergence rate in the later period of evolution and its likelihood of falling into
the local optimum [39,40]. To overcome these shortages, various methods were proposed. In 1999,
Shi and Eberhart proposed the linear inertia factor to improve the exploration and exploitation
capacities of the PSO algorithm [41]. In [42], an improved particle swarm optimization based on the
D-cent chaotic model was proposed to improve the convergence rate and reduce the iterative time.
An adaptive particle swarm optimization (APSO) was proposed for identifying system parameters [11].
Each particle dynamically adjusted inertia weight according to the feedback taken from the best
memories of particles. The simulation result showed that APSO achieved faster convergence speed and
better solution accuracy. To improve the diversity of swarm so as to prevent premature convergence,
Par et al. [43] proposed a variant PSO (PSOS) using a novel evolutionary strategy to improve particles’
local and global best positions information. In [44], a chaotic particle swarm optimization (CPSO) that
combined the chaotic logistic dynamics, hierarchical inertia weight, enhancement learning strategy,
mutation mechanism and a PID controller, was proposed. The chaotic logistic map was applied to
substitute random parameters for accelerating the convergence rate. The hierarchical inertia weight
coefficients were determined by the present fitness value of the best local position in order to adaptively
expand the search space. A mutation mechanism was employed to increase the diversity of particles in
a bid to avoid the local optimum. In [45], a nominal average position of the swarm was introduced into
an improved PSO (IPSO). The IPSO algorithm was proven to have stable convergence characteristics
and good computational ability by simulating five well-known benchmark functions. In [46], a new
factor, the best particle of each sub-population, was proposed for the velocity updating formula in
developed PSO. The improved algorithm enhanced the search capacity, robustness and applicability.

2.3. Discussion

Based on the above reviews on tuning parameters of the PID controller, the practical tuning
methods rely too much on experience and the adjustment process takes a long time. Nowadays,
many industrial systems are non-linear and unstable. Single algorithm or theoretical analysis methods
have difficulty in acquiring the optimal parameters. Thus, this paper combines two algorithms to
accelerate the optimization speed and improve optimization performance.

Although many methods have been proposed to improve the PSO algorithm, some problems
still need to be solved. Firstly, the strategy of population diversity is utilized to substitute a random
selection of particles. While this method can enlarge the diversity of particles, particles with the
high fitness value might be replaced and the optimization capacity be affected. Then, the crossover
operation of selected particles is determined with a crossover probability. The probability is stable but
not adaptive to the search capacity.

In order to solve the above problems, this paper introduces a hybrid algorithm that combines PSO
and GA. The number of crossover particles is determined with the selection probability. The selection
of crossover particles is in accordance with the order of particles’ fitness values. Moreover, the cross
coefficient is adaptively changed with particles’ fitness level. Several simulations based on different
methods are provided and the results show that the hybrid algorithm has high search capacity and
effective application in parameters’ optimization.

3. Background

3.1. PID Controller

The PID control is the most common control method of industrious automation. As a linear
controller, it constitutes the deviation e(t) derived from the set point r(t) and the actual output value
y(t). Through the calculation of proportion, integration and differentiation operation in the continuous
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time domain, the output value u(t) is computed by the following formula: where Kp is the proportion
coefficient, Ki is the integration coefficient, Kd is the differentiation coefficient.

e(t) = r(t) − y(t) (1)

u(t) = Kpe(t) + Ki

∫ t

0
e(t)dt + Kd

de(t)
dt

(2)

In order to induce the calculated quantity, the sampling instant kT replaces the continuous time t.
The integral item and differentiation item are discretized. Through the transformation, the incremental
PID controller is presented as:

∆u(k) = Kp[e(k)− e(k− 1)] + Kie(k) + Kd[e(k)− 2e(k− 1) + e(k− 2)]

=
(
Kp + Ki + Kd

)
e(k)−

(
Kp + 2Kd

)
)e(k− 1) + Kd(k− 2)

(3)

u(k) = u(k − 1) + ∆u(k) (4)

where ∆u(k) is the control increment, u(k) is the output value of kT time.

3.2. Particle Swarm Optimization

In PSO, each particle representing a candidate solution is associated with the velocity. The velocity
of each particle is adjusted according to the response of its own and its companions’ experience.
The positions of particles are compared to determine the local and global best position. Particles fly
through the search space and move towards better solution areas. Finally, the particle with the best
global position is the most optimal solution.

Assuming that the optimal solution is searched for in an N-dimension space, a particle swarm
is initiated with a random position and velocity. The position of the ith particle at the tth iteration
is presented as Xt

i =
(

xt
1, xt

2, . . . , xt
N
)

and the velocity ith of the particle at tth iteration is presented
as Vt

i =
(
vt

1, vt
2, . . . , vt

N
)
. The local best position is presented as pbest and the global best position is

presented as gbest. The fitness value of each particle is computed by the objective function to compare
with the pbest and gbest value. The best position is achieved according to the compared result. Then,
the information of particles is updated through the following formula:

Vt+1
i = ωVt

i + c1 × rand()×
(

pbestt
i − xt

i
)
+ c2 × rand()×

(
gbestt

i − xt
i
)

(5)

Xt+1
i = Xt

i + Vt+1
i (6)

where c1, c2 are the learning factors, usually c1 = c2, ω is the inertia weight, rand() is a random value
in the range of 0 and 1.

In order to balance the global search capacity and local search capacity, the algorithm selects the
inertia coefficient of linear change. The changing formula is:

ω = ωmax − t× ωmax −ωmin
tmax

(7)

where ωmax is the biggest inertia weight while ωmin is the smallest, tmax is the biggest iteration and t is
the present iteration.

The specific iterative process of the PSO algorithm can be presented as follows:
Step 2.1: Randomly initialize the particles including the search position and velocity. Define all

PSO algorithm parameters, such as inertia weight ωmax, ωmin, ω, learning factors c1, c2, swarm size N,
maximum iterations tmax, etc.

Step 2.2: Calculate the value of each particle using the evaluation function. In this paper,
the integrated time and absolute error (ITAE) are adopted for the performance criteria. The formula is
defined as:
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J =
∫ ∞

0
t|e(t)|dt (8)

Step 2.3: Update the value of the inertia weight using Equation (7).
Step 2.4: Update the pbest particles by comparing the fitness value with the experience of each

individual. The best evaluation value among all pbest is the gbest.
Step 2.5: Modify the velocity and position of each particle according to Equations (5) and (6).

The inertia weight is determined by step 2.3.
Step 2.6: If the number of iterations reaches the maximum tmax, then stop. The latest gbest is the

optimal controller parameter. Otherwise go back to step 2.2.

3.3. Genetic Algorithm

GA is a global optimization algorithm based on the natural selection mechanism. A search
framework is supplied by GA to solve the complex issues. The search space consisted of all the solutions
presented as chromosomes. Each chromosome is described by the gene with characteristic value.
The process of optimization is conducted through the basic individual operations, including encoding,
selection, crossover and mutation.

Encoding is utilized to transform the practical solutions to the coding area. GA has binary
encoding and real encoding. Real coding uses the actual value of variable as the individual.
Compared with binary encoding, real encoding is simple and easy. In order to ensure that the
superior chromosome with a high fitness value is inherited by the offspring, the selection operator is
the main method for survival of the fittest. The selection probability is determined by the individual
fitness and the total fitness value. When the crossover probability is above the random value between
0 and 1, crossover is operated to reconstruct two selected parents. Then, the new offspring is produced
to enlarge the global search capacity. If the crossover probability is below the random value, the new
generations totally copy the parents. Assuming that Xm and Xn are the selected parents, the crossover
is performed at the tth iteration. The formula of hybrid operation is presented as:{

Xm(t + 1) = α× Xm(t) + (1− α)× Xn(t)

Xn(t + 1) = α× Xn(t) + (1− α)× Xm(t)
(9)

where α is a random value in the range of (0, 1).
The mutation operator changes the gene values of chromosomes to acquire new properties of

chromosomes. If the optimal solution is approaching, then mutation can enhance the local optimization
capacity as the mutation probability is small. A relatively big mutation probability can avoid the
premature convergence.

4. The Proposed Method

4.1. Hybrid Optimization Algorithm

While standard PSO has a fast rate of convergence, it is easy to fall into the local optimum. In order
to ensure the diversity of particles, this paper introduces selection and crossover operations into PSO
by quoting the principles of GA. After calculating the fitness values of individuals, the values are
ranked and divided into part A and part B. At each iteration, part A with low fitness is selected for
random crossover to produce new generations. The amount of the offspring is the same as the parents.
Part B is undated by the PSO algorithm. The amount of hybrid individuals is determined by the
selection probability δ.

In order to avoid destroying the individual with a high fitness value as well as accelerating the
convergence speed, the paper adopts the adaptive crossover probability. The crossover probability
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depends on the compared value between fitness values of selected individuals and the average value.
The formula is presented as:

P =


P1, f < favg

P1 −
(P1−P2)( f− favg)

fmax− favg
, f ≥ favg

(10)

where fmax is the biggest fitness value among the particles; favg is the average fitness value; f is the
bigger fitness value among the two hybrid individuals; P1, P2 are the range of cross probability.

The step of PSO is modified as follows:
Step 1.1: Randomly initialize the particles including the search position and velocity. Define all

PSO algorithm parameters such as inertia weight ωmax, ωmin, ω, learning factors c1, c2, swarm size N,
maximum iterations tmax, etc.

Step 1.2: Calculate the fitness of each particle using the evaluation function. All the particles are
ranked according to the fitness values. In this paper, ITAE is adopted for the performance criteria.

Step 1.3: Update the value of inertia weight using Equation (7).
Step 1.4: Update the pbest particles by comparing each individual fitness value with its experience.

The best value among all pbest is the gbest.
Step 1.5: Divide the particles into part A and part B according to the selection probability δ.

The particles with low fitness presented as part A are randomly conducted in the crossover operation.
The crossover probability P is calculated with Equation (10). If the crossover probability of two selected
particles is above the random value in the range of (0, 1), then, the crossover is performed using
Equation (9). Otherwise, the selected particles are copied by the next generation. Part B is undated
by the conventional PSO algorithm. The velocity and position of particles are modified according to
Equations (5) and (6). The inertia weight is determined by step 1.3.

Step 1.6: After updating all the particles, the iteration number reaching the maximum is judged.
If the termination condition of the algorithm is achieved, the latest gbest is the optimal controller
parameter. Otherwise go back to step 1.2.

The flowchart of the hybrid algorithm is presented in Figure 1.
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4.2. The Process of Pressure Control on the Hydraulic Cylinder

In order to imitate the actual pressure of the hydraulic cylinder, the proportional overflow valve
is utilized to control the pressure. The data, containing the control voltage of the proportional relief
valve amplifier and pillar pressure, are collected. The incremental PID controller and hybrid algorithm
are applied in the paper. The flow of the control process is shown as follows:

Step 2.1: Acquiring the system transfer function. Before solving the issues with the control
strategy, the mathematical model of the controlled project needs to be built. The hydraulic cylinder
pressure system is a coupled system with more disturbances. In addition, the leak problem of the
hydraulic system is unavoidable. Thus, it is difficult to build the mathematical model through
theoretic calculation.

This paper uses the system identification toolbox of MATLAB. Two sets of data are collected
during the normal system operation. One set of data is used for system identification, and another is
used for detection. Firstly, the data are put into the system identification toolbox. Then, the start time
and sampling frequency are set. According to the characteristics of the system, data are preprocessed
to eliminate the disturbing signals. The process model is selected under the menu of the estimate.
After completing the setting of the pole, zero and delay parameters, the system model is estimated.
Finally, the identification result is checked and the fitting rate of data is tested.

Step 2.2: Tuning parameters. Three-parameters tuning is the core content in the PID controller.
The coefficients

(
Kp, Ki, Kd

)
are defined as the particles N. All the alternatives K =

(
Kp, Ki, Kd

)
compose the search space. The above hybrid algorithm is utilized to select the optimal coefficients so
as to make the output values meet the terminal condition. Figure 2 illustrates the PID controller design
using the hybrid algorithm with PSO and GA.

Step 2.3: Terminal condition. If the iteration number reaches tmax, terminate the iterative process.
Otherwise, continue the optimization.

Algorithms 2017, 10, 19 7 of 13 

Step 2.1: Acquiring the system transfer function. Before solving the issues with the control 
strategy, the mathematical model of the controlled project needs to be built. The hydraulic cylinder 
pressure system is a coupled system with more disturbances. In addition, the leak problem of the 
hydraulic system is unavoidable. Thus, it is difficult to build the mathematical model through 
theoretic calculation. 

This paper uses the system identification toolbox of MATLAB. Two sets of data are collected 
during the normal system operation. One set of data is used for system identification, and another is 
used for detection. Firstly, the data are put into the system identification toolbox. Then, the start time 
and sampling frequency are set. According to the characteristics of the system, data are preprocessed 
to eliminate the disturbing signals. The process model is selected under the menu of the estimate. 
After completing the setting of the pole, zero and delay parameters, the system model is estimated. 
Finally, the identification result is checked and the fitting rate of data is tested. 

Step 2.2: Tuning parameters. Three-parameters tuning is the core content in the PID controller. 
The coefficients (ܭ௣, ,௜ܭ (ௗܭ are defined as the particles ܰ . All the alternatives 	ܭ = ൫ܭ௣, ,௜ܭ  compose the search space. The above hybrid algorithm is utilized to select the	ௗ൯ܭ
optimal coefficients so as to make the output values meet the terminal condition. Figure 2 illustrates 
the PID controller design using the hybrid algorithm with PSO and GA. 

Step 2.3: Terminal condition. If the iteration number reaches	ݐ௠௔௫, terminate the iterative process. 
Otherwise, continue the optimization. 

Hybrid 
algorithm

PID controller Pressure 
system

u(t)e(t)r(t)   + y(t)

—

Kp Ki Kd

 
Figure 2. Block diagram for the proportion integration differentiation (PID) control system design 
improved particle swarm algorithm (PSO) algorithm. 

5. Simulation and Analysis 

Since the hydraulic support electro-hydraulic control system (HSEHCS) serves as the crucial 
device of the hydraulic support, its property needs to be tested by a platform. This test platform 
contains a supervision system and a hydraulic support analog system. Specifically, the HSEHCS 
consists of the hydraulic support controllers, multi- function hydraulic oil sources, control console, 
electrical control cabinets and Win-CC monitoring host. The distribution of the HSEHCS is shown in 
Figure 3. 

The pillar is an important part of the hydraulic support; the motoring and adjustment of the 
pillar pressure directly affect the entire work statement of the hydraulic support. As the pressure of 
the pillar was one of the most important data for the HSEHCS, the pressure control strategy of the 
pillar cylinder was investigated in this paper. In the HSEHCS test platform, S7-300 PLC was the core 
hardware of the control system located in electrical control cabinets. The Win-CC upper computer 
communicated with the programmable logic controller (PLC) via a transmission control 
protocol/internet protocol (TCP/IP) channel unit. The multi-function hydraulic oil source output flow 
and outlet pressure were controlled through the man–machine interface. Meanwhile, the distributed 
input/output (I/O) modules in the electric control box were arranged to control the pillar pressure. 
The overflow pressure of the proportional overflow valve was controlled in order to change the  
back-pressure of the hydraulic cylinder of the HSEHCS test platform. The above hybrid algorithm 

Figure 2. Block diagram for the proportion integration differentiation (PID) control system design
improved particle swarm algorithm (PSO) algorithm.

5. Simulation and Analysis

Since the hydraulic support electro-hydraulic control system (HSEHCS) serves as the crucial
device of the hydraulic support, its property needs to be tested by a platform. This test platform
contains a supervision system and a hydraulic support analog system. Specifically, the HSEHCS
consists of the hydraulic support controllers, multi- function hydraulic oil sources, control console,
electrical control cabinets and Win-CC monitoring host. The distribution of the HSEHCS is shown in
Figure 3.
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The pillar is an important part of the hydraulic support; the motoring and adjustment of the
pillar pressure directly affect the entire work statement of the hydraulic support. As the pressure
of the pillar was one of the most important data for the HSEHCS, the pressure control strategy of
the pillar cylinder was investigated in this paper. In the HSEHCS test platform, S7-300 PLC was
the core hardware of the control system located in electrical control cabinets. The Win-CC upper
computer communicated with the programmable logic controller (PLC) via a transmission control
protocol/internet protocol (TCP/IP) channel unit. The multi-function hydraulic oil source output flow
and outlet pressure were controlled through the man–machine interface. Meanwhile, the distributed
input/output (I/O) modules in the electric control box were arranged to control the pillar pressure.
The overflow pressure of the proportional overflow valve was controlled in order to change the
back-pressure of the hydraulic cylinder of the HSEHCS test platform. The above hybrid algorithm for
the PID controller was employed to control the overflow pressure with the purpose of imitating the
actual pillar pressure.

5.1. Acquiring the System Transfer Function

After collecting the data of the control voltage of the proportional relief valve amplifier and pillar
pressure in the time domain, the system transfer function was acquired through the above step 2.1 in
Section 4. The result of the system identification was shown in Figure 4. The best fit was 94.56% and
the system model can be represented as:

G(s) = Kp ×
1 + Tz × s

1 + 2 × Zeta× Tw × s + (Tw × s)2 exp(−Td × s) (11)

where Kp = 2.6649, Tw = 0.94635, Zeta = 0.59862, Td = 0, Ti = −0.02786.
After the compilation of the above equation, the mathematical model of the system was

described as:

G(s) =
2.6649− 0.0742s

0.8956s2 + 1.133s + 1
(12)
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5.2. Parameters Setting and Simulation

According to the achieved mathematical model of the system, the model (Figure 5) was built in
the Simulink software. In order to validate the superiority of the proposed method, the conventional
tuning method Z-N, PSO, and improved PSO were applied in the PID controller to compare the
simulation results. The improved PSO algorithm referred to three types: the inertia weight of PSO is
linearly changed (WPSO); a hybrid algorithm combining GA, PSO and the cross probability is stable
(SPSO) and a hybrid algorithm combining GA, PSO and the cross probability is adaptive (APSO).
In the conventional PID controller, three parameters were determined: Kp = 40, Ki = 0.4, Kd = 4.5,
by constant adjustments and examinations,
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Under the same parameters, simulations by the above methods were performed to compare the
convergence characteristics. In the PSO algorithm, the parameters were set as follows:

Inertia weight ω = 0.6, learning factors c1 = c2 = 2, search dimension D = 3, swarm size
N = 100, maximum iteration tmax = 100.

In the WPSO, the bound of inertia weight was set as ωmax = 0.9, ωmin = 0.4.; the inertia value was
calculated with Equation (7) at each iteration. Other parameters were the same with the PSO algorithm.

In the SPSO, the stable crossover probability was set as P = 0.6, the selection probability δ = 0.3, ;
other parameters were the same with the WPSO algorithm.

In the APSO, the bound of crossover probability was set as P1 = 0.9, P2 = 0.6.; other parameters
were the same with the SPSO algorithm.
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After setting the parameters, the steady state time, overshoot, fitness value, convergence iteration,
running time and the PID parameters for the five optimization methods were illustrated in Table 1.
Figure 6 showed the fitness curves of simulations and Figure 7 was the partial enlarged view of the
response curves derived from the step input. From Table 1 and Figure 7, it was easy to find that the
steady state time of APSO was the shortest. In addition, the system overshoots of APSO decreased
164% while the steady state time reduced 23.4% compared with the Z–N tuning method. The dynamic
characteristic was improved by APSO. From Figure 6, the response curve of APSO declined most
quickly. Thus, the convergence velocity of APSO was obviously the fastest compared with other
methods. Furthermore, the convergence iteration of APSO was at 40 iteration and far smaller than the
82 iteration in the case of PSO. From the response and convergence curves, the proposed method not
only avoided the premature convergence but also accelerated the convergence velocity. Due to the
complexity of the hybrid algorithm, the running time was 38% longer than PSO. However, with the
improvement of computer configuration, the running time can be further reduced. In conclusion,
the simulation results showed that the APSO algorithm conducted efficient performance on the
parameters’ optimization of the PID controller compared with Z-N, PSO, WPSO and SPSO.

Table 1. Simulation results using Ziegler–Nichols (Z-N), particle swarm algorithm (PSO),
linearly changed weight for particle swarm algorithm (WPSO), stable cross probability for particle
swarm algorithm (SPSO), adaptively cross probability for particle swarm algorithm (APSO).

Tuning
Method Kp Ki Kd

Convergence
Iteration

Overshoot
(%)

Steady State
Time (sec)

Running
Time (sec)

Z–N 40 0.5 4.5 — — 1.64 3.0294 — —
PSO 31.3072 0.3540 3.5556 82 1.12 2.6472 12.16

WPSO 29.4390 0.3540 4.2422 60 0.52 2.4286 12.57
SPSO 25.7658 0.3540 4.2677 56 0 2.8785 13.83
APSO 22.3045 0.3523 3.4870 40 0 2.3192 16.78
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6. Conclusions

In order to imitate the actual pressure of the hydraulic support, a hybrid algorithm with PSO and
GA was proposed to optimize the PID controller. The data of the control voltage of the proportional
relief valve amplifier and pillar pressure were collected to acquire the system transfer function using
the system identification toolbox of MATLAB. The selection and crossover operations were introduced
into the PSO algorithm to avoid the local optimization and to improve the convergence velocity.
Several simulations with different methods were performed to compare the optimization capacity.
Finally, the experiment on the HSEHCE test platform was conducted to validate the efficiency of the
proposed method. The simulation and experiment results showed that the APSO algorithm for the
PID controller can acquire better steady-state and dynamic response characteristics as well as satisfy
the control requirements of the HSEHCS test platform.

However, there are also some limitations and bugs in this paper listed as follows: (1) parameter
selections for the hybrid algorithm rely on extensive simulations; (2) the optimization process takes a
long time and the real-time control has response delay in the pressure system; (3) the proposed method
is not applied to other industrial fields to demonstrate its superiority. In future research, the authors
will focus on improving the algorithm further to increase the optimization time. More effective methods
will be introduced to enhance the intelligence of the pressure control system, such as adaptively setting
the parameter, faster response and better applications in other fields.
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