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Abstract: Due to their importance for studies oi wireless networks, recent years have seen a
surge of activity on the design of local algorithms for the solution of a variety of network tasks.
We study the behaviour of algorithms with very low localities. Despite of this restriction we
propose local constant ratio approximation algorithms for solving minimum dominating and
connected dominating set, maximum independent set and minimum vertex cover in location
aware Unit Disk Graphs. We also prove the first ever lower bounds for local algorithms for
these problems with a given locality in the location aware setting.
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1. Introduction

In networks which are formed by wireless devices we often lack a global entity to organize the net-
work traffic. This is especially the case in ad hoc networks. So in this setting the devices need to
form structures (e.g., communication backbones) by passing information from one to the other. As such
networks are often much too large to be entirely known by a single node, we are interested in local al-
gorithms. These are algorithms in which the status of a vertex v (i.e., whether or not a vertex is part of
the dominating set, independent set, etc.) depends only on the vertices which are a constant number of
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edges (hops) away from v. We require this constant to be independent of the size of the network.
We model the wireless network with Unit Disk Graphs (UDGs). These are undirected graphs in the

plane in which two vertices are connected by an edge if and only if their Euclidean distance is at most
one unit. Unit disk graphs are widely used for modeling wireless networks. We assume that each node
has knowledge of its geographic position in the plane (location awareness). As positioning systems like
GPS become more and more common this assumption seems practical.

In wireless networks, dominating sets play an important role for topology control. In such networks,
nodes are often organized in clusters where one node is declared to be the cluster-head. This vertex is
responsible for ensuring the communication of the nodes in the cluster with other nodes in the network.
So the cluster-heads form a dominating set in the underlying network graph. In order to be able to send
messages from one cluster to another, one needs the set of dominators to be connected. This leads to a
connected dominating set. For organizing the network as efficiently as possible we are looking for small
(connected) dominating sets. In order to give the cluster-heads more control, it can be advantageous if
they are not adjacent to each other [1]. So in this case they form a maximal independent set. Another
important problem in graphs is the minimum vertex cover problem.

Even though several algorithms have been designed to solve these tasks, very little is known about
lower bounds for approximation ratios of local algorithms. Such bounds would allow us to understand the
prospects and limits of local algorithms. In particular, we want to comprehend the restrictions imposed
on algorithms when a certain locality distance is required. In this paper we address this issue.

1.1. Related Work

The first results about local algorithms were given by Linial [2]. He gives the first bounds on locality
distances for constructing a maximal independent set and a 3-coloring in an n-cycle. He also proves that
at least

√
d colors are needed for coloring a d-regular tree with radius r when the locality is restricted

to 2r/3. In [3] Naor and Stockmeyer provide a framework for local algorithms for Locally Checkable
Labeling Problems (LCL). All problems which we discuss in this paper are LCLs. In his book [4], Peleg
gives a locality sensitive perspective of distributed algorithms.

In general graphs all problems which we study - dominating and connected dominating set, indepen-
dent set and vertex cover - are NP-hard [5]. Apart from vertex cover they do not even admit constant ratio
approximation algorithms [6, 7]. For vertex cover there are several 2-approximation algorithms known,
e.g., [8]. When restricting the case to unit disk graphs, the problems remain NP-hard [9], but constant
ratio approximations [10] and PTASs [11–13] are known. However, all these algorithms are global in the
sense that in order to determine whether a given vertex is in the computed set, we need knowledge of the
entire graph. When looking for local algorithms, Kuhn et al. [14] proposed local approximation schemes
for maximum independent set and dominating set for growth-bounded-graphs. This class of graphs in-
cludes UDGs. However, in these algorithms the status of a vertex depends on the vertices which are up to
O (log |V |) hops away from it, which is not local in our sense. Gfeller and Vicari presented a distributed
PTAS for dominating set with the same locality properties [15]. In [16] the authors provide a marking
process in conjunction with two dominant pruning rules in order to reduce the size of a dominating set.

In [17] Czyzowicz et al. presented the first local constant ratio approximation algorithms for our set-
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Table 1. Results for low localities presented in this paper. Note that the bound for dominating set
depends on the congruence class of k. The bound given in this table represents the worst case.

Problem UDG ULG Lower bound for
one hop one hop locality k

Dominating Set 12 ·OPT 3 ·OPT 1 + 3/(2k + 3)

Independent Set 1/1801 ·OPT b1/2 ·OPT c 1 + 1/k

Vertex Cover 6 ·OPT 2 ·OPT 1 + 1/k

Table 2. Results for connected dominating set presented in this paper.

Connected Dominating Set
UDG one hop no local constant ratio algorithm
UDG two hops 216 ·OPT

ULG one hop 6 ·OPT

Lower bound for locality k 1 + 1/k

ting with performance ratios 5 and 7.453 + ε for dominating and connected dominating set, respectively.
The locality distances of the dominating set algorithm is 11, the locality for the connected dominating
set algorithm is not given in the paper. In [18] Wiese and Kranakis presented local PTASs for these two
problems. However, their locality distances, though constant, can be very large.

1.2. Results of this paper

In this paper we try to assess the impact of locality on the algorithmic design of important computa-
tional tasks, like dominating set, connected dominating set, vertex cover, and independent set, in wireless
networks. For arbitrary locality distances we show the first lower bounds for possible approximation ra-
tios of local algorithms for all problems mentioned above in the setting of location aware nodes.

We also investigate the power of algorithms with very low localities. It turns out that despite the
fact we are looking only at locality one we can still design constant ratio approximation algorithms for
dominating set, independent set, and vertex cover. We prove that for connected dominating set there is
no constant ratio algorithm with locality distance one. But we present such an algorithm with locality
distance two.

In the proofs for the lower bounds we mostly employ unit disk graphs on a line (unit line graphs). In
order to assess our bounds for each problem we present a local algorithm with locality one in unit line
graphs. These algorithms achieve significantly better approximation ratios than the local algorithms for
general unit disk graphs with this locality.

All results including trade-offs between approximation ratios and bounds are presented in Tables 1
and 2.
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1.3. Organization of the paper

The remainder of this paper is organized as follows: First we give some basic definitions and pre-
liminaries. In the following sections we discuss one problem per section: dominating set, connected
dominating set, independent set, and finally vertex cover. For each problem we prove our lower bounds
for approximation ratios of local algorithms with arbitrary locality distance. We also give our algorithms
for unit disk graphs and unit line graphs. For our dominating set algorithm on unit disk graphs we give
an example which shows that the analysis of the approximation ratio is tight.

1.4. Preliminaries

A Unit Disk Graph (UDG) is an undirected graph which has an embedding in the plane such that two
vertices are connected by an edge if and only if their Euclidean distance is at most one.

Definition 1. A Unit Line Graph (ULG) is a unit disk graph in which all vertices have the same y-
coordinate.

Let G = (V, E) be an undirected graph. A set D ⊆ V is called a dominating set if each vertex in
V is either in D or adjacent to a vertex in D. A set CD ⊆ V is a connected dominating set if it is a
dominating set such that the subgraph induced by CD is connected. We call a set I ⊆ V an independent
set if it does not contain two adjacent vertices. Finally a set V C ⊆ V is called a vertex cover if for every
edge e = (u, v) it holds that either u ∈ V C or v ∈ V C.

Definition 2. For two vertices u and v let d(u, v) be the hop-distance between u and v, that is the number
of edges on a shortest path between these two vertices.

For a set of vertices V ′ ⊆ V we define dV ′ (u, v) to be the hop-distance between u ∈ V ′ and v ∈ V ′

in the subgraph induced by V ′. The hop-distance is not necessarily the geometric distance between two
vertices. Denote by N r(v) = {u ∈ V |d(u, v) ≤ r} the r-neighborhood of a vertex v. For ease of notation
we define N0(v) := {v}, N(v) := N1(v) and for a set V ′ ⊆ V we define N (V ′) =

⋃
v′∈V ′ N (v′). Note

that v ∈ N(v).
Denote by the locality distance (or short the locality) of an algorithm the minimum k such that the

status of a vertex v (e.g., whether or not v is in a dominating or connected dominating set) depends only
on the vertices in Nk(v).

2. Dominating Set

We present a local approximation algorithm that computes a factor 12 approximation for dominating
set on unit disk graphs. We prove its correctness, its approximation ratio and that its locality is exactly
one hop. To prove that our analysis of the approximation factor is the best possible we give a tight lower
bound. Then we prove lower bounds for local algorithms with arbitrary locality distance k using unit
line graphs. Finally we present a local algorithm for dominating set on unit line graphs with locality one
which achieves an approximation factor of 3.

First we introduce a tiling of the plane which we are going to use.
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Figure 1. (a) A part of the tiling of the plane into hexagons. (b) One hexagon of the tiling. The bold
lines indicate the parts of its border that belong to this hexagon.

(a) (b)

2.1. Tiling of the Plane

We tile the plane in hexagons in a way that achieves the following properties:

• Each vertex is contained in exactly one hexagon.

• All vertices in a hexagon are connected by an edge.

We attain the above properties by tiling the plane in hexagons with a diameter of one. Ambiguities
caused by vertices at the border of hexagons are resolved as shown in Figure 1 (b): The right borders
excluding the upper and lower apexes belong to a hexagon, the rest of the border does not. We assume
that the tiling starts with the coordinates (0,0) being in the center of a tile of class 1.

This is similar to the tiling used in [17] but in contrast to their tiling our hexagons do not have any
information that distinguishes them from one another (class numbers, etc.).

2.2. Algorithm for Unit Disk Graphs

Now we present a local algorithm for dominating set on unit disk graphs (UDGs) with locality one.
Let G = (V, E) be a unit disk graph. The algorithm works as follows: In each hexagon h the vertex v

which is closest to the center of h is assigned to the dominating set D. Ambiguities are resolved by e.g.,
choosing the vertex with the smallest x-coordinate. We refer to this as Algorithm 1.

We prove the correctness of Algorithm 1 in Theorem 1.

Theorem 1. Let G be a unit disk graph. Algorithm 1 has the following properties:

1. The computed set D is a dominating set for G.

2. Let DOPT be an optimal dominating set. It holds that |D| ≤ 12 · |DOPT |.

3. Whether or not a vertex v is in D depends only on the vertices at most one hop away from v, i.e.
Algorithm 1 is local.



Algorithms 2008, 1 7

Algorithm 1: Local algorithm for finding a dominating set in a unit disk graph

// Algorithm is executed independently by each node v;1

// Denote by Vh all vertices in h;2

Find all vertices in N(v) and compute Vh;3

if v is the vertex closest to the center of h among all v′ ∈ Vh then become part of D else Do not4

become part of D

Figure 2. A vertex v in the center of hexagon h can only be adjacent to vertices in these 9 hexagons.
Note that due to the resolving method for vertices at the border of hexagons, the vertices v′ and v′′ belong
to the hexagons h′ and h′′ respectively (and are adjacent to v).

h

h
′

h
′′

v

v
′

v
′′

4. The processing time for a vertex v is linear in the number of vertices adjacent to v.

Proof. We first prove that D is indeed a dominating set for G. Let h be a non-empty hexagon and denote
by Vh all vertices in h. As Vh 6= ∅ it holds that one vertex v ∈ Vh is the vertex which is closest to the
center of h. So v ∈ D and v dominates all vertices in h.

Now we prove that for an optimal dominating set DOPT it holds that |D| ≤ 12 · |DOPT |. In the
following we prove that for any vertex in DOPT there can exist at most 12 hexagons that have a vertex at
(Euclidean) distance at most one from it. (In fact this holds for all vertices but we need the claim only for
vertices in DOPT .) Consider a vertex v ∈ DOPT in a hexagon h. Without loss of generality we assume
that v is in the gray area of h as shown in Figure 3 or in the center of h as shown in Figure 2. In both
cases for a vertex v′ ∈ D that is adjacent to v it holds that v′ must be in one of the 9 or 12 hexagon in the
respective figure (for the case of v being in the center of h check the resolving method for ambiguities
at the border of hexagons, Figure 1b). Since at most one vertex per hexagon was assigned to D there
are at most 12 vertices in D that are adjacent to v. (Note that in the case where v is in the gray area the
resolving method for ambiguities does not come into play.)

So for each vertex v ∈ DOPT it holds that it is adjacent to at most 12 vertices in D. Since DOPT

is a dominating set all vertices in D must be adjacent to at least one vertex in DOPT . This leads to
|D| ≤ 12 · |DOPT |.

Next we determine the locality of Algorithm 1. In the algorithm, a vertex v in a hexagon h only needs
to explore all vertices which are at most one hop away from v in order to determine whether v is the
vertex closest to the center of h. So whether or not v ∈ D depends only on the vertices which are at most
one hop away from v.
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Figure 3. A vertex in the gray area excluding the center of h can only be adjacent to vertices in these 12
hexagons.

h

Now we prove the processing time of Algorithm 1. Let v be a vertex and define n1(v) := |N1(v)|. In
the algorithm v needs to determine for each vertex v′ ∈ N1(v) whether v′ ∈ h and whether v′ is closer
to the center of h than v. This can be done in O (n1(v)) time.

2.3. Tightness of Approximation Factor

We give an example which shows that our analysis of Algorithm 1 is tight. Consider the graph shown
in Figure 4 and denote it by G (we omitted the edges which are not adjacent to v in order to make the
figure clearer). Note that the vertex v is on the crossing of three hexagons but is assigned to the hexagon
h. The vertex w is on a crossing of three hexagons as well but by our resolving method it is assigned
to the hexagon h′. Also note that the vertex u is directly in the center of its hexagon. We observe that
the vertex v alone is sufficient to dominate all other vertices in G. Since each hexagon contains only
one vertex, Algorithm 1 assigns every vertices in the graph to D. So Algorithm 1 achieves a competitive
ratio of 12 in G.

We can enlarge this construction to an arbitrary size by putting several copies of G together. This is
shown in Figure 5. The copies of G are indeed connected since the length of an edge of a hexagon is 1/2

and the diameter of a hexagon is 1.

2.4. Lower Bound

Here we present a construction which enables us to give a lower bound for the approximation factor
of a local algorithm for dominating set with a locality distance of k.

Theorem 2. LetA be a local algorithm for dominating set in unit line graphs with locality distance k in
the setting of location aware nodes. The best performance ratio which can be achieved by A is

• 1 + 3
2k+3

if k ≡ 0 mod 3

• 1 + 3
2k+1

if k ≡ 1 mod 3

• 1 + 3
2k+2

if k ≡ 2 mod 3
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Figure 4. Tight example for Algorithm 1. To make the figure clearer the edges which are not adjacent
to v are omitted.

h
h

′

u

v

w

Figure 5. The enlargement of our construction of the tight example. It is possible to extend this to an
arbitrarily large graph.

v
′

v

v
′′
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Figure 6. A local algorithm A with locality distance k has to take the same decisions for the vertices u

and v in G, G1, G2, and G3. The black vertices show a possible dominating set computed byA. In order
to simplify this figure the rectangular boxes represent k, k +1, or k +2 vertices on the line, respectively.

G1

k vertices k vertices

k vertices k + 2 vertices
u

k vertices k vertices

G0

G2

v

k vertices k + 1 vertices
u

u v
G

i.e., for arbitrary k the best performance ratio is 1 + 3

2k+((k−1) mod 3)+1
.

Proof. Consider the unit line graph G = (V, E) consisting of 4 + 2k vertices (see Figure 6). Denote by
VM the four vertices in the middle. Let D be the dominating set which is computed by A for G. We
distinguish three cases:

• k ≡ 0 mod 3. Then there must be at least one vertex u ∈ VM such that u ∈ D (otherwise D would
not be a dominating set). Consider the graph G0 consisting of u and k vertices on the left and k+2

vertices on the right of u (see Figure 6). Let D0 be the dominating set which is computed byA for
G0. An optimal dominating set for G0 has 2k+3

3
vertices. However, as u ∈ D and the locality of A

is k it follows that u ∈ D0. Therefore it follows that |D0| ≥
⌈

k−1
3

⌉
+ 1 +

⌈
k+1
3

⌉
= 2k+6

3
. So the

approximation ratio of A is a least 2k+6
3

/2k+3
3

= 2k+6
2k+3

= 1 + 3
2k+3

.

• k ≡ 1 mod 3. We distinguish whether or not there are vertices in VM which are not in D. If all
vertices in VM are in D then it holds that |D| ≥

⌈
k−1
3

⌉
+ 4 +

⌈
k−1
3

⌉
= 2k+10

3
. However, an optimal

dominating set for G has at most 2k+4
3

vertices. So then the approximation ratio of A is at least
2k+10

3
/2k+4

3
= 2k+10

2k+4
= 1 + 6

2k+3
.

If there is a vertex v ∈ VM with v /∈ D then we consider the graph G1 which consists of v and
k vertices on the left and on the right of v (see Figure 6). Let D1 be the dominating set which is
computed by A for G1. An optimal dominating set for G1 has 2k+1

3
vertices. However, as v /∈ D

and the locality ofA is k it follows that v /∈ D1. This implies that |D1| ≥
⌈

k−1
3

⌉
+2+

⌈
k−1
3

⌉
= 2k+4

3
.

So the approximation ratio of A is a least 2k+4
3

/2k+1
3

= 2k+4
2k+1

= 1 + 3
2k+1

. As 1 + 3
2k+1

≤ 1 + 6
2k+3

it follows that if k ≡ 1 mod 3 then the approximation ratio of A is a least 1 + 3
2k+1

.

• k ≡ 2 mod 3. Then there must be at least one vertex u ∈ VM such that u ∈ D (otherwise D would
not be a dominating set). Consider the graph G2 consisting of u and k vertices on the left and k+1

vertices on the right of u (see Figure 6). Let D2 be the dominating set which is computed by A
for G2. An optimal dominating set for G2 has 2k+2

3
vertices. However, as u ∈ D and the locality

of A is k it follows that u ∈ D0. Therefore it follows that |D0| ≥
⌈

k−1
3

⌉
+ 1 +

⌈
k
3

⌉
= 2k+5

3
. So the

approximation ratio of A is a least 2k+5
3

/2k+2
3

= 2k+5
2k+2

= 1 + 3
2k+2

.
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Corollary 1. Let A be a local algorithm for dominating set in unit disk graphs (UDGs) with a locality
distance of k hops in the setting of location aware nodes. The best performance ratio which can be
achieved by A is

• 1 + 3
2k+3

if k ≡ 0 mod 3

• 1 + 3
2k+1

if k ≡ 1 mod 3

• 1 + 3
2k+2

if k ≡ 2 mod 3

2.5. Algorithm for Unit Line Graphs

We present a local algorithm for dominating set on unit line graphs (ULGs) with locality one. It
achieves an approximation ratio of 3. The idea is to divide the line into units of width one. Then we
assign one vertex from each unit to the dominating set.

Now we present the algorithm in detail. Let G = (V, E) be a unit line graph. For a vertex v we
denote by vx its x-coordinate. For all integers i we define Vi := {v ∈ V |i ≤ vx < i + 1}. We define
H := {i|Vi 6= ∅}. For all i ∈ H we define v[i] to be the vertex with the smallest x-coordinate in Vi. We
define D := {v[i]|i ∈ H}. We output D. We refer to this as Algorithm 2.

Algorithm 2: Local algorithm for finding a dominating set in a unit line graph

// Algorithm is executed independently by each node v;1

// let i be the integer such that v ∈ Vi;2

// let v[i] be vertex with the smallest x-coordinate in Vi;3

Find all vertices in N(v) and determine Vi;4

if v = v[i] then become part of the dominating set D else Do not become part of D5

We prove the correctness of Algorithm 2 in Theorem 3.

Theorem 3. Let G be a unit line graph. Algorithm 2 has the following properties:

1. The computed set D is a dominating set for G.

2. Let DOPT be an optimal dominating set. It holds that |D| ≤ 3 · |DOPT |.

3. Whether or not a vertex v is in D depends only on the vertices at most one hop away from v, i.e.
Algorithm 2 is local.

4. The processing time for a vertex v is linear in the number of vertices adjacent to v.

Proof. We first prove that D is indeed a dominating set for G. Let i ∈ H . As Vi 6= ∅ it holds that
v[i] ∈ Vi ∩D. So v[i] dominates all vertices in Vi.

Now we prove that for an optimal dominating set DOPT it holds that |D| ≤ 3 · |DOPT |. Consider a
vertex v ∈ DOPT in a set Vi. Since all sets Vj have width one it holds that v is adjacent to at most 3
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vertices in D (at most one each in Vi−1, Vi, and Vi+1). Since DOPT is a dominating set all vertices in D

must be adjacent to at least one vertex in DOPT . This leads to |D| ≤ 3 · |DOPT |.
Next we determine the locality of Algorithm 2. In the algorithm, a vertex v in a set Vi only needs to

explore all other vertices in Vi. (This is sufficient to determine whether v is the vertex with the smallest
x-coordinate among the vertices in Vi.) So whether or not v ∈ D depends only on the vertices which are
at most one hop away from v.

Now we prove the processing time of Algorithm 2. Let v be a vertex and define n1(v) := |N1(v)|.
In the algorithm v needs to determine for each vertex v′ ∈ N1(v) whether v′ ∈ Vi and whether v′ has a
smaller x-coordinate than v. This can be done in O (n1(v)) time.

3. Connected Dominating Set

In this section we present a local approximation algorithm that computes a factor 216 approximation
for connected dominating set. We prove its correctness, its approximation ratio and its locality distance
of two hops. We prove that in contrast to the other problems discussed in this paper there is no constant
ratio approximation algorithm with locality distance one. We give lower bounds for the approximation
ratio of local algorithms with arbitrary locality distance k. Finally we give an approximation algorithm
for connected dominating set for unit line graphs which achieves an approximation factor of 6.

3.1. Algorithm for Unit Disk Graphs

We present our approximation algorithm for connected dominating set in unit disk graphs with locality
two. Let G = (V,E) be a connected unit disk graph. We use the same tiling of the plane as introduced
in Section 2. The algorithm works as follows: Consider one hexagon h. We consider each hexagon h′

such that there are pairs of adjacent vertices v and v′ with v ∈ h, v′ ∈ h′. We compute the two adjacent
vertices v ∈ h, v′ ∈ h′ which are closest to each other (ties are resolved by some resolving method, e.g.,
by choosing the pair where the vertex in h has the smallest x-coordinate etc.). We assign v and v′ to the
connected dominating set CD. Do this for all hexagons h′ with the above property.

If there are no such hexagons h′ we assign the vertex v ∈ h to CD which is closest to the center of h

(ties are broken like in Algorithm 1). The above description is presented in Algorithm 3.
We prove the correctness and the other properties of Algorithm 3 in Theorem 4.

Theorem 4. Let G be a unit disk graph. Algorithm 3 has the following properties:

1. The computed set CD is a connected dominating set for G.

2. Let CDOPT be an optimal connected dominating set. It holds that |CD| ≤ 216 · |CDOPT |.

3. Whether or not a vertex v is in CD depends only on the vertices at most two hops away from v,
i.e. Algorithm 3 is local.

4. The processing time for a vertex v is quadratic in the number of vertices adjacent to v.

Proof. First we prove that the set CD is indeed a connected dominating set for G. From the construction
it follows that in each hexagon which contains vertices of G at least one vertex is assigned to CD. So
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Algorithm 3: Local algorithm for finding a connected dominating set in a unit disk graph

// Algorithm is executed independently by each node v;1

dominator:=false;2

Find all vertices in N2(v);3

if there are hexagons h′ such that there are adjacent vertices v1 ∈ h and v2 ∈ h′ then4

forall hexagons h′ such that there are adjacent vertices v1 ∈ h and v2 ∈ h′ do5

Compute pair v1 ∈ h, v2 ∈ h′ with smallest distance between v1 and v2;6

if v1 = v then7

dominator:=true;8

end9

end10

end11

else12

// Denote by Vh all vertices in h;13

Find all vertices in N(v) and compute Vh;14

if v is the vertex closest to the center of h among all v′ ∈ Vh then dominator:=true15

end16

if dominator=true then become part of CD else Do not become part of CD17

CD is a dominating set for G. If in G a vertex v̄ in a hexagon h is adjacent to a vertex v̄′ in a hexagon
h′, then the algorithm ensures that for two adjacent vertices v and v′ with v ∈ h and v′ ∈ h′ it holds that
v ∈ CD and v′ ∈ CD. So in G there is an edge between two vertices in two different hexagons if and
only if in G restricted to CD there is an edge between these hexagons. It follows that CD is connected
since G is connected.

Now we want to prove the approximation ratio of Algorithm 3. In Algorithm 1 at most one vertex
per hexagon is assigned to the connected dominating set. We showed in Theorem 1 that this ensures
an approximation ratio of 12 in comparison with an optimal dominating set. Now for one hexagon h

there are at most 18 hexagons h′ such that there are edges between vertices in h and h′. So at most 18

vertices from h are assigned to CD. Let DOPT be an optimal dominating set, let CDOPT be an optimal
connected dominating set and let D be the dominating set computed by Algorithm 1. It follows that

|CD| ≤ 18 · |D|
≤ 18 · 12 · |DOPT |
≤ 18 · 12 · |CDOPT |
= 216 · |CDOPT |

Now we prove the locality of Algorithm 3. Consider a vertex v in a hexagon h. In order to find out
whether or not v is assigned to CD we need to find out whether v is adjacent to a vertex v′ in a hexagon
h′ with h 6= h′ and what other vertices v̄ ∈ h are adjacent to vertices v̄′ ∈ h′. In order to do this, we need
to explore all vertices which are at most two hops away from v. To check whether there are generally
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vertices in h which are adjacent to vertices in other hexagons (if not, the vertex closest to the center of h

is assigned to CD), we need to explore the vertices which are at most two hops away from v.
Finally we prove the processing time of Algorithm 3. Let again v be a vertex in a hexagon h. We

define n2(v) := |N2(v)|. For each vertex v′ ∈ N1(v) the vertex v needs to determine whether v′ ∈ h

and to what vertices v̄ in other hexagons h′ the vertex v′ is adjacent to. For each hexagon h′ such that
there are adjacent vertices in h and h′ we need to compute the pair of vertices v ∈ h and v′ ∈ h′ which
are closest to each other and need to compute the resolving of the ties. This can be done in O

(
n2 (v)2

)

time.

3.2. No Constant Ratio Approximation Algorithm with Locality One

We prove that there is no local algorithm for connected dominating set with locality one which
achieves a constant approximation ratio.

Theorem 5. Let A be a local algorithm with locality one for connected dominating set in the setting of
location aware nodes. For every constant c there is a graph Gc such that A achieves an approximation
ratio worse than c when computing a connected dominating set for Gc.

Proof. Without loss of generality we assume that c is an integer. Consider two circles of diameters one
and three which are placed inside of each other (see Figure 7). Consider the unit disk graph Gc defined
as follows: There are 21 · c vertices distributed on the inner ring. Denote these vertices by VI . On the
outer ring there are another 21 · c vertices such that each of them is opposite to one vertex in VI . We
denote by VO the vertices on the outer ring. Since Gc is a unit disk graph an edge between two vertices
exists if and only if the Euclidean distance between the vertices is at most one. For each vertex v ∈ VO

we define the unit disk graph Gv as follows: it consists of the vertices VI and the vertex v. Denote by
v′ the vertex opposite of v on the inner ring. Again, an edge between two vertices exists if and only if
the Euclidean distance between two vertices is at most one. Figure 7 shows this construction for c = 1.
When A computes a connected dominating set CDv for Gv it holds that v′ ∈ CDv (since v must be
dominated either by v′ or by v itself which implies for CDv to be connected that v′ must be in CDv as
well). When A computes a connected dominating set CD for Gc it must take the same decision about
assigning v′ to CD as in Gv (since the locality of A is one). So v′ ∈ CD. With the same argument we
can show that for every vertex u ∈ VI it holds that u ∈ CD. So VI ⊆ CD and therefore |CD| ≥ 21 · c.
But since the length of the outer ring is 3π it holds that the size of a maximal independent set is at most
b3πc = 10 and therefore the size of a connected dominating set for Gc is at most 20 (we can construct
this by taking a maximal independent subset IO of VO and add all vertices in VI which are opposite of
vertices in IO). Denote by CDOPT an optimal dominating set for Gc. So for the approximation ratio
|CD|/ |CDOPT | it holds that

|CD|
|CDOPT | ≥

21 · c
20

> c



Algorithms 2008, 1 15

Figure 7. The graph Gc for c = 1 and the graph Gv for the vertex v. In order to make the figures clearer
we omit the edges of the graphs.

v

3

1

Gc v′

v′ vGv
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Figure 8. Construction for the lower bound for a local algorithm for connected dominating set for k = 2.

G

v v

Gv

Corollary 2. Let A be a local algorithm with locality one for connected dominating set in the setting of
location aware nodes. The approximation ratio of A is bounded from below by n/40, i.e., it is in Θ(n).

Proof. We apply the construction in the proof of Theorem 5 to obtain the family of graphs Gc. For
each graph Gc the following holds: Let CD be the connected dominating set for Gc which is computed
by A. All vertices in the inner ring are assigned to CD by A (see the proof of Theorem 5). As half
of the vertices of Gc are on the inner ring, it holds that |CD| ≥ n/2. However, an optimal connected
dominating set CDOPT for Gc has at most 20 vertices, so |CDOPT | ≤ 20. So for the approximation ratio
|CD| / |CDOPT | it holds that

|CD|
|CDOPT | ≥

n

2
· 1

20
=

n

40

3.3. Lower Bound

We prove a lower bound for the approximation factor of local algorithms for connected dominating
set in the setting of location aware nodes depending on the locality distance of the algorithm.

Theorem 6. Let A be a local algorithm for connected dominating set in the setting of location aware
nodes. Let k be the locality distance of A. Then the approximation ratio which A achieves is bounded
from below by 1 + 1/k.

Proof. Similar to the proof of Theorem 2 we construct graphs in whichA has to take the same decisions
in a certain vertex v. Our construction consists of a cycle of vertices with 2k + 2 vertices as shown in
Figure 8. Denote this cycle by G. Note that G is indeed a unit disk graph. Denote by CD the connected
dominating set which A computes for G. Now let v be a vertex. Denote by Gv the graph which we
obtain by removing the opposite vertex of v from G (see Figure 8). As A is a local algorithm with
locality distance k it must take the same decision about assigning v to the connected dominating set in G

and Gv. Denote by CDv the connected dominating set which is computed for Gv byA. As not assigning
v to CDv would result in CDv being disconnected, we conclude that v ∈ CDv and v ∈ CD. With the
same reasoning we can show that all vertices in G must be in CD. So |CD| = 2k + 2. But an optimal
connected dominating set for G has only 2k vertices. So the performance ratio of A is bounded from
below by 2k+2

2k
= 1 + 1

k
.
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Corollary 3. Let A be a local algorithm for connected dominating set in the setting of location aware
nodes with locality distance 2. Then the approximation ratio which A achieves is bounded from below
by 1.5.

3.4. Algorithm for Unit Line Graphs

We present a local algorithm for connected dominating set on unit line graphs with locality distance
one. It is an extension of the algorithm for dominating set presented in this paper. The approximation
ratio of this algorithm is 6.

Now we present the algorithm in detail. Let G = (V, E) be a unit line graph. For a vertex v we denote
by vx its x-coordinate. As in Algorithm 2 for all integers i we define Vi := {v ∈ V |i ≤ vx < i + 1} and
H := {i|Vi 6= ∅}. For all i ∈ H we define v[i] and v′[i] to be the vertices with the smallest and largest
x-coordinates in Vi. We define CD := {v[i], v′[i]|i ∈ H}. We output CD. We refer to this as Algorithm
4.

Algorithm 4: Local algorithm for finding a connected dominating set in a unit line graph

// Algorithm is executed independently by each node v;1

// let i be the integer such that v ∈ Vi;2

Find all vertices in N(v) and determine Vi;3

if v = v[i] or v = v′[i] then become part of the dominating set CD else Do not become part of CD4

We prove the correctness of Algorithm 4 in Theorem 7.

Theorem 7. Let G be a unit line graph. Algorithm 4 has the following properties:

1. The computed set CD is a connected dominating set for G.

2. Let CDOPT be an optimal connected dominating set. It holds that |D| ≤ 6 · |DOPT |.

3. Whether or not a vertex v is in CD depends only on the vertices at most one hop away from v, i.e.
Algorithm 4 is local.

4. The processing time for a vertex v is linear in the number of vertices adjacent to v.

Proof. We first prove that CD is indeed a connected dominating set for G. Let i ∈ H . Let D be the
dominating set which Algorithm 2 would have computed for G. As D ⊆ CD it remains to prove that
CD is connected. For all i it holds that v[i] and v′[i] are connected by an edge (assuming v[i] 6= v′[i]).
Let i be an integer such that i ∈ H and i + 1 ∈ H . Then there are edges connecting v′[i] and v[i + 1]

since v′[i] is the vertex on the very right of Vi and v[i + 1] is the vertex on the very left of Vi+1 and G is
a connected unit line graph. This proves that CD is connected.

Now we prove that for an optimal connecting dominating set CDOPT it holds that |CD| ≤ 6 ·
|CDOPT |. Let D again be the dominating set which Algorithm 2 would have computed for G. From our
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construction it follows that |CD| ≤ 2 · |D|. As |DOPT | ≤ |CDOPT | it follows that

|CD| ≤ 2 · |D|
≤ 2 · 3 · |DOPT |
≤ 6 · |CDOPT |

Next we determine the locality of Algorithm 4. In the algorithm, a vertex v in a set Vi only needs to
explore all other vertices in Vi. (This is sufficient to determine whether v is the vertex with the smallest
x-coordinate or with the largest x-coordinate among the vertices in Vi.) So whether or not v ∈ CD

depends only on the vertices which are at most one hop away from v.
Now we prove the processing time of Algorithm 4. Let v be a vertex and define n1(v) := |N1(v)|.

In the algorithm v needs to determine for each vertex v′ ∈ N1(v) whether v′ ∈ Vi and whether v′ has a
smaller or a larger x-coordinate than v. This can be done in O (n1(v)) time.

4. Independent Set

In this section we present our local approximation algorithm for independent set in unit disk graphs
with locality one. This algorithm achieves an approximation ratio of 1/1801. Then we give a lower
bound for the approximation ratio of local algorithms with arbitrary locality distance k. For this proof
we employ a construction consisting of unit line graphs. Finally we give a local algorithm for unit line
graphs with locality one. Its approximation ratio is almost 1/2.

First we introduce another tiling of the plane which is a bit more complex than the tiling presented in
Section 2.

4.1. Tiling of the Plane

We present the tiling of the plane which our local algorithm for independent set in UDGs will use. Let
G = (V,E) be a connected unit disk graph. We tile the plane with tiles where each tile consists of seven
hexagons arranged as in Figure 9. The diameter of each hexagon is 1. Each hexagon is assigned a class
number between 1 and 7. This assignment is done identically in each tile. For a hexagon h we denote
by class(h) its class number. Each vertex is assigned to a hexagon, ambiguities caused by vertices at
the border of hexagons are resolved as shown in Figure 10 (this is the same resolving method which was
used in Section 2.1.). The plane is tiled with the tiles mentioned above as shown in Figure 11. We
conclude with the following proposition.

Proposition 1. Two different hexagons with the same class number have an Euclidean distance of strictly
more than 1.

4.2. Algorithm for Unit Disk Graphs

We present our local approximation algorithm for independent set in unit disk graphs. Let G = (V,E)

be a unit disk graph. The main idea of the algorithm is that since the vertices in one hexagon form a
clique at most one vertex per hexagon can be in an independent set. The algorithm works as follows: In
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Figure 9. One tile consisting of 7 hexagons.

Figure 10. Resolving ambiguities at the border of hexagons.

Figure 11. Several tiles arranged together.
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each hexagon h we define the vertex which is closest to the center to be the head vertex vh (ambiguities
are resolved by choosing the vertex with the smallest x-coordinate among the vertices with the same
distance to the center and if this is ambiguous we choose the vertex with the smallest y-coordinate). If
vh is not adjacent to a vertex in a hexagon with a lower class number we assign vh to the independent set
I .

Algorithm 5: Local algorithm for finding an independent set in a unit disk graph

// Algorithm is executed independently by each node v;1

Find all vertices in N(v);2

Determine the hexagon h of v and class(h);3

if v is the head vertex of h then4

if v is NOT adjacent to a vertex in a hexagon h′ with class(h′) < class(h) then5

Assign v to the independent set I;6

end7

end8

We prove the correctness of Algorithm 5, its approximation factor, its locality and its processing time
in Theorem 8.

Theorem 8. Let G be a unit disk graph. Algorithm 5 has the following properties:

1. The computed set I is an independent set for G.

2. Let IOPT be an optimal independent set. It holds that |I| ≥ 1
1801

· |IOPT |.

3. Whether or not a vertex v is in I depends only on the vertices at most one hop away from v, i.e.
Algorithm 5 is local.

4. The processing time for a vertex v is linear in the number of vertices adjacent to v.

Proof. First we want to show that I is indeed an independent set for G. Assume on the contrary that
there are two adjacent vertices v ∈ I and v′ ∈ I . Since at most one vertex per hexagon is assigned to I it
follows that v and v′ are in different hexagons h and h′ respectively. From Proposition 1 it follows that
class(h) 6= class(h′), so without loss of generality we can assume that class(h) > class(h′). But from
the construction it follows that a vertex v in a hexagon h is not assigned to I if it is adjacent to a vertex
v′ in a hexagon h′ with class(h) > class(h′). This is a contradiction. So the set I is an independent set
for G.

Now we want to prove the approximation ratio of Algorithm 5. Let IOPT be an optimal independent
set for G. Denote by H the set of hexagons which contain vertices from G. Since the vertices in a
hexagon form a clique, at most one vertex per hexagon can be part of an independent set. So |H| is an
upper bound for |IOPT |. For a hexagon h we denote by B(h) the union of h and all hexagons h′ such that
class(h) < class(h′) and h′ contains a vertex which is adjacent to a vertex in h. For a set of hexagons
H ′ we define B(H ′) :=

⋃
h′∈H′ B(h′). We define recursively B0(h) := {h} and Bi(h) := B(Bi−1(h)).
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As there are only seven different classes of hexagons, it follows that B7−i(h) = B7−i+k(h) for hexagons
of class i and for all k ≥ 0. We define B̃(h) := B7−class(h)(h). Intuitively we can say that the hexagon
h blocks all hexagons in B̃(h).

Consider a graph G′ = (V ′, E ′) with one vertex per hexagon in H and with an edge between two
vertices if and only if their respective hexagons are adjacent. For two hexagons h,h′ we denote by
d(h, h′) the distance between their respective vertices in G′. For a hexagon h we get that for all hexagons
h′ ∈ B(h) it holds that d(h, h′) ≤ 2. So for all hexagons h′ ∈ B̃(h) it holds that d(h, h′) ≤ 2 ·
(7 − class(h)) ≤ 12. As for a hexagon h there are at most 3(2k)2 + 3(2k) + 1 hexagons h′ such that
d(h, h′) ≤ k (see the proof of Lemma 6 in [18]) we conclude that

∣∣∣B̃(h)
∣∣∣ ≤ 3 · 242 + 3 · 24 + 1 = 1801.

It follows that 1801|I| ≥ ⋃
v′∈I

∣∣∣B̃(h(v′))
∣∣∣.

For a vertex v let h(v) be the hexagon which contains v. From the definition of the algorithm we get
the following: Let v be a head vertex. If for all vertices v′ ∈ I it holds that h(v) /∈ B̃(h(v′)) then it holds
that v ∈ I . So

⋃
v′∈I B̃(h(v′)) = H . We conclude that

|I| ≥ 1

1801

⋃

v′∈I

∣∣∣B̃(h(v′))
∣∣∣

≥ 1

1801

∣∣∣∣∣∣
⋃

v′∈I

B̃(h(v′))

∣∣∣∣∣∣

=
1

1801
|H|

≥ 1

1801
|IOPT |

Now we want to prove the locality of Algorithm 5. Since a vertex only needs to determine whether
it is the head vertex of its hexagon and whether it is adjacent to a vertex in a hexagon with lower class
number, the locality distance of the algorithm is one hop.

For the proof of the processing time let v be a vertex in a hexagon h. For each vertex v′ ∈ N(v) the
algorithm needs to compute the class number of the hexagon containing v′ and its distance to the center
of h. This can be done in O (|N(v)|) time.

4.3. Lower Bound

Similarly to the lower bound presented in Section 2.4. we present a construction which enables us to
give a lower bound for the approximation factor of local algorithms for independent set with a locality
distance of k hops.

Theorem 9. Let A be a local algorithm for independent set in unit line graphs with a locality distance
of k hops in the setting of location aware nodes. The best performance ratio which can be achieved by
A is k

k+1
.

Proof. Consider the unit line graph G1 = (V,E) consisting of 6 + 2k vertices (see Figure 12). Let I1

be the independent set which is computed for G1 by A. Note that an optimal independent set for G1 has
k + 3 vertices. Let V1 be the set of vertices in G1 which are at most k− 1 hops away from the very right
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Figure 12. A local algorithm A with locality distance k has to take the same decisions for the vertices u

and v in G1, Gu and Gv. The black vertices show a possible independent set computed by A. In order to
simplify this figure the rectangular boxes represent k vertices on the line.

Gv

k vertices

k vertices k vertices
u

k vertices k vertices

G
v

Gu

v

k vertices
u

or the very left vertex (in Figure 12 these are the vertices in the box with the label “k vertices”). If k = 0

we define V1 := ∅. Let V2 := V \ V1 (thus |V2| = 6). We distinguish three cases:
Case 1: There is no vertex u ∈ V2 such that u ∈ I1. If k = 0 then |I1| = 0 and thus the performance

ratio of A is 0. If k ≥ 1 then |I1| ≤ k + 1 and so the performance ratio of A is at most k+1
k+3

≤ k
k+1

.
Case 2: There is no vertex v ∈ V2 such that v /∈ I1. Then I1 is not an independent set which is a

contradiction.
Case 3: There is a vertex u ∈ V2 with u ∈ I1 and a vertex v ∈ V2 with v /∈ I1. Now consider the

graphs Gu consisting of u and v respectively and k nodes each to their left and their right (see Figure
12). Let Iu and Iv be the independent sets computed for Gu and Gv by A. As the locality distance of A
is k and u ∈ I1 and v /∈ I1, it holds that u ∈ Iu and v /∈ Iv. If k is even then |Iv| ≤ k whereas the optimal
independent set for Iv has k + 1 vertices. So the performance ratio of A is at most k

k+1
. If k is odd then

|Iu| ≤ k whereas the optimal independent set for Iu has k + 1 vertices. So the performance ratio of A is
at most k

k+1
.

Corollary 4. Let A be a local algorithm for independent set in unit disk graphs (UDGs) with a locality
distance of k hops in the setting of location aware nodes. The best performance ratio which A can
achieve is k

k+1
.

4.4. Algorithm for Unit Line Graphs

We present a local algorithm for independent set with locality one on unit line graphs (ULGs). For
the set I computed by this algorithm it holds that |I| ≥

⌊
1
2
· |IOPT |

⌋
and |I| ≥ 1 (with IOPT being an

optimal independent set). Like in Algorithm 2 we divide the line into units of width one.
Now we present the algorithm in detail. Let G = (V, E) be a unit line graph. For a vertex v we

denote by vx its x-coordinate. For all integers i we define Vi := {v ∈ V |i ≤ vx < i + 1}. We define
H := {i|Vi 6= ∅}. For all i ∈ H we define v[i] to be the vertex with the smallest x-coordinate in
Vi. Now we partition the vertices v[i] into two sets V1 and V2. Let V1 := {v[i]|i ∈ H ∧ i is odd} and
V2 := {v[i]|i ∈ H ∧ i is even}. Denote by V ′

2 ⊆ V2 the subset of V2 consisting of the vertices v[i] which
are not adjacent to vertices v′ with v′ ∈ Vi−1 or v′ ∈ Vi+1 (so for such a vertex v′ it would hold that
v′x < i or v′x ≥ 1). We define the independent set I as I := V1 ∪ V ′

2 . The output is the set I . We refer to
this as Algorithm 6.

We prove the correctness of Algorithm 6, its approximation factor, its locality and its processing time
in Theorem 10.
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Algorithm 6: Local algorithm for finding an independent set in a unit line graph

// Algorithm is executed independently by each node v;1

// let i be the integer such that v ∈ Vi;2

// let v[i] be vertex with the smallest x-coordinate in Vi;3

Find all vertices in N(v) and determine Vi;4

if v = v[i] then5

if i is odd then become part of the independent set I else if i is even and v is not adjacent to a6

vertex v′ with v′x < i or v′x ≥ i + 1 then
become part of I7

end8

else Do not become part of I9

end10

else Do not become part of I11

Theorem 10. Let G be a unit line graph. Algorithm 6 has the following properties:

1. The computed set I is an independent set for G.

2. Let IOPT be an optimal independent set. It holds that |I| ≥
⌊

1
2
· |IOPT |

⌋
and |I| ≥ 1.

3. Whether or not a vertex v is in I depends only on the vertices which are at most k hops away from
v, i.e. Algorithm 6 is local.

4. The processing time for a vertex v is linear in the number of vertices adjacent to v.

Proof. It holds that the Euclidean distance between two vertices in V1 is strictly greater than one. So V1

is an independent set. Since all vertices in V ′
2 are not adjacent to vertices v′ with v′x < i or v′x ≥ i + 1

it holds that a vertex in V ′
2 cannot be adjacent to a vertex in V1. Like for V1 it holds that the Euclidean

distance between two vertices in V2 is strictly greater than one. So no two vertices in V ′
2 are adjacent.

All this implies that I = V1 ∪ V ′
2 is in independent set.

Now we want to prove the approximation ratio of Algorithm 6. Let i be an integer. The vertices in Vi

form a clique. Therefore at most one vertex in Vi can be in I . So |H| is an upper bound for |IOPT |. If
|H| is even then |V1| = |H|

2
. If |H| is odd then either |V1| = |H|+1

2
or |V1| = |H|−1

2
. So in either case it

holds that |I| ≥ |V1| ≥
⌊

1
2
· |IOPT |

⌋
. If |V1| ≥ 1 it clearly holds that |I| ≥ 1. If |V1| = 0 there must be

one set Vi with Vi 6= ∅ and i being even (since otherwise the graph would be empty and for the empty
graph the theorem is trivially true). It also holds that Vi−1 = ∅ and Vi+1 = ∅. So v[i] is not adjacent to
any vertices in Vi−1 or Vi+1 and therefore v[i] ∈ I . This implies that |I| ≥ 1.

Let v ∈ Vi be a vertex. In order to determine whether v ∈ I we need to explore the vertices in Vi and
we need to determine whether v is adjacent to a vertex v′ with v′ ∈ Vi−1 or v′ ∈ Vi+1. All this requires
only the knowledge of the vertices in N(v). So the locality distance of Algorithm 6 is one. Computing
whether v = v[i] and whether v is adjacent to a vertex v′ with v′ ∈ Vi−1 or v′ ∈ Vi+1 can be done in
processing time linear in |N(v)|.
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5. Vertex Cover

In this section we prove that if we take all vertices in a unit disk graph this forms a factor 6 approx-
imation for the minimum vertex cover problem. This leads to a local approximation algorithm with a
locality of one hop. Then we present lower bounds for the approximation ratio of local algorithms for
vertex cover with arbitrary locality distance k. Finally we give a factor 2 approximation algorithm for
vertex cover on unit line graphs.

5.1. Factor 6 Upper Bound

We consider a connected unit disk graph with at least two vertices. An upper bound of 6 for the
number of all vertices in comparison with the number of vertices in a minimum vertex cover follows
from Theorem 11 for m = 6 (recall that a unit disk graph does not contain a K1,6 minor).

Theorem 11. Let G = (V,E) be a graph such that there is no set of vertices V ′ ⊆ V such that the
subgraph induced by V ′ is a K1,m. Then it holds that

|V | ≤ m · |V COPT |

Proof. We partition the vertices V into two sets V1 := V COPT and V2 := V \ V1. We prove that
|V2| ≤ (m− 1) · |V COPT |. Since |V | = |V1|+ |V2| it follows then that |V | ≤ m · |V COPT |.

Since V1 is a vertex cover it follows that V2 does not contain any adjacent vertices. Since G does not
contain a K1,m it follows that every vertex v ∈ V1 is adjacent to at most (m− 1) vertices in V2. Since
|V | ≥ 2 it follows that |V1| ≥ 1 and thus |V2| ≤ (m− 1) · |V1| = (m− 1) · |V COPT |. So we conclude
with |V | = |V1|+ |V2| ≤ |V COPT |+ (m− 1) · |V COPT | ≤ m · |V COPT |.

5.2. Algorithm for Unit Disk Graphs

We present a local approximation algorithm for minimum vertex cover for unit disk graphs. Let
G = (V,E) be a connected unit disk graph. The algorithm works as follows: First we check whether
|V | ≥ 2. If |V | = 1 then there are no edges in G that need to be covered so we define V C := ∅. If
|V | ≥ 2 we assign all vertices to the set V C. We output V C. We present the above description as
Algorithm 7.

Algorithm 7: Local algorithm for computing a vertex cover for a unit disk graph G = (V, E)

// Algorithm is executed independently by each node v;1

if |V | ≥ 2 then assign v to V C;2

else Do not assign v to V C;3

We prove the correctness of Algorithm 7 in Theorem 12.

Theorem 12. Let G be a unit disk graph. Algorithm 7 has the following properties:

1. The computed set V C is a vertex cover for G.
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Figure 13. A local algorithm A with locality distance k has to take the same decisions for the vertices
u and v in G1, Gu and Gv. The black vertices show a possible vertex cover computed by A. In order to
simplify the figure the rectangular boxes represent k vertices on the line.
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2. Let V COPT be an optimal vertex cover. It holds that |V C| ≤ 6 · |V COPT |.

3. Whether or not a vertex v is in V C depends only on the vertices at most one hop away from v, i.e.
Algorithm 1 is local.

4. The processing time for a vertex v is constant.

Proof. If |V | < 2 this implies that G contains no edges and V C = ∅ and V COPT = ∅. So in this case
V C is indeed a vertex cover for G and |V C| ≤ 6 · |V COPT |. If |V | ≥ 2 then V C = V . So V C is indeed
a valid vertex cover for G. The approximation factor follows from Theorem 11.

In order to check whether |V | ≥ 2 we only need to examine if there are vertices which are at most
one hop away from a given vertex v. So the locality of Algorithm 7 is one hop.

Checking whether there are vertices which are adjacent to v and assigning v to V C can be done in
constant time, so the processing time of Algorithm 7 is constant.

5.3. Lower Bound

We prove a lower bound for the approximation ratio of a local algorithm for vertex cover with locality
distance k. The proof is very similar to the proof given for independent set in Section 4..

Theorem 13. Let k be an integer with k ≥ 1. Let A be a local algorithm for vertex cover in unit line
graphs with a locality distance of k hops in the setting of location aware nodes. The best performance
ratio which can be achieved by A is k+1

k
.

Proof. Consider the unit line graph G1 = (V, E) consisting of 6 + 2k vertices (see Figure 13). Let V C1

be the vertex cover which is computed for G1 by A. Note that an optimal vertex cover for G1 has k + 3

vertices. Let V1 be the set of vertices in G1 which are at most k− 1 hops away from the very right or the
very left vertex (in Figure 13 these are the vertices in the box with the label “k vertices”). If k = 0 we
define V1 := ∅. Let V2 := V \ V1 (thus |V2| = 6). We distinguish three cases:

Case 1: There is no vertex u ∈ V2 such that u /∈ V C1. So |V C| ≥ 6+k− 1 and thus the performance
ratio of A is at most k+5

k+3
≥ k+1

k
.

Case 2: There is no vertex v ∈ V2 such that v ∈ V C1. Then V C1 is not a vertex cover which is a
contradiction.

Case 3: There is a vertex u ∈ V2 with u /∈ V C1 and a vertex v ∈ V2 with v ∈ V C1. Now consider
the graphs Gu consisting of u and v respectively and k nodes each to their left and their right (see Figure
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13). Let V Cu and V Cv be the vertex covers computed for Gu and Gv by A. As the locality distance of
A is k and u /∈ V C1 and v ∈ V C1, it holds that u /∈ V Cu and v ∈ V Cv. If k is even then |V Cv| ≥ k + 1

whereas the optimal vertex cover for V Cv has only k vertices. So the performance ratio of A is at most
k+1

k
. If k is odd then |V Cu| ≥ k + 1 whereas the optimal independent set for V Cu has k vertices. So the

performance ratio of A is at most k+1
k

.

Corollary 5. Let k be an integer with k ≥ 1. Let A be a local algorithm for vertex cover in unit
disk graphs (UDGs) with a locality distance of k hops in the setting of location aware nodes. The best
performance ratio which A can achieve is k+1

k
.

5.4. Algorithm for Unit Line Graphs

We present a local algorithm with locality one for vertex cover on unit line graphs (ULGs). It achieves
an approximation ratio of 2. The algorithm works as follows: Let G = (V, E) be a unit line graph. Let
vL be the leftmost vertex in V . Define V C := V \ {vL}. We output V C. We refer to this as Algorithm
8.

Algorithm 8: Local algorithm for computing a vertex cover in a unit line graph

// Algorithm is executed independently by each node v;1

// let vL be the leftmost vertex of G;2

Explore the vertices in N(v);3

if v = vL then become part of the vertex cover V C else do not become part of V C4

We prove the correctness of Algorithm 8 in Theorem 14.

Theorem 14. Let G be a unit line graph. Algorithm 8 has the following properties:

1. The computed set V C is a vertex cover for G.

2. Let V COPT be an optimal dominating set. It holds that |V C| ≤ 2 · |V COPT |.

3. Whether or not a vertex v is in V C depends only on the vertices which are at most one hop away
from v, i.e. Algorithm 8 is local.

4. The processing time for a vertex v is linear in the number of vertices adjacent to v.

Proof. Since {vL} is an independent set for G it holds that V C = V \ {vL} is a valid vertex cover
for G. For proving the approximation ratio of Algorithm 8 we distinguish between |V | being even or
odd. If |V | is even then there is a maximal matching for G such that every vertex is adjacent to a
matching edge: Denote by v1, v2, ..., vn the vertices V ordered by their x-coordinate. The matching
M := {(v2k−1, v2k)|1 ≤ k ≤ |V |/2} is such a maximal matching. So it holds that |V | ≤ 2 · |V COPT |
and therefore |V C| ≤ 2 · |V COPT |. If |V | is odd then there is a maximal matching such that every
vertex but vL is adjacent to a matching edge: the matching M ′ :=

{
(v2k, v2k+1)|1 ≤ k ≤ |V |−1

2

}
is such

a maximal matching. So it follows that |V C| ≤ 2 · |V COPT |. If a vertex v is in V C depends only on
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the vertices which are one hop away from v (the set N(v)) since it is sufficient for v to explore N(v) in
order to determine whether v = vL. During the computation for one vertex v we only need to check for
every vertex v′ ∈ N(v) whether vx ≤ v′x. So the processing time for a vertex v is linear in the number of
vertices in N(v).

6. Conclusion

We studied the impact of locality in algorithms for dominating and connected dominating set, inde-
pendent set and vertex cover. We proved the first ever lower bounds for local approximation algorithms
for these problems in the setting of location aware unit disk graphs. The bounds depend on the locality
distance of an algorithm. We investigated the computational power of local algorithms with very low
localities. We showed that for dominating set, independent set and vertex cover a locality distance of one
hop is sufficient to guarantee a constant approximation ratio. For connected dominating set we proved
that there is no constant ratio approximation algorithm with locality one. However, we gave such an
algorithm with locality two.

The gaps between our lower bounds and our algorithms (for locality distances one and two respec-
tively) are significant. It remains an open problem to tighten these bounds. A first step towards this
aim would be to find tight bounds for the special case of unit line graphs. In our proofs of the lower
bounds we mostly used constructions with unit line graphs. Employing constructions of unit disk graphs
in two dimensions one might be able to prove better lower bounds of algorithms for (general) unit disk
graphs. This remains an open problem. Possibly one can get more insights about this issue by studying
the problems on a grid with integer coordinates and vertices with an arbitrary transmission radius r. This
setting approximates unit disk graphs while all lower bounds for it hold for general unit disk graphs as
well.

Also of interest would be other local algorithms with small locality distances k > 1. Maybe one can
improve our approximation ratios considerably by enlarging the locality by only a little. A vast open
problem is to find tight bounds for the approximation ratios of local algorithms with arbitrary locality
distances k.
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