Supplementary Materials: Multichromic Polymers Containing Alternating Bi(3-Methoxythiophene) and Triphenylamine Based Units with *Para*-Protective Substituents

Yingfei Hou, Lingqian Kong, Xiuping Ju, Xiaoli Liu, Jinsheng Zhao and Qingshan Niu

Figure S1. (a) ¹H NMR spectrum of 4-cyano-4',4"-di(4-methoxythiophen-2-yl) triphenylamine (CMTPA) in CDCl₃. Solvent peak is at δ = 7.26 ppm; (b) ¹³C NMR spectrum of 4-cyano-4',4"-di(4-methoxythiophen-2-yl) triphenylamine (CMTPA) in CDCl₃. Solvent peak is at δ = 77.3 ppm.

Figure S2. (a) ¹H NMR spectrum of 4-methoxy-4',4"-di(4-methoxythiophen-2-yl) triphenylamine (MMTPA) in CDCl₃. Solvent peak is at δ = 7.26 ppm; (b) ¹³C NMR spectrum of 4-methoxy-4',4"-di(4-methoxythiophen-2-yl) triphenylamine (MMTPA) in CDCl₃. Solvent peak is at δ = 77.3 ppm.

Scheme S1. The coupling mechanism of MMTPA monomer.