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Abstract: A series of carbon-based superconductors XC6 with high Tc were reported recently. In this
paper, based on the first-principles calculations, we studied the mechanical properties of these
structures, and further explored the XC12 phases, where the X atoms are from elemental hydrogen
to calcium, except noble gas atoms. The mechanically- and dynamically-stable structures include
HC6, NC6, and SC6 in XC6 phases, and BC12, CC12, PC12, SC12, ClC12, and KC12 in XC12 phases.
The doping leads to a weakening in mechanical properties and an increase in the elastic anisotropy.
C6 has the lowest elastic anisotropy, and the anisotropy increases with the atomic number of doping
atoms for both XC6 and XC12. Furthermore, the acoustic velocities, Debye temperatures, and the
electronic properties are also studied.
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1. Introduction

Elemental carbon exhibits a rich diversity of structures and properties, due to its flexible bond
hybridization. A large number of stable or metastable phases of the pure carbon, including the
most commonly known, graphite and diamond, and other various carbon allotropes [1–4] (such as
lonsdaleite, fullerene, and graphene, etc.), and diversified carbides [5–11], have been studied in
experiments and theoretical calculations. Graphite, which is the most stable phase at low pressure,
has a sp2-hybridized framework and is ultrasoft semimetallic, whereas diamond, stable at high
pressure, is superhard, insulating with a sp3 network. Recently, a novel one-dimensional metastable
allotrope of carbon with a finite length was first synthesized by Pan et al. [1], called Carbyne. It has
a sp-hybridized network and shows a strong purple-blue fluorescence. The successful synthesis
of Carbyne is a great promotion for the further analysis on properties and applications. The 2D
material MXenes as a promising electrode material, which is early transition metal carbides and carbon
nitrides, is reported [11], owing to its metallic conductivity and hydrophilic nature. These properties of
different carbides are appealing. To find superhard superconductors, researches designed some carbide
superconductors, such as boron carbides and XC6 structure with cubic symmetry. The diamond-like
BxCy system, which is superhard and superconductive, has also attracted much interest [5–10]. The best
simulated structure of the synthesized d-BC3 (Pmma-b phase) has a Vickers hardness of 64.8 GPa,
showing a superhard nature, and its Tc reaches 4.9–8.8 K [5]. The P-4m2 polymorph of d-BC7 with a
low energy also has a high Vickers hardness of 75.2 GPa [8]. Furthermore, Wang et al. [9] explored
more potential superhard structures of boron carbide, uncovering the stability is mainly contributed by
the elemental boron at low pressure, and by the carbon at high pressure. The novel metastable carbon
structure C6 bcc is predicted with a cubic symmetry [12]. It is an indirect band gap semiconductor with
2.5 eV, calculated by the local density approximation. Recently, doped with simple metals, Lu et al. [13]
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studied a series of sodalite-based carbon structures, similar to the boron-doped diamond. Although
they found these structures are all metastable, some of these structures show a superconductivity,
e.g., the critical temperature of NaC6 is 116 K. In this paper, we mainly study the mechanical properties
of these eleven XC6 phases (HC6, LiC6, NC6, OC6, FC6, NaC6, AlC6, SiC6, PC6, SC6, and ClC6)
which is of dynamical stability and, for comparison, C6 is also calculated. In addition, the XC12

structures are systematically explored, in which the X atom is from H to Ca, except He, Ne, and Ar.
The doping-induced changes in elastic constant, modulus, the anisotropy of elasticity and acoustic
velocity, Debye temperature, and the electronic structures are also studied.

2. Results and Discussion

As shown in Figure 1a, the structure of XC6 is obtained by doping the X atom into the C6 bcc
structure at (0, 0, 0). It is of Im-3m symmetry (No. 229), consisting of two formula units (f.u.) per unit
cell. Each C atom has four nearest neighbors with the bond angle of 90◦ or 120◦. The XC6 structure
has four C4 rings and eight C6 rings. In Table 1, the calculated lattice parameter a of C6 has a good
agreement with the available result [12], and is smaller than that of the XC6 structures. By removing
the corner atoms and only leaving the center X atom, the XC12 structure is obtained (Figure 1b). All of
the XC12 phases are smaller than the corresponding XC6 phases, but larger than the C6 phase in the
lattice parameter.
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Figure 1. Unit cell of XC6 (a) and XC12 (b). The black and blue spheres represent C and
X atoms, respectively.

Table 1. Calculated lattice parameter a, elastic constants Cij (GPa), mechanical stability, bulk modulus
B (GPa), shear modulus G (GPa), Young’s modulus E (GPa), Poisson’s ratio ν, and B/G ratio.

Materials a C11 C12 C44
Mechanical
Stability B G E ν B/G

Diamond 3.566 a 1053 a 120 a 563 a 431 a 522 a 1116 a 0.07 a

C6 4.375 803 95 307 stable 331 325 735 0.13 1.018
4.34 b 352 b

HC6 4.390 607 215 344 stable 346 275 652 0.186 1.258
LiC6 4.491 634 118 −78 unstable
NC6 4.446 414 295 162 stable 335 108 293 0.354 3.102
OC6 4.434 196 407 216 unstable
FC6 4.427 269 370 335 unstable

NaC6 4.566 659 91 −548 unstable
AlC6 4.618 497 162 −59 unstable
SiC6 4.614 527 165 −66 unstable
PC6 4.605 542 179 −132 unstable
SC6 4.608 683 115 90 stable 305 146 378 0.294 2.089
ClC6 4.613 92 374 104 unstable
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Table 1. Cont.

Materials a C11 C12 C44
Mechanical
Stability B G E ν B/G

HC12 4.383 103 461 336 unstable
LiC12 4.444 695 108 32 stable 304 93 253 0.361 3.269
BeC12 4.451 743 98 289 stable 313 302 686 0.135 1.036
BC12 4.439 684 136 233 stable 319 248 591 0.191 1.286
CC12 4.376 689 146 214 stable 327 235 569 0.21 1.391
NC12 4.415 275 361 278 unstable
OC12 4.404 −661 830 526 unstable
FC12 4.401 −33 529 476 unstable

NaC12 4.476 741 77 −9 unstable
MgC12 4.508 667 108 31 stable 294 89 240 0.363 3.303
AlC12 4.513 645 123 56 stable 297 110 294 0.335 2.700
SiC12 4.511 559 170 −25 unstable
PC12 4.504 645 141 144 stable 309 181 454 0.255 1.707
SC12 4.502 397 273 251 stable 314 144 375 0.301 2.181
ClC12 4.503 349 297 295 stable 314 123 326 0.326 2.553
KC12 4.512 779 53 18 stable 295 93 252 0.357 3.172
CaC12 4.543 734 58 −2166 unstable

a Ref [14]; b Ref [12].

The formation enthalpies of XC6 in [13] and XC12 structures are calculated reference to
diamond and the most stable X phase at ambient pressure. The equations are given by
∆HXC6 = (HXC6 − HX − 6HC)/7, and ∆HXC12 = (HXC12 − HX − 12HC)/13, and the calculated results
are shown in Figure 2. The positive values indicate these phases are metastable. The two curves
of the formation enthalpy follow a similar trend, where the F-doped carbides have the lowest ∆H,
and the PC6 and CC12 have the largest ∆H in XC6 and XC12, respectively. Compared to other doped
elements of the second and the third periods in the XC6 and XC12, fluorine (F) possesses the largest
electronegativity difference relative to C, leading to a stronger interaction between F and C atoms;
thus, FC6 and FC12 phases are more stable.
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Figure 2. Formation enthalpy of XC6 and XC12.

The calculated elastic constants and moduli are listed in Table 1. The generalized Born’s
mechanical stability criteria of cubic phase are given by [15]: C11 > 0, C44 > 0, C11 > |C12| , and
(C11 + 2C12) > 0. In Table 1, the C6 and HC6, NC6, and SC6 have the mechanical stability, and they
are also dynamically stable [13]. The XC12 has ten mechanically stable phases, but only six of these
phases have the dynamical stability (BC12, CC12, PC12, SC12, ClC12, and KC12) due to the absence of
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the imaginary frequency in the whole Brillouin zone (see Figures 3 and 4). The S is the only element
that is capable to make not only XC6, but also XC12, stable.
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Figure 3. Phonon spectra of dynamically stable phases (a) BC12; (b) CC12; (c) PC12; (d) SC12; (e) ClC12; 
and (f) KC12. 
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By Voigt-Reuss-Hill approximations [16–18], the bulk modulus B and shear modulus G can be
obtained, and the Young’s modulus E and Poisson’s ratio ν are defined as [19,20] E = 9BG/(3B + G)

and ν = (3B− 2G)/[2(3B + G)]. HC6 has the largest bulk modulus of 346 GPa, showing the best
ability to resist the compression. The shear modulus is often used to qualitatively predict the hardness,
and Young’s modulus E is defined as the ratio between stress and strain to measure the stiffness of
a solid material. In Table 1, C6 is the largest in shear modulus and Young’s modulus, which means
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that doping leads to a weakening in mechanical properties. The Poisson’s ratio exhibits the plasticity;
usually, the larger the value, the better the plasticity. According to Pugh [21], C6, HC6, BC12, CC12, and
PC12 are brittle materials (B/G < 1.75), while NC6, SC6, SC12, ClC12, and KC12 are ductile materials
(B/G > 1.75). This conforms the calculated results of Poisson’s ratio.

The elastic anisotropy is important for the analysis on the mechanical property and, thus, the
universal elastic anisotropy index (AU), Zener anisotropy index (A), and the percentage anisotropy
in compressibility and shear are calculated. For the cubic phase, the universal elastic anisotropy
index [22] is defined as: AU = 5GV/GR + BV/BR − 6, the nonzero value suggests an anisotropy
characteristic. Furthermore, it is known that C44 represents the resistance to deformation with
respect to a shear stress applied across the (100) plane in the [010] direction, and (C11 − C12)/2
represents the resistance to shear deformation by a shear stress applied across the (110) plane in
the [110] direction. For an isotropic crystal, the two shear resistances turn to identical. Therefore,
Zener [23] introduced A = 2C44/(C11 − C12) to quantify the extension of anisotropy. The value of
1.0 represents the isotropy, and any deviation from 1.0 indicates the degree of the shear anisotropy.
The percentage anisotropy in compressibility and shear are given by: AB = (BV − BR)/(BV + BR) and
AG = (GV − GR)/(GV + GR) [24]. The AB is always 0.0 for a cubic phase. As shown in Table 2, C6 has
the lowest anisotropy. The universal elastic anisotropy index and the percentage anisotropy in shear is
increasing with the atomic number of doped element for both XC6 and XC12, and the anisotropy which
obtains from the shear anisotropic factor is also increasing, except SC6 and KC12. Furthermore, owing
to the percentage anisotropy in shear of C6, BC12, and CC12 being slight, they are almost isotropic.

Table 2. Universal elastic anisotropy index (AU), Zener anisotropy index (A), and percentage anisotropy
in shear (AG).

Parameter C6 HC6 NC6 SC6 BC12 CC12 PC12 SC12 ClC12 KC12

AU 0.024 0.398 1.30 1.77 0.032 0.068 0.3814 2.752 11.084 21.252
A 0.8672 1.755 2.723 0.317 0.851 0.788 0.572 4.048 11.346 0.0496

AG (%) 0.243 3.752 11.567 15.016 0.315 0.678 3.714 21.596 53.098 68.612

The elastic anisotropies are calculated with the elastics anisotropy measures (ElAM) code [25,26]
which makes the representations of non-isotropic materials easy and visual. For the cubic phase, the
representation in xy, xz, and yz planes are identical, as a result, only the xy plane is presented. The 2D
figures of the differences in each direction of Poisson’s ratio are shown in Figure 5. The maximum value
curves and minimum positive value curves of C6 and XC6 stable phases are illustrated in Figure 5a,b,
and those of XC12 stable phases are shown in Figure 5c,d. Particularly, the SC12 and ClC12 have the
negative minimum Poisson’s ratio. It is seen that all of the structures are anisotropic and C6 has the
lowest anisotropy, suggesting the doping increase the elastic anisotropy. The largest value of maximum
curve is in the same direction of the lowest value of minimum positive value curve for each structure.
Furthermore, for XC12 phases, the anisotropy of Poisson’s ratio is increasing with the atomic number.
The negative minimum Poisson’s ratio of SC12 and ClC12 indicate these two phases have auxeticity [27],
and ClC12 is more prominent than SC12.

The directional dependence of the Young’s modulus [28] are demonstrated in Figures 6 and 7.
The distance from the origin of system of coordinate to the surface equals the Young’s modulus in this
direction, and thus any departure from the sphere indicates the anisotropy. As shown, all of the phases
are anisotropic, and the anisotropy of Young’s modulus is increasing with the doping atomic number.
For the S-doped phases, which have stable XC6 and XC12 structures, the maximum (minimum) values
of SC6 and SC12 are 650 (291) and 371 (175) GPa, respectively. The Emax/Emin ratio of SC6 (2.23) is
slightly larger than that of SC12 (2.12), indicating the SC6 is more anisotropic.
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The acoustic velocity is a fundamental parameter to measure the chemical bonding characteristics,
and it is determined by the symmetry of the crystal and propagation direction. Brugger [29] provided
an efficient procedure to calculate the phase velocities of pure transverse and longitudinal modes from
the single crystal elastic constants. The cubic structure only has three directions [001], [110], and [111]
for the pure transverse and longitudinal modes and other directions are for the qusi-transverse and
qusi-longitudinal waves. The acoustic velocities of a cubic phase in the principal directions are [30]:

for [100], vl =
√

C11/ρ, [010]vt1 = [001]vt2 =
√

C44/ρ,
for [110], vl =

√
(C11 + C12 + 2C44)/2ρ, [110]vt1 =

√
(C11 − C12)/2ρ, [001]vt2 =

√
C44/ρ,

for [111], vl =
√
(C11 + 2C12 + 4C44)/3ρ, [112]vt1 = vt2 =

√
(C11 − C12 + C44)/3ρ.

where ρ is the density of the structure, vl is the longitudinal acoustic velocity, and vt1 and vt2 refer
the first transverse mode and the second transverse mode, respectively. It should be noted that there
is a misprint for equation of [110]vt1 in [30]. Here, the correct expression is given. Based on the
elastic constants, the anisotropic properties of acoustic velocities indicate the elastic anisotropy in these
crystals. As a fundamental physical parameter which correlates with many physical properties of solids,

the Debye temperature can be obtained from the average acoustic velocity: ΘD = h
kB

[
3n
4π

(
NAρ

M

)]1/3
vm,

where h and kB are the Planck and Boltzmann constants, respectively; NA is Avogadro’s number; n is
the total number of atoms in the formula unit; M is the mean molecular weight, and ρ is the density.
The average acoustic velocity is vm =

[
(2/v3

tm + 1/v3
lm)/3

]−1/3, where vlm =
√
(B + 4G/3)/ρ is the

average longitudinal acoustic velocity, and vtm =
√

G/ρ is the average transverse acoustic velocity.
All of the calculated acoustic velocities and Debye temperatures of diamond and stable XC6 and

XC12 phases are shown in Table 3. Diamond is larger than C6 and doped structures in anisotropic and
average acoustic velocity. The densities are increasing and the average acoustic velocities are decreasing
with the atomic number, except NC6, which has a much smaller shear modulus. Compared to C6, the
doping results in a decrease in the average acoustic velocity and Debye temperature. For the element
S, which makes both XC6 and XC12 phases stable, the average acoustic velocity of SC6 decreases by
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38.65% than C6, and that of SC12 by 35.96%. Furthermore, it can be found that the Debye temperature
is decreasing with the atomic number, except SC6. The ΘD characterizes the strength of the covalent
bond in solids, so the strength of the covalent bond is lower for the phase which has the larger atomic
number of doping atom.

Table 3. Density (g/cm3), anisotropic acoustic velocities (m/s) and average acoustic velocity (m/s).

Parameters DiamondC6 HC6 NC6 SC6 BC12 CC12 PC12 SC12 ClC12 KC12

ρ 3.517 2.857 2.869 3.252 3.535 2.941 2.992 3.182 3.206 3.265 3.313
[100] vl 17,303 16,765 14,546 11,283 13,900 15,251 15,175 14,237 11,128 10,339 2331

[010]vt1 12,652 10,366 10,950 7058 5046 8901 8457 6727 8848 9505 2331
[001]vt2 12,652 10,366 10,950 7058 5046 8901 8457 6727 8848 9505 2331

[110] vl 18,079 16,267 16,222 12,603 11,762 14,786 14,528 12,991 13,520 13,758 11,446
[110]vt1 11,517 11,131 8265 4277 8963 9652 9526 8899 4398 2822 10,467
[001]vt2 12,652 10,366 10,950 7058 5046 8901 8457 6727 8848 9505 2331

[111] vl 18,330 16,098 16,744 13,013 10,956 14,628 14,306 12,548 14,228 14,722 9813
[112]vt1,2 11,907 10,882 9247 5367 7877 9409 9184 8239 6244 5952 8652

vl 17,901 16,356 15,761 12,136 11,889 14,851 14,629 13,151 12,563 12,100 11,246
vt 12,183 10,666 9791 5763 6427 9183 8863 7542 6702 6138 5298
vm 13,282 11,692 10,792 6483 7173 10,128 9795 8378 7487 6880 5963
ΘD 2219 1823 1766 1047 1118 1598 1551 1303 1165 1069 926

Figure 8 shows the electronic band structure and density of state (DOS) of XC12 stable phases.
The dash line represents the Fermi level (EF). The electronic properties of XC6 have been studied
in [13]. For XC12, all of the band structures cross the Fermi level in the Brillouin zone, showing the
metallic nature. The conduction band and valence band are mainly characterized by the contributions
of C-p states, whereas the DOS near the Fermi level originated from the p orbital electrons of the doped
element, except the ClC12 and KC12.
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3. Computational Methods

The calculations are performed with the first-principles calculations. The structural
optimizations are using the density functional theory (DFT) [31,32] with the generalized gradient
approximation (GGA), which is parameterized by Perdew, Burke, and Ernzerrof (PBE) [33].
The Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization scheme [34] was used in the geometry
optimization, and the total energy convergence tests are within 1 meV/atom. When the total energy is
5.0 × 10−6 eV/atom, the maximum ionic Hellmann-Feynman force is 0.01 eV/Å, the maximum stress
is 0.02 GPa and the maximum ionic displacement is 5.0 × 10−4 Å, the structural relaxation will stop.
The energy cutoff is 400 eV, and the K-points separation is 0.02 Å−1 in the Brillouin zone.

4. Conclusions

By using the first-principles calculations, the analyses on the mechanical properties of XC6 and the
further exploration of XC12 structures are given. The formation enthalpies of dynamically stable XC6
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phases and all of the XC12 structures, and the elastic constants, are calculated. There are ten structures
which have the mechanical and dynamical stability (C6, HC6, NC6, SC6, BC12, CC12, PC12, SC12, ClC12,
and KC12). The elastic modulus and anisotropy of the ten structures are studied and, in these structures,
C6 has the lowest elastic anisotropy and the anisotropy increases with the atomic number. The doping
leads to the weakening in mechanical properties and the increase in the elastic anisotropy. In addition,
Debye temperatures and the anisotropy of acoustic velocities are also studied. The electronic properties
studies show the metallic characteristic for XC6 and XC12 phases.
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