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Abstract: A systematic investigation of structural, mechanical, anisotropic, and electronic properties
of SiC2 and SiC4 at ambient pressure using the density functional theory with generalized gradient
approximation is reported in this work. Mechanical properties, i.e., the elastic constants and elastic
modulus, have been successfully obtained. The anisotropy calculations show that SiC2 and SiC4 are
both anisotropic materials. The features in the electronic band structures of SiC2 and SiC4 are analyzed
in detail. The biggest difference between SiC2 and SiC4 lies in the universal elastic anisotropy index
and band gap. SiC2 has a small universal elastic anisotropy index value of 0.07, while SiC2 has a
much larger universal elastic anisotropy index value of 0.21, indicating its considerable anisotropy
compared with SiC2. Electronic structures of SiC2 and SiC4 are calculated by using hybrid functional
HSE06. The calculated results show that SiC2 is an indirect band gap semiconductor, while SiC4 is a
quasi-direct band gap semiconductor.
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1. Introduction

Silicon carbide has been investigated since 1907, when Captain H. J. Round first found that silicon
carbide can be used as a material for making light-emitting diodes and detectors in early radios [1,2].
SiC is a candidate of choice for high-speed, high-temperature, high-power, and high-frequency device
applications because of its wonderful physical properties and electronic properties, such as wide
bandgaps, high saturated electron drift velocities, high thermal conductivities, and high-breakdown
electric fields. Furthermore, SiC is hard, chemically stable, and resistant to radiation damage.
In addition to these extraordinary mechanical properties, SiC is also highly resistant to irradiation,
which makes this material a first-choice candidate for various nuclear applications, such as a structural
material in future fusion reactors [3,4]. SiC has potential applications in weighty bad circumstances
due to its high chemical stability with a good resistance to corrosion. Like silicon, as a semiconductor,
SiC can also be doped due to its electronic properties. Moreover, SiC is used in high-power and
high-temperature devices. The combination of all these mechanical, electrical, and thermal properties
makes SiC a highly sought-after material for biosensor applications [5].

Five independent elastic constants of 4H- and 6H-SiC single crystals have been determined
via Brillouin scattering [6]. Elastic constants and sound velocities, calculated using first-principles
calculations as a function of pressure, were presented for 2H-SiC by Sarasamaker et al. [7]. The stability
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and mobility of non-dissociated screw dislocations in 2H-, 4H- and 3C-SiC have been investigated
using first-principles calculations. For SiC, it has in fact been shown that plasticity properties at
low temperatures are mainly due to these extended defects, regarding which, very little is known.
Previous optical work [8–11] on SiC has focused on the 3C and 6H polytypes because only small
attention could be paid to other polytypes; however, 50-mm-thin 4H- and 6H-SiC wafers have become
commercially available in recent years. The structural stability and electronic properties of the SimCn

graphyne-like monolayers with 18-, 18-, 24-graphyne type structures have been systematically studied
using a transferable and reliable semi-empirical Hamiltonian by Yan et al. [12]; they found that the
flat SiC and SiC9 graphyne-like monolayers have semiconductor properties with an energy gap of
0.96 eV and 0.69 eV, respectively. The slightly buckled Si2C8 graphyne-like monolayer, on the other
hand, behaves like a tiny gap material.

The carbon-rich, silicon-rich, and germanium-rich binary compounds have also been investigated
by using density functional theory methodology [13–15]. Two new phases of Si8C4 and Si4C8 with
P42/nm symmetry were proposed by Zhang et al. [15]; both Si8C4 and Si4C8 were proven to be
dynamically and mechanically stable. The band structures of Si8C4 and Si4C8 indicate that they are
both indirect semiconductors. Moreover, the density functional theory has also been successfully
applied to predict the physical and chemical properties of some other binary compound materials,
such as Ca-Mg [16], Si-Ge [17,18], and XBi3 (where X = B, Al, Ga, and In) [19].

Using first-principles calculations, two new SiC2 and SiC4 phases of carbon-rich silicon carbide
are proposed in this paper. We propose SiC2 (space group: P42nm) and t-SiC4 (space group: P21/m),
whose structures are based on t-SiCN [20] and P21/m-carbon [21], with Si substituting for C. In the
present work, we will investigate the structural, chemical bonding, elastic, mechanical anisotropy, and
electronic properties of SiC2 and SiC4.

2. Materials and Methods

The calculations were performed using density functional theory (DFT) [22,23], within Vanderbilt
ultra-soft pseudo-potentials [24], generalized gradient approximation (GGA), in the form of
Perdew–Burke–Ernzerhof (PBE) [25], PBEsol [26], and local density approximation (LDA), in the
form of Ceperley and Alder data as parameterized by Perdew and Zunger (CA-PZ) [27], as
implemented in the Cambridge Serial Total Energy Package (CASTEP) [28] code. C-2s22p2 and
Si-3s23p2 were treated as valence electrons. The cut-off energy was selected as 400 eV, and the
k-point sampling of the Brillouin zone was constructed using the Monkhorst–Pack scheme [29], with
10 ˆ 10 ˆ 6 and 5 ˆ 12 ˆ 8 grids in primitive cells of SiC2 and SiC4, respectively. The electronic
properties of SiC2 and SiC4 were calculated by using the Heyd–Scuseria–Ernzerhof (HSE06) hybrid
functional [30]. The equilibrium crystal structures were achieved by utilizing geometry optimization
in the Broyden–Fletcher–Goldfarb–Shanno (BFGS) [31] minimization scheme. The self-consistent
convergence of the total energy was 5 ˆ 10´6 eV/atom; the maximum force on the atom was 0.01 eV/Å;
the maximum ionic displacement was within 5 ˆ 10´4 Å; and the maximum stress was within 0.02 GPa.
The phonon spectra of SiC2 and SiC4 required using the linear response approach, called the density
functional perturbation theory (DFPT), which is one of the most popular methods for the ab initio
calculation of lattice dynamics [32].

3. Results and Discussion

The crystal structures of SiC2 and SiC4 are shown in Figure 1. There are 12 and 10 atoms in a
conventional cell of SiC2 and SiC4, respectively. There are twelve atoms in the conventional cell of SiC2,
with atomic positions (Fractional coordinates) of C (0.3650, 0.3650, 0.3577) and (0.3650, 0.3650, 0.1342)
and Si (0, 0.5, ´0.0039); there are ten atoms in the conventional cell of SiC4, with atomic positions
(Fractional coordinates) of C (0.4862, 0.25, 0.6069), (0.7057, 0.75, 0.1069), (0.0263, 0.75, 0.4019), and
(0.9484, 0.75, 0.0992) and Si (0.3015, 0.75, 0.1714). SiC2 has a tetragonal crystal structure, with the space
group of P42nm (No. 102), while SiC4 has a monoclinic crystal structure, with the space group of P21/m
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(No. 11). The calculated equilibrium lattice parameters of SiC2 and SiC4 are listed in Table 1. At zero
pressure, the lattice constants calculated from GGA of SiC2 are a = 4.1968 Å and c = 7.1067 Å, while the
lattice parameters of SiC4 are a = 6.7550 Å, b = 2.7629 Å, c = 4.3794 Å, and β = 75.782˝. The densities of
SiC2 and SiC4 are 2.765 g/cm3 and 3.191 g/cm3, respectively.
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Figure 2. The compression lattice constants a/a0, b/b0, c/c0 as functions of pressure SiC2 (a) and SiC4 (b).

Figure 1. Unit cell crystal structures of SiC2 (a) and SiC4 (b).

In Figure 2, we illustrate the pressure dependence of the equilibrium lattice parameters for SiC2

and SiC4 under pressure from 0 to 10 GPa. For SiC2, it can be easily observed that the compressibility
along the a-axis (b-axis) is easier than along the c-axis. For SiC4, the incompressibility of the c-axis is
slightly greater than that of the a-axis and b-axis. Figure 2b shows that the incompressibility of SiC4 is
slightly greater than that of SiC2. SiC2 has four different bond lengths, namely, C–C bonds are 1.589 Å
and 1.603 Å, while C–Si bonds are 1.905 Å and 1.906 Å. SiC4 has five different bond lengths, namely,
C–C bonds are 1.562 Å, 1.615 Å and 1.633 Å, while C–Si bonds are 1.865 Å and 1.898 Å. The average
C–C and C–Si bonds are 1.592 Å and 1.906 Å, 1.608 Å and 1.882 Å for SiC2 and SiC4, respectively.
The C–C and C–Si bonds for diamond and SiC are 1.535 Å and 1.892 Å for comparison, respectively.
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The elastic constant is used to describe the mechanical resistance of crystalline materials to
externally applied stresses. The calculated elastic constants of SiC2 and SiC4 are shown in Table 2. From
Table 2, it is evident that both SiC2 and SiC4 are mechanically stable because the elastic constants can
simultaneously satisfy all of Born’s criteria for the mechanical stability of tetragonal and monoclinic
symmetry [33,34]. To ensure the stability of SiC2 and SiC4, the phonon spectra are calculated at
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ambient pressure (0 K and 0 GPa). Figure 3 shows the phonon dispersions of SiC2 and SiC4. There is
no imaginary frequency, which means that SiC2 and SiC4 are stable at ambient pressure. The elastic
constants and phonon calculation have confirmed that the predicted SiC2 and SiC4 are mechanically
and dynamically stable, respectively.
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Table 1. The calculated lattice parameters and elastic moduli of SiC2, SiC4, and 3C-SiC. (Space group: SG).

Materials SG Methods a b C β B G E v

SiC2 P42nm PBE 1 4.197 7.107 203 162 384 0.18
PBEsol 1 4.193 7.100 205 172 403 0.17
CA-PZ 1 4.141 7.010 217 178 419 0.18

SiC4 P21/m PBE 1 6.755 2.763 4.379 75.78 285 258 595 0.15
PBEsol 1 6.744 2.749 4.369 75.75 230 254 557 0.10
CA-PZ 1 6.752 2.762 4.378 75.81 250 274 602 0.10

SiC F-43m PBE 1 4.348 217 187 436 0.17
PBEsol 1 4.362 216 186 433 0.17
CA-PZ 1 4.300 229 200 465 0.16

PBE 2 4.380 235 5

PBE 3 4.344 224 6

Exp. 4 4.360 227 7 192 448 0.17
1 This work, 2 Ref [10], 3 Ref [35], 4 Ref [36], 5 Ref [37], 6 Ref [38], 7 Ref [39].

Table 2. The calculated elastic constants of SiC2, SiC4, and 3C-SiC.

Materials Methods C11 C22 C33 C44 C55 C66 C12 C13 C23 C15 C25 C35 C46

SiC2 PBE 1 373 447 172 181 94 114
PBEsol 1 398 449 186 177 103 100
CA-PZ 1 409 483 191 191 101 115

SiC4 PBE 1 606 650 648 316 280 196 58 188 87 ´7 ´9 ´22 ´19
PBEsol 1 576 560 619 290 285 187 65 117 42 ´16 3 ´6 ´11
CA-PZ 1 609 612 677 313 305 203 59 121 54 ´23 ´1 ´8 ´15

SiC PBE 1 385 243 132
PBEsol 1 381 244 133
CA-PZ 1 408 261 140

PBE 2 382 239 128
CA-PZ 3 390 253 134

Exp. 4 390 256 142
1 This work, 2 Ref [10], 3 Ref [36], 4 Ref [40].
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Using the Voigt–Reuss–Hill method [41–43], the bulk modulus (B) and shear modulus (G) are
estimated [44,45]. Young’s modulus (E) and Poisson’s ratio (ν) are significant elastic parameters of
materials; they are calculated using the formula E = 9BG/(3B + G) and v = (3B ´ 2G)/[2(3B + G)],
respectively. The calculated elastic modulus and Poisson’s ratio of SiC2 and SiC4 are also shown in
Table 1. For 3C-SiC, the elastic constants and elastic moduli are much closer to the experimental values;
thus, we use the results within LDA to compare the big or small values of the elastic modulus. The bulk
modulus, shear modulus, and Young’s modulus of SiC4 are greater than those of SiC2. The bulk
modulus, shear modulus, and Young’s modulus of SiC2 are close to those of 3C-SiC. The Young’s
modulus of SiC4 is much greater than that of 3C-SiC and SiC2. According to Pugh [46], a larger B/G
value (B/G > 1.75) for a solid represents ductility, while a smaller B/G value (B/G < 1.75) usually
means brittleness. The B/G values of SiC2 and SiC4 are 1.25 and 1.10, respectively. In other words,
SiC4 is more brittle than SiC2. Poisson’s ratio is a factor for the degree of directionality of chemical
bonds [47], being v = 0.1 for covalent materials and typically v = 0.25 for ionic materials [48]. In SiC2

and SiC4, the Poisson’s ratios are 0.18 and 0.15, respectively, suggesting the complex bond essence in
SiC2 and SiC4.

Moreover, the hardness of SiC2 and SiC4 is calculated using Lyakhov and Oganov’s model [34].
The hardness of SiC2 and SiC4 is 33.6 and 44.0 GPa, respectively. These results match well with our
previous prediction. Thus, SiC2 is a hard material, and SiC4 is a superhard material, with potential
technological and industrial applications. The value of hardness of SiC, calculated using this model, is
29.3 GPa. The hardness of SiC2 and SiC4 is slightly greater than that of SiC because there is no C–C
bond in SiC. The calculated and experimental hardness of diamond is 91.2 GPa [49] and 90.0 GPa [50],
respectively, for comparison.

Anisotropy is the property of being directionally dependent, as opposed to isotropy, which implies
identical properties in all directions. It can be defined as a difference, when measured along different
axes, in a material’s physical or mechanical properties. Young’s modulus for all possible directions
and the 2D representation of Young’s modulus in the xy, xz, and yz planes for SiC2 and SiC4 are
shown in Figure 4a–d, respectively. For an isotropic system, the 3D directional dependence would
show a spherical shape, while the deviation degree from the spherical shape reflects the content of
anisotropy [51]. The Young’s modulus of SiC2 varies between 332 and 411 GPa; for SiC4, Young’s
modulus varies between 476 and 688 GPa. The ratios of Emax and Emin are 1.24 and 1.45 for SiC2 and
SiC4, respectively. SiC4 exhibits a larger anisotropy in its Young’s modulus than that of SiC2. Another
way of measuring the elastic anisotropy is given by the universal anisotropic index (AU), which is
defined as AU = 5GV/GR + BV/BR ´ 6, where B and G denote the bulk modulus and shear modulus,
respectively, and the subscripts V and R represent the Voigt and Reuss approximations, respectively.
Moreover, there must be AU greater than or equal to zero; for isotropic materials, AU must be equal to
zero. The AU of SiC2 is 0.07, which shows that SiC2 exhibits a smaller anisotropy; for SiC4, the larger
AU (0.21) shows a larger anisotropy.

It is well known that the electronic structure determines the fundamental physical and chemical
properties of materials. The failure of LDA and GGA to accurately predict the band gaps of
semiconducting materials is caused by a functional derivative discontinuity of the exchange–correlation
potential, which can be avoided by using the hybrid functional. Thus, we calculate the band
structure and density of states (DOS) of SiC2 and SiC4 by using the HSE06 functional, which are
illustrated in Figure 5. From Figure 5, we can easily find that SiC2 and SiC4 are semiconductors with
a band gap of 0.91 eV and 2.28 eV, respectively. For SiC2, the conduction band minimum (CBM)
is at (0.2353 0.2353 0.5000) (Fractional coordinates) along the Z–A direction, while the valence band
maximum (VBM) is located at (0.5000 0.5000 0.0714) along the A–M direction (see Figure 5a). For SiC4,
CBM is at the D point, while the VBM is located at the G point (see Figure 5b). The direct gap at D is
2.34 eV, which is slightly larger than the indirect gap of 2.28 eV. Thus, SiC4 has a quasi-direct band
gap. Figure 6a shows the partial density of state (PDOS) of SiC2; the PDOS is divided into three parts:
the first is the energy range from ´18 eV to ´10 eV, where the contribution from Si-p is very small



Materials 2016, 9, 333 6 of 10

compared with that of other orbitals, and the main contributions to the upper band are from the C-s
orbital. The middle band is in the range from –10 eV to 0 eV; the main contributions in this part are
from the C-p orbital and Si-p orbital. The last band has energies above the Fermi level. In the upper
band, the contribution from the Si-p orbital is great compared with that of other orbitals for the first
place, while for the second, the contribution from the C-p orbital is great. From Figure 6b, we find
that the PDOS of SiC4 is similar to that of SiC2. For the energy range from ´25 eV to ´15 eV, the
contribution from C-s is very great compared with that from the other orbitals. For the energy range
from ´15 eV to 15 eV, the main contribution comes from the C-p and Si-p orbitals.
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divided into three parts: the first is the energy range from −18 eV to −10 eV, where the contribution 
from Si-p is very small compared with that of other orbitals, and the main contributions to the upper 
band are from the C-s orbital. The middle band is in the range from –10 eV to 0 eV; the main 
contributions in this part are from the C-p orbital and Si-p orbital. The last band has energies above 
the Fermi level. In the upper band, the contribution from the Si-p orbital is great compared with that 
of other orbitals for the first place, while for the second, the contribution from the C-p orbital is great. 
From Figure 6b, we find that the PDOS of SiC4 is similar to that of SiC2. For the energy range from 
−25 eV to −15 eV, the contribution from C-s is very great compared with that from the other orbitals. 
For the energy range from −15 eV to 15 eV, the main contribution comes from the C-p and Si-p 
orbitals. 
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4. Conclusions 

The structural, mechanical, anisotropic, and electronic properties of SiC2 and SiC4 have been 
investigated for the first time, utilizing first-principle calculations based on density functional 
theory. The elastic constants and phonon calculations reveal that SiC2 and SiC4 are mechanically and 
dynamically stable at ambient pressure. Moreover, by analyzing the B/G ratio, SiC2 and SiC4 are 
naturally brittle. The anisotropic calculations show that SiC2 and SiC4 are anisotropic materials and 
that SiC4 exhibits a greater anisotropy than SiC2. Finally, the band structure calculations predict that 
SiC4 is a quasi-direct band gap semiconductor, with a band gap of 2.28 eV, while SiC2 is an indirect 
band gap semiconductor, with a band gap of 0.91 eV. 
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4. Conclusions

The structural, mechanical, anisotropic, and electronic properties of SiC2 and SiC4 have been
investigated for the first time, utilizing first-principle calculations based on density functional theory.
The elastic constants and phonon calculations reveal that SiC2 and SiC4 are mechanically and
dynamically stable at ambient pressure. Moreover, by analyzing the B/G ratio, SiC2 and SiC4 are
naturally brittle. The anisotropic calculations show that SiC2 and SiC4 are anisotropic materials and
that SiC4 exhibits a greater anisotropy than SiC2. Finally, the band structure calculations predict that
SiC4 is a quasi-direct band gap semiconductor, with a band gap of 2.28 eV, while SiC2 is an indirect
band gap semiconductor, with a band gap of 0.91 eV.
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48. Özişik, H.; Çiftci, Y.; Çolakoglu, K.; Deligöz, E. The structural, elastic and vibrational properties of the DyX

(X = P, As) compounds. Phys. Scr. 2011, 83, 035601. [CrossRef]
49. Lyakhov, A.O.; Oganov, A.R. Evolutionary search for superhard materials: Methodology and applications to

forms of carbon and TiO2. Phys. Rev. B 2011, 84, 092103. [CrossRef]
50. Brookes, C.A.; Brookes, E.J. Diamond in perspective: A review of mechanical properties of natural diamond.

Diamond Relat. Mater. 1991, 1, 13–17. [CrossRef]
51. Hu, W.C.; Liu, Y.; Li, D.J.; Zeng, X.Q.; Xu, C.S. First-principles study of structural and electronic properties of

C14-type Laves phase Al2Zr and Al2Hf. Comput. Mater. Sci. 2014, 83, 27–34. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/0370-1298/65/5/307
http://dx.doi.org/10.1088/1674-1056/21/6/067101
http://dx.doi.org/10.1063/1.327804
http://dx.doi.org/10.1080/14786440808520496
http://dx.doi.org/10.1016/j.jallcom.2012.08.062
http://dx.doi.org/10.1088/0031-8949/83/03/035601
http://dx.doi.org/10.1103/PhysRevB.84.092103
http://dx.doi.org/10.1016/0925-9635(91)90006-V
http://dx.doi.org/10.1016/j.commatsci.2013.10.029
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	
	
	
	

