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Abstract: Electrospinning is a versatile technique that has gained popularity for various biomedical
applications in recent years. Electrospinning is being used for fabricating nanofibers for various
biomedical and dental applications such as tooth regeneration, wound healing and prevention of
dental caries. Electrospun materials have the benefits of unique properties for instance, high surface
area to volume ratio, enhanced cellular interactions, protein absorption to facilitate binding sites
for cell receptors. Extensive research has been conducted to explore the potential of electrospun
nanofibers for repair and regeneration of various dental and oral tissues including dental pulp,
dentin, periodontal tissues, oral mucosa and skeletal tissues. However, there are a few limitations
of electrospinning hindering the progress of these materials to practical or clinical applications.
In terms of biomaterials aspects, the better understanding of controlled fabrication, properties and
functioning of electrospun materials is required to overcome the limitations. More in vivo studies are
definitely required to evaluate the biocompatibility of electrospun scaffolds. Furthermore, mechanical
properties of such scaffolds should be enhanced so that they resist mechanical stresses during tissue
regeneration applications. The objective of this article is to review the current progress of electrospun
nanofibers for biomedical and dental applications. In addition, various aspects of electrospun
materials in relation to potential dental applications have been discussed.
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1. Introduction

Nanofibers remain an important division of biomaterials due to a wide range of biomedical
applications [1]. The fabrication of nanofibers has attracted a lot of researchers due to unique properties
required for biomedical applications for example availability of greater surface area for cellular
interaction [2], protein absorption and binding sites to cell receptors [3]. Nanofibers can facilitate
packing of maximum volume fraction by controlling fibers alignment and orientation hence improving
the material strength [2]. The material properties such as surface morphology, porosity and geometry
can be tailored or functionalized for certain applications, for example, bioactive agents for biomedical
applications [4].

In order to fabricate fibers nanofibers, different techniques have been used for example,
phase separation [5–7], nanofiber seeding [8] template synthesis [9,10], self-assembly [11,12] and
electrospinning [13–21]. Amongst these techniques, electrospinning is a resourceful and cost effective
technique that can be used to synthesize continuous nanofibers [1]. This technique can be used for
soluble or fusible polymers alone or polymers can be modified with additives such as particles or
enzymes to get the desired properties [20]. The resultant ultrafine fibers exhibit many interesting
features, e.g., high surface area, tailorable porosity in the range of submicron to nanoscale and greater
potential for surface functionalization [20,22–24]. In addition, electrospun fibers are considered an
excellent candidate for a variety of biomedical purposes, e.g., wound dressings, drug delivery and
tissue engineering scaffolds [21]. Electrospinning has been used for several biopolymers and blended
biopolymers with synthetic polymers to obtain nanofibers [20]. Additionally, electrospinning can be
used for fabricating polymer composite fibers by blending additives such as particles, antimicrobials
or enzymes to get the desired properties [20].

Considering these benefits, electrospinning has gained a remarkable popularity for various
disciplines hence, projecting a sharp rise in scientific publications in recent years (Table 1). There
are relatively few electrospinning studies involving oral and dental sciences. The keywords
“electrospinning” and “oral dental electrospinning” searched only 47 publications; 39 published
in last five years (2011–2015) and only 8 published during 2005–2010. The aim of this article is to review
the current progress of electrospun nanofibers for biomedical and dental applications. In addition,
various aspects of electrospun materials in relation to potential dental applications have been discussed.

Table 1. Number of peer reviewed scientific papers published on “electrospinning” in recent years.

Years
Electrospinning Oral/Dental Electrospinning

Topic Search Title Search Topic Search

2005 296 114 1
2006 482 204 0
2007 623 259 0
2008 1047 373 1
2009 1183 442 2
2010 1431 507 4
2011 1845 579 3
2012 2102 627 12
2013 3377 639 8
2014 6117 793 10
2015 5233 600 6

Search was carried on using the keywords “electrospinning” and “oral dental electrospinning” in topic and title
search options of ISI Web of Knowledge database for particular publication years.

2. Basic Principle and Technique

The electrospinning technique involves the introduction of a strong potential difference between
a polymer solution flowing through a capillary tip towords a metallic collector [25]. A typical
electrospinning setup only requires a high voltage power supply, a syringe, a flat tip needle and a
conducting collector (Figure 1a) [17]. However, the basic equipment can be modified for various
applications such as using dual needle syringe (to make blended fibers), or rotating mandrel
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collectors (to make hollow tube like materials). Conventionally, electrospun materials have unwoven
arrangement of nanofibers. Electrospinning with two strips of electrodes (Figure 1b) can be used to
collect aligned fibers [26].
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Figure 1. Schematic presentation of electrospinning process (a) a typical electrospinning equipment
and its components (b) modifications of collector for aligning electrospun nanofibers.

The potential voltage difference between the polymer solution and the collection plate, electrostatic
forces overcome the solution surface tension to pull a jet of charged fluid that splits into nanofibers
that fall towards the collection plate and solidify [27]. The polymer jet splits into multiple nanofibers
that are deposited at the collector. The solvent evaporates as the jet is electrospun and leaving dry
nanofibers on the collector [28].

3. Factors Affecting Electrospinning

Electrospinning is able to produce continuous nanofibers from a wide range of materials. However,
there are many parameters (processing, physical, systemic and solution) which affect the fiber
morphology and properties of electrospun fibers [29]. A list of key factors affecting electro-spun
fibers is listed in Table 2 [25].

Table 2. List of variable parameter affecting the characteristics of electro-spun fibers.

Process Parameters Systemic Parameters Solution Parameters Physical Parameters

Voltage Polymer type Viscosity Humidity
Flow rate Molecular weight Concentration Temperature

Collection plate Polymer Conductivity Air velocity
Distance Architecture Dielectric constant -

Angle Solvent used Surface tension -
Motion - Charge of jet -

3.1. Solution Related Parameters

The solution properties are important; it should have an optimal low surface tension and high
enough charge density and viscosity so that collapse of the jet into droplets can be prevented before
the solvent evaporates [30]. Polymer characteristics such as molecular weight, concentration, solution
viscosity, surface tension and solution conductivity influence the nanofiber morphology and properties.
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Molecular weight represents the polymer chain length that in turn influences the entanglements; hence
higher molecular weight results in viscous solutions compared to lower molecular weight. These
entanglements prevent the jet from premature splitting during the process. Low viscous polymer
solution jet breaks up into small droplets or creates beaded fibers [31]. Viscous solutions enhance chain
entanglements and results in bead free uniform fibers. If, however, the viscosity is too high, it will be
difficult to pump the solution through the capillary and the solution may dry up or drip at the tip [29].

Surface tension decreases the surface area of the solution and forces it to form a spherical droplet.
In case of low concentration, high ratio of solvent molecules have greater tendency to assemble
and form a spherical shape or bead formation [31]. In order to get bead free uniform fibers, low
surface tension solvents should be used. In case of higher conductivity solutions (containing ions),
the jet carries heavy amount of electrostatic charge. For example, adding a tiny fraction of salt or
polyelectrolyte to electrospinning solution can increase the jet stretching and assists in forming smooth
fibers in place of beaded fibers [32].

3.2. Polymer Concentration

The solution concentration below the threshold value will result in droplets formation instead of
fibers. High solution concentrations result in viscous solutions and may lead to processing problems.
For example, higher viscosity resists jet elongation and thinning and results in larger fiber diameter [33].
A previous study explored the relationship of polyethylene oxide (PEO) solutions viscosity and bead
formation. Their results indicated that solution viscosity is linked to the bead size and density. Viscous
solution resulted in less spherical and more spindle-like beads followed by nanofiber formation with
occasional bead defects [31].

3.3. Processing Conditions

Processing conditions such as voltage, distance of collector, flow rate, needle guage and type of
collector may affect the electrospinning process. High voltage induces required charges on the solution
to cause the jet to emerge from the needle. Higher voltage accelerates more volume of electrospinning
solution with relatively smaller Taylor cone [25]. Amount of solution available between the needle and
electrospinning target is determined by the feed rate. The increase in voltage results in more stretching
of solution and increased diameter due to the increase in feed rate. Increased feed rate may also cause
fusing of fibers due to improper evaporation of solvent before the fiber is collected. The reduction in
the distance causes shorter flight time for the jet. So the jet may not have enough time to solidify and
result in fusing of fibers. Diameter of the orifice also has an effect. Smaller internal diameter reduces
the clogging due to less exposure time of the jet to the environment. Reduction in needle internal
diameter increases the surface tension of the solution corresponding to smaller droplet. This causes
the acceleration of the jet to decrease. So jet gets more flight time before deposition and has more
stretching and elongation; this results in smaller diameter fibers.

The above parameters are the major factors affecting the fiber morphology and web properties in
electrospinning. Another factor is the design of the collector. Regular electrospinning yields randomly
aligned nanofibers. Control on the geometry of deposition of fiber or getting other desired fiber
patterns can be achieved with change in design of collectors. One of these is parallel bars with a gap
between the two that leads to aligned nanofibers (Figure 2a). Li et al. [26] used this set-up for producing
aligned fiber bundles. The fibers suspended across the nonmetallic part remain charged and align
parallel due to repulsion between the electrospun and upcoming nanofibers [26,34].
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Figure 2. Fabrication of three dimensional (3D) electrospun scaffolds using regenerated natural Bombyx
mori silk; (a) modification of electrospinning collector; (b) electrospun scaffold; (c) 3D natural silk
electrospun using oval shape collector.

3.4. Effect of Voltage

Increasing the applied voltage would discharge the polymer jet with stronger repulsion, causing
it to undergo higher levels of drawing stress [33]. As a result there is a decrease in fiber diameter and
therefore, the fiber diameter distribution would become increasingly higher, making the control of the
process more difficult. An optimal voltage is required to initiate the polymer jet from the Taylor cone
apex [35]. The applied voltage had a significant effect on droplet shape prior to jet formation. Higher
voltage results in an increased flowrate of solution and faster electrospinning [25].

3.5. Volumetric Flow Rate

In order to stabilize the Taylor cone, the flow rate needs to be adjusted in a correct range. Vacuum
usually form due to slow flow rate in the needle, causing the Taylor cone to disappear and temporarily
stop the electrospinning process. Faster flow may buildup solution at the needle tip. As flow rate
increases, the surface charge density decreases therefore the rate of charge withdrawal into the solution
is dependent upon the residence time of ions in contact with the needle. The solution flow rate affects
various features of nanofibers such as diameter, porosity, and geometry [25]. A constant and stable
flow-rate is required to minimize the bead formation in electrospun materials [36]. Slow flow-rate
reduced the diameter of electrospun nanofibers [37]. In addition, slow flow rate resulted in less number
of beads and smaller diameter compared to faster flow rate [38].

3.6. Distance of Collector

It follows a negative power relationship as increasing the distance allows bending instabilities
and whipping action to elongate and decreases the diameter of the polymer jet. There is a negative
exponential relationship with surface charge density. Increasing gap distance drops the surface charge
density. As the distance between the charged solution and collector increases, the magnitude of
the electric field between the two decreases, forming fewer charged ions [39,40]. Another process
parameter is the diameter of the needle tip as fiber diameter is reported to increase with a greater
needle tip diameter [41,42]. In contrast, lack of correlation between needle diameter and resulting fiber
diameter has been reported [43].

3.7. Effect of Conductivity

High conductivity enables polymer solutions to carry greater charge compared to low conductivity.
Hence, high conductivity is yields greater tensile forces correspondingly to applied voltage and
reduction in nanofiber diameter [44–46]. Fong et al. [31] examined the effect of sodium chloride
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to a polymer for electrospun nanofiber fabrication and reported a higher net charge density of the
electrospinning jet. The increased charge density results in the formation of smooth and uniform
nanofibers [31]. Zong and coworkers [45] explored the effects of adding salts to poly-DL-lactic acid
(PDLLA) solutions and electrospun smooth, bead-free and fine diameter nanofibers. Alternatively,
conductivity of polymer solution can be enhanced using surfactants [47,48]. Modifications using
surfactants revealed similar results fabricating uniform and smaller diameter nanofibers [49,50].

3.8. Effects of Solvent

Solubility and boiling point of the solvent are important factors for choosing a solvent before
electrospinning. Volatile solvents are ideal options due to rapid evaporation and dehydration of the
nanofibers [51]. A very low boiling points favors rapid evaporation should be avoided to prevent
the obstruction or occlusion of needle orifice prior to electrospinning. In contrast, high boiling points
solvents may not dehydrate completely prior to hitting the target resulting in flat ribbon shape fibers
instead of round fibers [50,52]. The volatility of the solvent may affect the microscopic features of
electrospun fibers including porosity, shape and size hence, particular care must be taken during the
evaluation and selection of electrospinning solvents [50].

4. Properties of Electrospun (ES) Materials

The electrospun materials may have unique chemical and physical properties distinguishing
them from scaffold prepared using other fabrication techniques. Perhaps one of the most apparent
advantages of electrospun scaffolds is ability to mimic extra-cellular matrix (ECM). It has been observed
that cells seeded on highly porous electrospun meshes proliferate and differentiate at a higher rate
when compared to less porous scaffolds [53]. Furthermore, in vitro studies conducted on nano-porous
electrospun scaffolds strongly suggest that cells exhibit higher cellular adhesion with decreasing pore
size and a higher pore density [54]. However, some studies suggest that fibers such as poly-L-lactic
acid (PLLA), due to their hydrophobic nature, may have a detrimental effect on cellular adhesion.
This can be overcome by spraying hydrophilic surfactants on such fibers [55]. Fiber orientation also
plays a part in controlling the cellular growth. It has been seen that although osteoblast proliferation is
somewhat comparable on aligned and random fibers, a higher calcium production has been detected
when the cells are seeded on aligned fibers [56]. The generalized properties of electrospun tissue
engineering scaffolds have been discussed here.

4.1. Physical Properties

Electrospun nanofibers can be fabricated in a range of diameters from micro to nanometers based
on electrospinning process variables and modifications. The microscopic features of nanofiber are
highly dependent on fiber morphology, diameter and surface area [57]. Nanofiber diameter is inversely
proportional to surface area. The surface area facilitates cellular attachment and migration. Similarly,
electrospun fiber reinforced epoxy composite materials showed improved toughness compared to
unmodified resin composites [58]. Fibers also can attach to the surface in different orientation such
as random, aligned or many specific shapes and patterns according to the underneath attaching
surface. In tissue engineering, various electrospun nanofibers with various architectures and patterns
employed for various tissues such as skin, bone and cornea [59,60]. Electrospun nanofibers may
have infinite length and a random network of various lines corresponding to the longitudinal axes of
fibers [61]. Pore size also plays a crucial role in cell attachment and cell infiltration in tissue engineering
applications. Fiber diameter is an excellent indication of degradation in electrospun nanofibers [62].

4.2. Mechanical Properties

Mechanical properties of electrospun nanofibers are important as their applications in products
should provide long life durability and structural integrity. Traditional testing methods can be applied
for tensile testing of electrospun materials however, modelling and validating their behavior that
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requires the characterization of single a fiber is challenging. Mechanical properties of electrospun
materials play a vital role and required to support cell growth and stability [63,64]. The poor mechanical
properties and inability to manipulate certain mechanical properties for specific applications are real
challenges for currently available electrospun materials. In order to improve the mechanical and
handling properties of electrospun nanofibers, a number of techniques are employed. Cross-linking
agents can be used to increase the tensile and flexural strengths of fibers [65]. Furthermore, scaffolds
cross-linked with genepin display a better morphology after being immersed in water in addition
to enhanced mechanical properties [66]. Conformational changes in polymers may be linked to
mechanical properties. For example, β-sheet conformation in natural silk materials has better
mechanical properties compared to α-helix conformation [67–69]. Further research is required to
understand and improve the mechanical properties.

4.3. Biological Properties

Cell attachment to biomaterials especially electrospun nanofibers is crucial for tissue engineering
applications. The major advantage of nanofibers is that they favor cell attachment because of higher
surface area to absorb proteins and promoting binding sites [70]. Human embryonic stem cells showed
promising results for cellular attachment while cultivated on polyurethane electrospun scaffolds [71].
Deshpande et al. [72] showed an excellent epithelial cell attachment to poly(lactic-co-glycolic acid)
(PLGA) electrospun microfibers for cornea tissue engineering. Recently, a research group represented
high cell attachment to Poly carpolactone (PCL)/Collagen electrospun nanofibers for skin tissue
engineering [59]. Physical properties (pore size, volume) significantly affected the cell proliferation [73]
and must be controlled during the assessment of biological properties. In addition to materials, cell
electrospinning has been suggested as a valuable tool for functionalization of scaffolds for tissue
engineering applications [74,75]. Electrospun fibers containing living cells for scaffold applications
have been reported [75]. This approach can be used to fabricate a variety of biological (cellular)
scaffolds using various cell lines and solvents. The final biological properties (such as cell count, type
and medium) can be tailored depending on the type of target tissues and applications.

4.4. Chemical Properties

In the biological environment, degradable electrospun fibers are disintegrated chemically by
enzymes such as lysozyme [76]. It is important to consider that there must not be any biocompatibility
issues from broken down chemicals. In terms of tissue regeneration applications, the biodegradation
rate should be controlled to match with the pace of tissue regeneration. The chemical properties
of electrospun fibers is influenced by two main factors: hydrophilicity and chemical composition
of the fibers. The electrospun fibers composed of copolymers have a reduced hydrophobicity and
degradation compared to homopolymers [77]. Hence, altering the polymer chemistry may be an
effective way to control the degradation rate of the fibers. As observed by You et al., the crystallinity
of polyglycolide, polylactide, and poly (lactide-co-glycolide) was decreased corresponding to in vitro
degradation [78]. This accounts for the progress decrease in their mechanical properties. Indeed,
the breakdown products of non-electrospun scaffolds such as poly-L-lactic acid (PLLA) and PLGA
also account for the inflammatory response observed clinically [76]. However, there are insufficient
randomized clinical trials to prove that similar reactions may be associated with electrospun scaffolds.

5. Electrospun Nanofibers for Dental Applications

The major application of electrospun materials remain for tissue engineering and regeneration of
oral and dental tissues. The electrospinning is an excellent technique for fabricating tissue engineering
scaffolds [4,17,52,79]. A variety of materials including natural polymers (silk, collagen, chitosan),
synthetic polymers (polyvinyl alcohol, polydioxanone) and nanocomposites (hydroxyapatite blends)
have been electrospun for tissue engineering of oral and dental tissues (Table 3). In addition, these
materials have been used for biomaterials applications such as modifications of implant surfaces,
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restorative nanocomposites and drug delivery. The typical approach for dental tissue regeneration
using electrospun scaffolds is shown schematically in Figure 3. The progress and potentials of
electrospun nanomaterials for dental applications has been discussed.

Materials 2016, 9, 73  8 of 20 

 

blends) have been electrospun for tissue engineering of oral and dental tissues (Table 3). In addition, 

these materials  have  been  used  for  biomaterials  applications  such  as modifications  of  implant 

surfaces,  restorative  nanocomposites  and  drug  delivery.  The  typical  approach  for  dental  tissue 

regeneration  using  electrospun  scaffolds  is  shown  schematically  in  Figure  3.  The  progress  and 

potentials of electrospun nanomaterials for dental applications has been discussed. 

 

Figure 3. Schematic presentation of using electrospinning scaffolds for tissue engineering of various 

oral and dental tissues. 

Table 3. Potential and progress of electrospun materials for dental applications. 

Applications in Dentistry  Material(s) Electrospun References 

Tooth regeneration 
Polyvinyl alcohol (PVA)   

Polydiaxonone (PDS) 
[80–82] 

Guided tissue   

regeneration 

Collagen, Poly (lactide‐co‐glycolide) (PLGA)   

Poly‐L‐Lactic Acid (PLLA)   

Poly carpolactone (PCL)   

Polyethylene oxide (PEO), Silk 

[83–88] 

Caries prevention  Chitosan  [89] 

Reinforcement of   

resin composites 

Polyvinyl alcohol (PVA),   

Polyacrylnitrile,   

Polystyrene, Nylon 

[90–94] 

Implant modification  PLGA, Collagen  [95] 

Cartilage regeneration  PCL Polyethylene oxide (PEO), Chitosan  [96–100] 

Drug delivery 

Poly(ethylene‐co‐vinylacetate),   

Poly(lactic acid) (PLLA),   

Poly (lactide‐co‐glycolide) (PLGA) 

[77,101–106] 

Wound and   

mucosal repair 

Poly‐L‐(lactic acid),   

Poly (lactide‐co‐glycolide) (PLGA),   

chitin, chitosan, silk fibroin, collagen 

[107–111] 

5.1. Regeneration of Pulp Dentin Complex 

Various pathological processes such as dental caries and trauma can result in the loss of dental 

tissues. Furthermore, various forms of pulp therapies are aimed at regenerating the roots of teeth 

(apexogenesis)  that  have  undergone  trauma.  Although  various  medicaments  such  as  calcium 

hydroxide, ferric sulphate and mineral trioxide aggregate are used as regenerative materials aimed 

Figure 3. Schematic presentation of using electrospinning scaffolds for tissue engineering of various
oral and dental tissues.

Table 3. Potential and progress of electrospun materials for dental applications.

Applications in Dentistry Material(s) Electrospun References

Tooth regeneration Polyvinyl alcohol (PVA)
Polydiaxonone (PDS) [80–82]

Guided tissue regeneration

Collagen, Poly (lactide-co-glycolide) (PLGA)
Poly-L-Lactic Acid (PLLA)

Poly carpolactone (PCL)
Polyethylene oxide (PEO), Silk

[83–88]

Caries prevention Chitosan [89]

Reinforcement of resin composites
Polyvinyl alcohol (PVA),

Polyacrylnitrile,
Polystyrene, Nylon

[90–94]

Implant modification PLGA, Collagen [95]
Cartilage regeneration PCL Polyethylene oxide (PEO), Chitosan [96–100]

Drug delivery
Poly(ethylene-co-vinylacetate),

Poly(lactic acid) (PLLA),
Poly (lactide-co-glycolide) (PLGA)

[77,101–106]

Wound and mucosal repair
Poly-L-(lactic acid),

Poly (lactide-co-glycolide) (PLGA),
chitin, chitosan, silk fibroin, collagen

[107–111]

5.1. Regeneration of Pulp Dentin Complex

Various pathological processes such as dental caries and trauma can result in the loss of dental
tissues. Furthermore, various forms of pulp therapies are aimed at regenerating the roots of teeth
(apexogenesis) that have undergone trauma. Although various medicaments such as calcium hydroxide,
ferric sulphate and mineral trioxide aggregate are used as regenerative materials aimed at regenerating
pulpal and radicular dentin, some cases still result in internal resorption of teeth [112,113]. In order
to improve and speed up the results of pulp therapy, electrospun scaffolds have been studied that
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show the potential to induce odontoblast regeneration. Kim et al. produced electrospun scaffolds of
polyvinyl alcohol and hydroxyapatite (HA) which could possess dentin regenerative properties [80].
Moreover, electrospun meshes of PCL have strongly shown potential for promoting odontogenic
differentiation and growth as suggested by increased turnover of collagen I and other proteins when
tested in vitro with human pulpal cells [81].

Endodontic therapy (root canal treatment) also requires delivery of drugs into the root canal and
pulp chamber to eradicate the pathological microflora [114]. Bottino et al. produced electrospun
scaffolds of polydiaxonone (PDS) in which antibiotics (metronidazole and ciprofloxacin) were
incorporated in the solution. It was observed that these scaffolds were able to deliver the antibiotics
more effectively and required a lower dose against pathogenic bacteria including Porphyromonas
gingivalis and Enterococcus faecalis compared to drugs delivered via pastes [79]. Electrospinning has
made it possible to produce bioactive 3D scaffolds made of PDS and halloysite aluminosilicate clay with
the potential to regenerate pulp dentin complex by delivering agents such as antimicrobial drugs and
growth factors [82]. Perhaps the biggest advantage of electrospinning is its ability to produce complex
geometry of fibers to suit the specific application. The ultimate goal of regenerative endodontics is to
regenerate the complex dentino-pulpal histology along with restoring the mechanical and physical
attributes of the tooth. It is hoped that in the next decade electrospun fibers, along with injectable
scaffolds and stem cells allowing optimum regeneration.

5.2. Guided tissue Regeneration for Periodontium

Untreated periodontal disease can lead to periodontal loss and eventual loss of teeth [115].
Regeneration of lost periodontal tissues had always been a challenge for clinicians. However, since
advent of the guided tissue regeneration (GTR) membrane, it has been possible to regenerate lost bone
by placing a barrier membrane between the gingival epithelium and the underlying periodontal
bone [116]. Traditionally, non-resorbable materials such as expanded polytetrafluoriethylene
(ePTFE) were used as GTR membranes but they had the disadvantage of requiring a secondary
surgical procedure to remove the membrane which often carried a risk of infection and patient
discomfort [76,116]. More recently synthetic and natural biodegradable materials such as collagen,
Poly-L-Lactic Acid (PLLA) and PCL have been used as GTR membranes which degrade in the
periodontal tissues thus avoiding the need of a second procedure to remove them [76,117–119]. Lately,
electrospinning has been used to produce fibrous and porous electrospun biodegradable scaffolds as
GTR membranes.

One of main advantages of electrospinning is its ability to produce fibers of different orientations
and size for fibrous scaffolds for tissue regeneration [120,121]. Research indicates that these fibers are
effective as tissue regenerative scaffolds because of their ability to mimic the fibrous extra-cellular
matrix (ECM) of the human tissues such as bone and cartilage [122]. Indeed, it has been observed that
a higher degree of fiber-orientation makes it possible to accelerate proliferation of fibroblasts. This has
been attributed to an increased surface area and porosity of electrospun scaffolds [123]. Furthermore,
changing the fiber orientation also makes it possible to “control” the direction of cellular proliferation
as it has been that cells tend to proliferate in the direction of the fiber orientation [124,125].

The aforementioned properties of fibrous scaffolds can be taken advantage of if they are employed
as periodontal GTR scaffolds. Many biodegradable materials have been electrospun and revealed the
potential to function as GTR scaffolds [76,116]. Electrospun collagen nanofibers have the potential for
GTR scaffolds applications [40]. Additionally, collagen fibers have the potential to allow differentiation
of human bone marrow-derived mesenchymal stem cells (MSCs) [125]. However, to date, no studies
have attempted to ascertain the mechanical properties of electrospun collagen fibers. Research has
also been conducted to produce scaffolds composed of collagen blended with PCL, PEO, PLGA and
PLLA [122,126]. One of the major disadvantages of collagen is that, due to its animal origins, there are
ethical issues and concerns of cross-infection. Hence, the use of collagen scaffolds could be limited in
quite a few demographics.
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PCL is another material that has been electrospun to produce bone regenerative scaffolds [127].
It can be blended with collagen or other biodegradable polymers such as gelatin with enhanced
tissue regenerative properties [128,129]. Moreover, biomimetic and osseoconductive materials such
as nano-sized hydroxyapatite (nano-HA) crystals can be incorporated to PCL-PLA fibers to produce
composite scaffolds [130]. Additionally, incorporation of nano-HA crystals not only increases the
osteogenic potential of these scaffolds but it has also been suggested that these scaffolds have
mechanical properties superior to those made of PCL alone [131]. Another exciting prospect of
using electrospun scaffolds is their ability to function as carriers of growth factors and drugs such as
bone morphogenic protein-2 (BMP2) and antibiotics which can enhance bone regeneration and prevent
periodontal infections [83,84].

Although synthetic degradable polymers have been extensively studied to ascertain their
periodontal regenerative properties, their major drawback is the production of acidic breakdown
products resulting in inflammation at the site of implantation [76]. Hence, along with collagen,
several natural polymers have been probed for GTR applications. Chitosan, a derivative of chitin
which is a polymer present in the shells of crustaceans, can be electrospun to produce highly porous
and fibrous scaffolds [85–87]. In order to improve the spinning ability and handling properties,
chitosan was blended with PEO [132]. More recently, drug-incorporated and releasing chitosan-PEO
fibrous scaffolds have been produced [29]. Natural silk is another example of degradable materials
that has been electrospun for GTR and related applications [133,134]. Electrospun scaffolds of silk
fibroin have shown promising results while human periodontal ligament (PDL) are seeded on their
surface [15,17,18,135,136].

During the last few years, the idea of functionally graded membrane (FGM) has emerged [116,137].
This principle aims to produce a multilayered guided tissue regenerative membrane in which each
layer has a specific function and physical properties, very much akin to the natural human tissues [138].
These layers can contain drugs and various growth factors which be released into the surrounding
environment to enhance the regeneration of multiple tissues at the same time [139,140]. It has been
speculated that electrospun fibers can form part of these FGMs [137]. Although electrospinning has
added exciting new prospects to the field of guided tissue and bone regeneration, much more needs
to be explored to validate the use of electrospun scaffolds in the clinical settings. For instance, more
research is required to explore the mechanical properties of these scaffolds. More importantly, an
adequate number of randomized clinical trials are required to prove their clinical efficacy.

5.3. Caries Prevention

Dental caries (tooth decay) not only lead to loss of tooth tissues but also have
systemic ramifications. Conventionally, topical fluoride regimens in the form of mouthwashes,
dentifrices [141–144] or fluoride-containing restorations [145,146] and oral hygiene measures have been
used to prevent caries. More recently, electrospun mats having anti-caries properties have been studied.
Non-toxic mucoadhesive chitosan fibers containing mangosteen extract have shown antibacterial
activity against cariogenic pathogens including Streptococcus mutans and Streptococcus sanguinis [89].
These types of mats could be beneficial for individuals who are unable to self-administer oral hygiene
protocols and can be used synergistically with existing methods.

5.4. Modification of Resin Composites

Like majority of polymeric materials, resin composites can be modified by addition of nano-sized
fillers or nano-sized fibers [147–149]. Nanofibers produced by electrospinning have been incorporated
to produce fiber-reinforced composites (FRCs). It has been observed that incorporation of nano-tube
reinforced PVA fibers to resin composites can significantly improve the mechanical properties such
as elastic modulus of resin composites [90]. However, dispersion of fibers leads to a decreased
modulus due to weaker bonding between the fiber and resin phases. Electrospun polyacrylonitrile and
polyamide containing nano-diamonds have shown to increase the mechanical properties of polymeric
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composites when fused with each other [91] that can be used as a means to reinforce dental composites.
Similarly, incorporation of electrospun polystyrene fibers to epoxy has also been shown to improve the
mechanical properties of the polymers [92]. Electrospun carbon nanotubes and nylon fibers have been
successfully used to reinforce resin composites [93]. Production of self-healing nanofiber-reinforced
resin composites holds an exciting prospect in increasing the marginal integrity and sealability of resin
composites [94]. In addition to improving the mechanical and physical properties of resin composites
and dental polymers, incorporation of electrospun fibers could also be used to produce bioactive
composites and add anti-cariogenic properties to restorative materials. However, much needs to be
learned about the bonding between the fibers and the composites as well as the biological and in vitro
implications of these materials.

5.5. Implant Surface Modification

Dental implant is a surgical device that is in direct contact with the bone (i.e., osseointegrated)
and holds removable or fixed prosthodontic and orthodontic appliances [150,151]. Several materials
(such as titanium and its alloys) have been used for dental implants. Recently, zirconia and reinforced
polymers such as polyetheretherketone have also been used as dental implants [148,149,152–156].
To make the implant surface more bioactive and osseoconductive, several surface treatment methods
have been employed [157,158]. However, many of these processes alter the mechanical or physical
surface properties of the dental implant and ultimately leading to poor success rate [159,160].
To overcome these deleterious effects of surface modifications, several methods have been postulated
but most of them are time consuming [158]. Electrospinning is an alternative attractive option that
can be used to coat the implant surface using bioactive materials. In addition, electrospun nanofiber
coatings have the benefits of greater surface area for the attachment of fibroblasts. Titanium dental
implants coated by PLGA/collagen/nano-hydroxyapatite (n-HA) nanofibers significantly enhanced
cellular proliferation on the surface and keeping water contact angles as low as 0˝ in addition
to accelerated mineralization [95]. However, more studies are needed to investigate how well an
electrospun coating adheres to a dental implant surface in comparison to conventional methods.

5.6. Cartilage Regeneration

Like elsewhere in the body, extensive trauma or pathologies in the head and neck region can
result in the loss of not only the bone but also cartilage and ligament. Scaffolds hold potential to be a
power adjunct tool to conventional surgical options. Electrospun PCL nanofibers have the potential to
accelerate the proliferation of animal and human chondrocytes when tested in vitro [99,100]. PCL can
be electrospun with fibrin to produce scaffolds of a combination of fibers having diameters in the range
of both, nano- and micrometers to increase cellular infiltration [98]. Similarly, chitosan fibers have also
shown potential to function as scaffolds for cartilage regeneration and they also possess mechanical
properties superior to those of foams and hydrogels [97]. More recently a scaffold constructed of
PCL, chitosan and PEO nanofibers has been used to successfully as a scaffold for chondrogenesis
in vitro [96].

5.7. Drug Delivery

Like all other fields of surgery, dentistry requires preoperative and postoperative administration
of drugs such as analgesics and antibiotics. As discussed above, electrospun scaffolds can be used as
drug delivery devices to minimize the systemic dosage. Drugs such as antimicrobial agents, analgesics
and anti-inflammatory regimens have been carried using electrospun scaffolds [77,105,106]. More
recent applications of electrospun scaffolds include implantable drugs and growth factor-releasing
scaffolds that help repair surgical sites by preventing infection and/or increase the rate of
osseointegration [77,101–106]. PLLA fibers containing nanodiamonds loaded with growth factors not
only possess better mechanical properties than unmodified fibers but can also carry and deliver growth
factors and drugs to prevent infection, reduce inflammation and accelerate bone regeneration [161].
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Furthermore, because the nanodiamonds can be made fluorescent, such scaffolds can be used
to study and monitor guided tissue regeneration at a cellular level by using various imaging
techniques [162,163].

5.8. Repair of Wounds and Oral Mucosa

Electrospun fibrous mats have been extensively researched as wound dressings capable of
imparting anti-bacterial attributes to the wound as well as regenerative properties [107,108]. Such
wound dressings can be used as media to deliver analgesics and antibiotics such topical anesthesia
and which can decrease the amount of systemic administration of these drugs needed and hence
help in decreasing their many unwanted adverse effects. Similarly, in dentistry, electrospun mats can
used to deliver topical anesthesia and antibiotics to surgical or traumatic wounds [107]. In addition
to wound repair, electrospun fibers could also be used as dressings for oral mucosal lesions such as
ulcers or surgical wounds to relieve patients discomfort [109]. Polymers such as chitin and PLLA
have been observed to function as effective scaffolds for proliferation and differentiations for human
mucosal cells [109,110]. More recently, electrospun silk fibroin have also shown similar potential to
human dermal matrices when tested against rat mucosal cells in vitro [111]. Although more studies are
definitely required to ascertain the future of fibrous scaffolds and dressings for oral mucosal abrasions,
these materials hold great promise in managing various mucosal ailments.

6. Limitations of Electrospinning

It is evident from the above discussion that electrospinning is a versatile technique that has
fabricated unique materials for various biomedical and dental applications. However, there are a few
limitations hindering the progress of its applications. Majority of biomedical and dental applications
involve tissue engineering or regeneration hence, material’s ability to facilitate cell attachment and
infiltration is very important. The randomly unwoven nature of electrospun mats and pore size does
not provide ideal structure for cell infiltration [164,165]. Reducing the fiber dimeter increases the
surface area however reducing the pore that may affect the cellular infiltration [57]. On the other hand,
electrospinning is not a suitable technique for fabricating micron size or larger diameter fibers [1].
The fiber morphology can be altered however not very well controlled and is further complicated by
the involvement of multiple electrospinning parameters. It has low fiber production efficiency [166].

Majority of tissue engineering applications required 3D scaffolds [164]. It is challenging to
electrospun 3D scaffolds with precise dimensions and morphology [1]. Authors have attempted to
electrospun 3D silk scaffolds successfully however, remain unable to control the dimensions and
morphology precisely (Figure 2). In addition, there are a few technical challenges, for example, the rate
of electrospinning. In order to electrospinning a couple of grams of polymer, it may take several hours.
However, recent research suggested that incorporating salt solution (such as NaCl) results in thick
meshes of 3D electrospun fibers [167]. Another way of using electrospun fibers and at the same time
overcoming their mechanical shortcomings is making them components of multi-layered functionally
graded membranes as proposed by Bottino et al. [103]. Additionally, incorporation of nanosized
particles such as nanodiamonds has also been effective in increasing the mechanical properties of
electrospun scaffolds [168].

Compared to cast membranes, electrospun materials are weaker mechanically. Detaching
electrospun mats from the target substrate without damaging is a challenging task. Materials to
be electrospun must be dissolved in a solvent of desired properties. The electrospinning solvents
may alarm additional issues such as biocompatibility, pungent smell. Polymeric nature of materials
restricts this technique for low concentration (~30% or below) solutions [169]. Another concern is
the toxicity of the solvents and cross linking agents [170]. Although, relatively safer crosslinking
agents such as genepin have been used recently, in vivo biocompatibility of these materials has yet
to be evaluated extensively [171]. Hence, it is recommended that the electrospinning process should
be carried in well-ventilated fume-cupboards with optimal conditions of humidity and temperature.
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Authors also recommend storing the polymer solutions in adequate conditions prior to electrospinning.
It has been observed by the authors that chitosan-PEO solutions are very difficult to spin after being
stored for 72 h. Therefore, the polymer solutions should be spun as soon as possible after being
prepared Environmental conditions such as temperature and humidity also affect the electrospinning
process [172].

Another important issue is the safety of the technical staff. Special precautions should be taken
in order to avoid being electrocuted by the high voltage supply used for electrospinning. Therefore,
insulating gloves and apparel in addition to protective masks should be worn. For tissue engineering
and biological applications, the sterilization of materials is essentials. Special measures for sterilization
must be considered to avoid any damages to the delicate nanofibers. These limitations are critical
and may jeopardize the practical applications of electrospun nanomaterials. In order to translate
electrospinning products from laboratory to clinical applications, further research is required to
understand materials better and address these limitations.

7. Conclusions

There is no doubt that the electrospinning has gained popularity in recent years for bio-dental
applications mainly for tissue engineering scaffolds. The progress of oral and dental tissue engineering
is promising for the regeneration of oral tissues such as dentin, enamel, pulp, mucosa [173]. Various
polymer and composite materials have been electrospun to fabricate scaffolds for tissue regeneration
of dental tissues including dentin, periodontium, oral mucosa, bone and cartilage. The materials
aspects of electrospun nanofibers such as fabrication, properties and functioning have already been
explored in detail and suggested positive outcome for intended biomedical applications. The progress
of electrospun materials for various oral applications is promising however there is lack of in vivo and
clinical studies. There are a number of challenges (discussed in Section 6) that need to be resolved
for further progress. Extensive research involving multiple disciplines (material scientists, chemists,
engineers and health care professionals) is needed to translate the basic research to clinical trials
and practical applications. It is very much expected that most of the limitations of electrospinning
(Section 6) will be addressed in the near future and dragging electrospun materials for practical and
clinical applications.

Author Contributions: Muhammad Zafar outlined the review, performed literature search, wrote the manuscript
and responsible for the correspondence. Shariq Najeeb performed literature search and helped in compiling the
wide information related to topic and data presentation. Zohaib Khurshid and Sana Zohaib wrote a part of the
manuscript, developed idea for designing figures. Masoud Vazirzadeh and Bilal Najeeb helped in writing the
manuscript and developed the idea of the topic. Farshid Sefat provided guidelines for the preparation of the
manuscript, technical editing for all correction and proof reading.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, Y.; Lim, C.T.; Ramakrishna, S.; Huang, Z.M. Recent development of polymer nanofibers for biomedical
and biotechnological applications. J. Mater. Sci. Mater. Med. 2005, 16, 933–946. [CrossRef] [PubMed]

2. Bosworth, L.A.; Downes, S. Electrospinning for Tissue Regeneration; Bosworth, L., Downes, S., Eds.; Woodhead
Publishing in Materials; Woodhead Publishing: Oxford, UK, 2011; p. 409.

3. Stevens, M.M.; George, J.H. Exploring and Engineering the Cell Surface Interface. Science 2005, 310,
1135–1138. [CrossRef] [PubMed]

4. Liang, D.; Hsiao, B.S.; Chu, B. Functional electrospun nanofibrous scaffolds for biomedical applications.
Adv. Drug Deliv. Rev. 2007, 59, 1392–1412. [CrossRef] [PubMed]

5. Smith, L.A.; Ma, P.X. Nano-fibrous scaffolds for tissue engineering. Colloids Surf. B Biointerfaces 2004, 39,
125–131. [CrossRef] [PubMed]

6. Ma, P.X.; Zhang, R. Synthetic nano-scale fibrous extracellular matrix. J. Biomed. Mater. Res. 1999, 46, 60–72.
[CrossRef]

http://dx.doi.org/10.1007/s10856-005-4428-x
http://www.ncbi.nlm.nih.gov/pubmed/16167102
http://dx.doi.org/10.1126/science.1106587
http://www.ncbi.nlm.nih.gov/pubmed/16293749
http://dx.doi.org/10.1016/j.addr.2007.04.021
http://www.ncbi.nlm.nih.gov/pubmed/17884240
http://dx.doi.org/10.1016/j.colsurfb.2003.12.004
http://www.ncbi.nlm.nih.gov/pubmed/15556341
http://dx.doi.org/10.1002/(SICI)1097-4636(199907)46:1&lt;60::AID-JBM7&gt;3.0.CO;2-H


Materials 2016, 9, 73 14 of 21

7. Yang, F.; Murugan, R.; Ramakrishna, S.; Wang, X.; Ma, Y.X.; Wang, S. Fabrication of nano-structured porous
PLLA scaffold intended for nerve tissue engineering. Biomaterials 2004, 25, 1891–1900. [CrossRef] [PubMed]

8. Zhang, X.; Goux, W.J.; Manohar, S.K. Synthesis of polyaniline nanofibers by “nanofiber seeding”. J. Am.
Chem. Soc. 2004, 126, 4502–4503. [CrossRef] [PubMed]

9. Martin, C.R. Template synthesis of electronically conductive polymer nanostructures. Acc. Chem. Res. 1995,
28, 61–68. [CrossRef]

10. Lakshmi, B.B.; Patrissi, C.J.; Martin, C.R. Sol-Gel Template Synthesis of Semiconductor Oxide Micro-and
Nanostructures. Chem. Mater. 1997, 9, 2544–2550. [CrossRef]

11. Hartgerink, J.D.; Beniash, E.; Stupp, S.I. Self-assembly and mineralization of peptide-amphiphile nanofibers.
Science 2001, 294, 1684–1688. [CrossRef] [PubMed]

12. Niece, K.L.; Hartgerink, J.D.; Donners, J.J.J.M.; Stupp, S.I. Self-assembly combining two bioactive
peptide-amphiphile molecules into nanofibers by electrostatic attraction. J. Am. Chem. Soc. 2003, 125,
7146–7147. [CrossRef] [PubMed]

13. Amiraliyan, N.; Nouri, M.; Kish, M.H. Electrospinning of silk nanofibers. I. An investigation of nanofiber
morphology and process optimization using response surface methodology. Fibers Polym. 2009, 10, 167–176.
[CrossRef]

14. Wadbua, P.; Promdonkoy, B.; Maensiri, S.; Siri, S. Different properties of electrospun fibrous scaffolds of
separated heavy-chain and light-chain fibroins of Bombyx mori. Int. J. Biol. Macromol. 2010, 46, 493–501.
[CrossRef] [PubMed]

15. Cao, H.; Chen, X.; Huang, L.; Shao, Z. Electrospinning of reconstituted silk fiber from aqueous silk fibroin
solution. Mater. Sci. Eng. C 2009, 29, 2270–2274. [CrossRef]

16. Kang, M.; Chen, P.; Jin, H. Preparation of multiwalled carbon nanotubes incorporated silk fibroin nanofibers
by electrospinning. Curr. Appl. Phys. 2009, 9, S95–S97. [CrossRef]

17. Zhang, X.; Reagan, M.R.; Kaplan, D.L. Electrospun silk biomaterial scaffolds for regenerative medicine.
Adv. Drug Deliv. Rev. 2009, 61, 988–1006. [CrossRef] [PubMed]

18. Zhou, J.; Cao, C.; Ma, X. A novel three-dimensional tubular scaffold prepared from silk fibroin by
electrospinning. Int. J. Biol. Macromol. 2009, 45, 504–510. [CrossRef] [PubMed]

19. Silva, S.S.; Maniglio, D.; Motta, A.; Mano, J.F.; Reis, R.L.; Migliaresi, C. Genipin-modified silk-fibroin
nanometric nets. Macromol. Biosci. 2008, 8, 766–774. [CrossRef] [PubMed]

20. Greiner, A.; Wendorff, J.H. Electrospinning: A fascinating method for the preparation of ultrathin fibres.
Angew. Chem. Int. Ed. 2007, 46, 5670–5703. [CrossRef] [PubMed]

21. Jeong, L.; Lee, K.Y.; Park, W.H. Effect of solvent on the characteristics of electrospin regenerated silk fibroin
nanofibers. Key Eng. Mater. 2007, 342–343, 813–816. [CrossRef]

22. Bao, W.; Zhang, Y.; Yin, G.; Wu, J. The structure and property of the electrospinning silk fibroin/gelatin
blend nanofibers. E Polym. 2008, 8, 1131–1139.

23. Soffer, L.; Wang, X.; Mang, X.; Kluge, J.; Dorfmann, L.; Kaplan, D.L.; Leisk, G. Silk-based electrospun tubular
scaffolds for tissue-engineered vascular grafts. J. Biomater. Sci. Polym. Ed. 2008, 19, 653–664. [CrossRef]
[PubMed]

24. Meechaisue, C.; Wutticharoenmongkol, P.; Waraput, R.; Huangjing, T.; Ketbumrung, N.; Pavasant, P.;
Supaphol, P. Preparation of electrospun silk fibroin fiber mats as bone scaffolds: A preliminary study.
Biomed. Mater. 2007, 2, 181–188. [CrossRef] [PubMed]

25. Deitzel, J.M.; Kleinmeyer, J.; Harris, D.; Beck Tan, N.C. The effect of processing variables on the morphology
of electrospun nanofibers and textiles. Polymer 2001, 42, 261–272. [CrossRef]

26. Li, D.; Wang, Y.; Xia, Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays.
Nano Lett. 2003, 3, 1167–1171. [CrossRef]

27. Subbiah, T.; Bhat, G.; Tock, R.; Parameswaran, S.; Ramkumar, S. Electrospinning of nanofibers. J. Appl.
Polym. Sci. 2005, 96, 557–569. [CrossRef]

28. Dersch, R.; Liu, T.; Schaper, A.; Greiner, A.; Wendorff, J. Electrospun nanofibers: Internal structure and
intrinsic orientation. J. Polym. Sci. Part A Polym. Chem. 2003, 41, 545–553. [CrossRef]

29. Ramakrishna, S.; Fujihara, K.; Teo, W.; Lim, T.; Ma, Z. Electrospinning process. In An Introduction to
Electrospinning and Nanofibers; World Scientific Publishing: Singapore, Singapore, 2005; pp. 135–137.

30. Ioannis, S.C. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning
process—A review. J. Mater. Process. Technol. 2005, 167, 283–293.

http://dx.doi.org/10.1016/j.biomaterials.2003.08.062
http://www.ncbi.nlm.nih.gov/pubmed/14738853
http://dx.doi.org/10.1021/ja031867a
http://www.ncbi.nlm.nih.gov/pubmed/15070352
http://dx.doi.org/10.1021/ar00050a002
http://dx.doi.org/10.1021/cm970268y
http://dx.doi.org/10.1126/science.1063187
http://www.ncbi.nlm.nih.gov/pubmed/11721046
http://dx.doi.org/10.1021/ja028215r
http://www.ncbi.nlm.nih.gov/pubmed/12797766
http://dx.doi.org/10.1007/s12221-009-0167-9
http://dx.doi.org/10.1016/j.ijbiomac.2010.03.007
http://www.ncbi.nlm.nih.gov/pubmed/20338193
http://dx.doi.org/10.1016/j.msec.2009.05.012
http://dx.doi.org/10.1016/j.cap.2008.08.014
http://dx.doi.org/10.1016/j.addr.2009.07.005
http://www.ncbi.nlm.nih.gov/pubmed/19643154
http://dx.doi.org/10.1016/j.ijbiomac.2009.09.006
http://www.ncbi.nlm.nih.gov/pubmed/19772871
http://dx.doi.org/10.1002/mabi.200700300
http://www.ncbi.nlm.nih.gov/pubmed/18432596
http://dx.doi.org/10.1002/anie.200604646
http://www.ncbi.nlm.nih.gov/pubmed/17585397
http://dx.doi.org/10.4028/www.scientific.net/KEM.342-343.813
http://dx.doi.org/10.1163/156856208784089607
http://www.ncbi.nlm.nih.gov/pubmed/18419943
http://dx.doi.org/10.1088/1748-6041/2/3/003
http://www.ncbi.nlm.nih.gov/pubmed/18458470
http://dx.doi.org/10.1016/S0032-3861(00)00250-0
http://dx.doi.org/10.1021/nl0344256
http://dx.doi.org/10.1002/app.21481
http://dx.doi.org/10.1002/pola.10609


Materials 2016, 9, 73 15 of 21

31. Fong, H.; Chun, I.; Reneker, D.H. Beaded nanofibers formed during electrospinning. Polymer 1999, 40,
4585–4592. [CrossRef]

32. Moghe, A.K. Core-Sheath Differentially Biodegradable Nanofiber Structures for Tissue Engineering.
Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2008.

33. James, C.M. Assessment of Electrospinning as an in-House Fabrication Technique for Blood Vessel Mimic
Cellular Scaffolding. Master's Thesis, California Polytechnic State University, San Luis Obispo, CA,
USA, 2009.

34. Tan, E.; Goh, C.; Sow, C.; Lim, C. Tensile test of a single nanofiber using an atomic force microscope tip.
Appl. Phys. Lett. 2005, 86, 073115. [CrossRef]

35. Taylor, G. Electrically Driven Jets. Proc. R. Soc. Lond. A Math. Phys. Sci. 1969, 313, 453–475. [CrossRef]
36. Zeleny, J. The role of surface instability in electrical discharges from drops of alcohol and water in air at

atmospheric pressure. J. Frankl. Inst. 1935, 219, 659–675. [CrossRef]
37. Garg, K.; Bowlin, G.L. Electrospinning jets and nanofibrous structures. Biomicrofluidics 2011, 5, 013403.

[CrossRef] [PubMed]
38. Megelski, S.; Stephens, J.S.; Chase, D.B.; Rabolt, J.F. Micro-and nanostructured surface morphology on

electrospun polymer fibers. Macromolecules 2002, 35, 8456–8466. [CrossRef]
39. Pena, T.R. Preparation and Characterization of Electrospun Poly(D,L-lactide-co-glycolide) Scaffolds for

Vascular Tissue Engineering and the Advancement of an In Vitro Blood Vessel Mimic. Master's Thesis,
California Polytechnic State University, San Luis Obispo, CA, USA, 2009; p. 152.

40. Matthews, J.A.; Wnek, G.E.; Simpson, D.G.; Bowlin, G.L. Electrospinning of collagen nanofibers.
Biomacromolecules 2002, 3, 232–238. [CrossRef] [PubMed]

41. Tong, H.W.; Wang, M. Effects of Processing Parameters on the Morphology and Size of Electrospun PHBV
Micro-and Nano-Fibers. Key Eng. Mater. 2007, 334–335, 1233–1236. [CrossRef]

42. Jeun, J.; Kim, Y.; Lim, Y.; Choi, J.; Jung, C.; Kang, P.; Nho, Y. Electrospinning of Poly(L-lactide-co-D,L-lactide).
J. Ind. Eng. Chem. 2007, 13, 592–596.

43. Macossay, J.; Marruffo, A.; Rincon, R.; Eubanks, T.; Kuang, A. Effect of needle diameter on nanofiber diameter
and thermal properties of electrospun poly(methyl methacrylate). Polym. Adv. Technol. 2007, 18, 180–183.
[CrossRef]

44. Baumgarten, P.K. Electrostatic spinning of acrylic microfibers. J. Colloid Interface Sci. 1971, 36, 71–79.
[CrossRef]

45. Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B.S.; Chu, B. Structure and process relationship of electrospun
bioabsorbable nanofiber membranes. Polymer 2002, 43, 4403–4412. [CrossRef]

46. Huang, L.; Nagapudi, K.; Apkarian, R.P.; Chaikof, E.L. Engineered collagen–PEO nanofibers and fabrics.
J. Biomater. Sci. Polym. Ed. 2001, 12, 979–993. [CrossRef] [PubMed]

47. Jung, Y.H.; Kim, H.Y.; Lee, D.R.; Park, S.Y.; Khil, M.S. Characterization of PVOH nonwoven mats prepared
from surfactant-polymer system via electrospinning. Macromol. Res. 2005, 13, 385–390. [CrossRef]

48. Lin, T.; Wang, H.; Wang, H.; Wang, X. The charge effect of cationic surfactants on the elimination of fibre
beads in the electrospinning of polystyrene. Nanotechnology 2004, 15, 1375–1381. [CrossRef]

49. Zeng, J.; Xu, X.; Chen, X.; Liang, Q.; Bian, X.; Yang, L.; Jing, X. Biodegradable electrospun fibers for drug
delivery. J. Controlled Release 2003, 92, 227–231. [CrossRef]

50. Sill, T.J.; von Recum, H.A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials
2008, 29, 1989–2006. [CrossRef] [PubMed]

51. Pillay, V.; Dott, C.; Choonara, Y.E.; Tyagi, C.; Tomar, L.; Kumar, P.; du Toit, L.C.; Ndesendo, V.M. A review of
the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications.
J. Nanomater. 2013, 2013, 1–22. [CrossRef]

52. Lannutti, J.; Reneker, D.; Ma, T.; Tomasko, D.; Farson, D. Electrospinning for tissue engineering scaffolds.
Mater. Sci. Eng. C 2007, 27, 504–509. [CrossRef]

53. McCann, J.T.; Li, D.; Xia, Y. Electrospinning of nanofibers with core-sheath, hollow, or porous structures.
J. Mater. Chem. 2005, 15, 735–738. [CrossRef]

54. Kwon, I.K.; Kidoaki, S.; Matsuda, T. Electrospun nano-to microfiber fabrics made of biodegradable
copolyesters: Structural characteristics, mechanical properties and cell adhesion potential. Biomaterials
2005, 26, 3929–3939. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0032-3861(99)00068-3
http://dx.doi.org/10.1063/1.1862337
http://dx.doi.org/10.1098/rspa.1969.0205
http://dx.doi.org/10.1016/S0016-0032(35)91985-8
http://dx.doi.org/10.1063/1.3567097
http://www.ncbi.nlm.nih.gov/pubmed/21522493
http://dx.doi.org/10.1021/ma020444a
http://dx.doi.org/10.1021/bm015533u
http://www.ncbi.nlm.nih.gov/pubmed/11888306
http://dx.doi.org/10.4028/www.scientific.net/KEM.334-335.1233
http://dx.doi.org/10.1002/pat.844
http://dx.doi.org/10.1016/0021-9797(71)90241-4
http://dx.doi.org/10.1016/S0032-3861(02)00275-6
http://dx.doi.org/10.1163/156856201753252516
http://www.ncbi.nlm.nih.gov/pubmed/11787524
http://dx.doi.org/10.1007/BF03218470
http://dx.doi.org/10.1088/0957-4484/15/9/044
http://dx.doi.org/10.1016/S0168-3659(03)00372-9
http://dx.doi.org/10.1016/j.biomaterials.2008.01.011
http://www.ncbi.nlm.nih.gov/pubmed/18281090
http://dx.doi.org/10.1155/2013/789289
http://dx.doi.org/10.1016/j.msec.2006.05.019
http://dx.doi.org/10.1039/b415094e
http://dx.doi.org/10.1016/j.biomaterials.2004.10.007
http://www.ncbi.nlm.nih.gov/pubmed/15626440


Materials 2016, 9, 73 16 of 21

55. Cheng, Q.; Lee, B.L.; Komvopoulos, K.; Yan, Z.; Li, S. Plasma surface chemical treatment of electrospun
poly(L-lactide) microfibrous scaffolds for enhanced cell adhesion, growth, and infiltration. Tissue Eng. Part A
2013, 19, 1188–1198. [CrossRef] [PubMed]

56. Ma, J.; He, X.; Jabbari, E. Osteogenic differentiation of marrow stromal cells on random and aligned
electrospun poly(L-lactide) nanofibers. Ann. Biomed. Eng. 2011, 39, 14–25. [CrossRef] [PubMed]

57. Eichhorn, S.J.; Sampson, W.W. Statistical geometry of pores and statistics of porous nanofibrous assemblies.
J. R. Soc. Interface 2005, 2, 309–318. [CrossRef] [PubMed]

58. Jong-Sang, K.; Reneker, D.H. Mechanical properties of composites using ultrafine electrospun fibers.
Polym. Compos. 1999, 20, 124–131.

59. Mahjour, S.B.; Fu, X.; Yang, X.; Fong, J.; Sefat, F.; Wang, H. Rapid creation of skin substitutes from human skin
cells and biomimetic nanofibers for acute full-thickness wound repair. Burns 2015, 41, 1764–1774. [CrossRef]
[PubMed]

60. Sefat, F.; Denyer, M.; Youseffi, M. Imaging via widefield surface plasmon resonance microscope for studying
bone cell interactions with micropatterned ECM proteins. J. Microsc. 2011, 241, 282–290. [CrossRef] [PubMed]

61. Miles, R.E. Random Polygons Determined by Random Lines in a Plane, II. Proc. Natl. Acad. Sci. USA 1964,
52, 1157–1160. [CrossRef] [PubMed]

62. Sefat, F.; McKean, R.; Deshpande, P.; Ramachandran, C.; Hill, C.J.; Sangwan, V.S.; Ryan, A.J.; MacNeil, S.
Production, sterilisation and storage of biodegradable electrospun PLGA membranes for delivery of limbal
stem cells to the cornea. Procedia Eng. 2013, 59, 101–116. [CrossRef]

63. Mauck, R.L.; Baker, B.M.; Nerurkar, N.L.; Burdick, J.A.; Li, W.; Tuan, R.S.; Elliott, D.M. Engineering on
the straight and narrow: The mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration.
Tissue Eng. Part B Rev. 2009, 15, 171–193. [CrossRef] [PubMed]

64. McManus, M.C.; Boland, E.D.; Koo, H.P.; Barnes, C.P.; Pawlowski, K.J.; Wnek, G.E.; Simpson, D.G.;
Bowlin, G.L. Mechanical properties of electrospun fibrinogen structures. Acta Biomater. 2006, 2, 19–28.
[CrossRef] [PubMed]

65. Barnes, C.P.; Pemble, C.W.; Brand, D.D.; Simpson, D.G.; Bowlin, G.L. Cross-linking electrospun type
II collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng. 2007, 13, 1593–1605.
[CrossRef] [PubMed]

66. Panzavolta, S.; Gioffrè, M.; Focarete, M.L.; Gualandi, C.; Foroni, L.; Bigi, A. Electrospun gelatin nanofibers:
Optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater.
2011, 7, 1702–1709. [CrossRef] [PubMed]

67. Wang, M.; Jin, H.J.; Kaplan, D.L.; Rutledge, G.C. Mechanical properties of electrospun silk fibers.
Macromolecules 2004, 37, 6856–6864. [CrossRef]

68. Xue, Y.F.; He, C.L.; Mo, X.M. Electrospun spider nanofibers: The influence of ethanol on the structure and
properties. In Proceedings of the 2007 International Forum on Biomedical Textile Materials, Shanghai, China,
30 May–2 June 2007; pp. 178–181.

69. Min, B.M.; Jeong, L.; Lee, K.Y.; Park, W.H. Regenerated silk fibroin nanofibers: Water vapor-induced
structural changes and their effects on the behavior of normal human cells. Macromol. Biosci. 2006, 6, 285–292.
[CrossRef] [PubMed]

70. Mijovic, B.; Trcin, M.; Agic, A.; Zdraveva, E.; Bujic, M.; Spoljaric, I.; Kosec, V. Study on cell adhesion detection
onto biodegradable electrospun PCL scaffolds. JFBI 2012, 5, 33–40. [CrossRef]

71. Carlberg, B.; Axell, M.Z.; Nannmark, U.; Liu, J.; Kuhn, H.G. Electrospun polyurethane scaffolds for
proliferation and neuronal differentiation of human embryonic stem cells. Biomed. Mater. 2009, 4, 045004.
[CrossRef] [PubMed]

72. Deshpande, P.; Ramachandran, C.; Sefat, F.; Mariappan, I.; Johnson, C.; McKean, R.; Hannah, M.;
Sangwan, V.S.; Claeyssens, F.; Ryan, A.J. Simplifying corneal surface regeneration using a biodegradable
synthetic membrane and limbal tissue explants. Biomaterials 2013, 34, 5088–5106. [CrossRef] [PubMed]

73. Lowery, J.L.; Datta, N.; Rutledge, G.C. Effect of fiber diameter, pore size and seeding method on growth of
human dermal fibroblasts in electrospun poly (ε-caprolactone) fibrous mats. Biomaterials 2010, 31, 491–504.
[CrossRef] [PubMed]

74. Jayasinghe, S.N. Cell electrospinning: A novel tool for functionalising fibres, scaffolds and membranes
with living cells and other advanced materials for regenerative biology and medicine. Analyst 2013, 138,
2215–2223. [CrossRef] [PubMed]

http://dx.doi.org/10.1089/ten.tea.2011.0725
http://www.ncbi.nlm.nih.gov/pubmed/23281641
http://dx.doi.org/10.1007/s10439-010-0106-3
http://www.ncbi.nlm.nih.gov/pubmed/20577811
http://dx.doi.org/10.1098/rsif.2005.0039
http://www.ncbi.nlm.nih.gov/pubmed/16849188
http://dx.doi.org/10.1016/j.burns.2015.06.011
http://www.ncbi.nlm.nih.gov/pubmed/26187057
http://dx.doi.org/10.1111/j.1365-2818.2010.03430.x
http://www.ncbi.nlm.nih.gov/pubmed/21118224
http://dx.doi.org/10.1073/pnas.52.5.1157
http://www.ncbi.nlm.nih.gov/pubmed/16578576
http://dx.doi.org/10.1016/j.proeng.2013.05.099
http://dx.doi.org/10.1089/ten.teb.2008.0652
http://www.ncbi.nlm.nih.gov/pubmed/19207040
http://dx.doi.org/10.1016/j.actbio.2005.09.008
http://www.ncbi.nlm.nih.gov/pubmed/16701855
http://dx.doi.org/10.1089/ten.2006.0292
http://www.ncbi.nlm.nih.gov/pubmed/17523878
http://dx.doi.org/10.1016/j.actbio.2010.11.021
http://www.ncbi.nlm.nih.gov/pubmed/21095244
http://dx.doi.org/10.1021/ma048988v
http://dx.doi.org/10.1002/mabi.200500246
http://www.ncbi.nlm.nih.gov/pubmed/16572474
http://dx.doi.org/10.3993/jfbi03201202
http://dx.doi.org/10.1088/1748-6041/4/4/045004
http://www.ncbi.nlm.nih.gov/pubmed/19567936
http://dx.doi.org/10.1016/j.biomaterials.2013.03.064
http://www.ncbi.nlm.nih.gov/pubmed/23591389
http://dx.doi.org/10.1016/j.biomaterials.2009.09.072
http://www.ncbi.nlm.nih.gov/pubmed/19822363
http://dx.doi.org/10.1039/c3an36599a
http://www.ncbi.nlm.nih.gov/pubmed/23457706


Materials 2016, 9, 73 17 of 21

75. Townsend-Nicholson, A.; Jayasinghe, S.N. Cell electrospinning: A unique biotechnique for encapsulating
living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 2006, 7,
3364–3369. [CrossRef] [PubMed]

76. Sheikh, Z.; Najeeb, S.; Khurshid, Z.; Verma, V.; Rashid, H.; Glogauer, M. Biodegradable Materials for Bone
Repair and Tissue Engineering Applications. Materials 2015, 8, 5744–5794. [CrossRef]

77. Kim, K.; Luu, Y.K.; Chang, C.; Fang, D.; Hsiao, B.S.; Chu, B.; Hadjiargyrou, M. Incorporation and controlled
release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds.
J. Controlled Release 2004, 98, 47–56. [CrossRef] [PubMed]

78. You, Y.; Min, B.; Lee, S.J.; Lee, T.S.; Park, W.H. In vitro degradation behavior of electrospun polyglycolide,
polylactide, and poly(lactide-co-glycolide). J. Appl. Polym. Sci. 2005, 95, 193–200. [CrossRef]

79. Bottino, M.C.; Kamocki, K.; Yassen, G.H.; Platt, J.A.; Vail, M.M.; Ehrlich, Y.; Spolnik, K.J.; Gregory, R.L.
Bioactive nanofibrous scaffolds for regenerative endodontics. J. Dent. Res. 2013, 92, 963–969. [CrossRef]
[PubMed]

80. Kim, G.; Asran, A.S.; Michler, G.H.; Simon, P.; Kim, J. Electrospun PVA/HAp nanocomposite nanofibers:
Biomimetics of mineralized hard tissues at a lower level of complexity. Bioinspiration Biomim. 2008, 3, 046003.
[CrossRef] [PubMed]

81. Kim, J.J.; Bae, W.J.; Kim, J.M.; Kim, J.J.; Lee, E.J.; Kim, H.W.; Kim, E.C. Mineralized polycaprolactone
nanofibrous matrix for odontogenesis of human dental pulp cells. J. Biomater. Appl. 2014, 28, 1069–1078.
[CrossRef] [PubMed]

82. Bottino, M.C.; Yassen, G.H.; Platt, J.A.; Labban, N.; Windsor, L.J.; Spolnik, K.J.; Bressiani, A.H. A novel
three-dimensional scaffold for regenerative endodontics: Materials and biological characterizations. J. Tissue
Eng. Regen. Med. 2015, 9, E116–E123. [CrossRef] [PubMed]

83. Kim, B.; Nguyen, T.B.L.; Min, Y.; Lee, B. In vitro and in vivo studies of BMP-2-loaded PCL–gelatin–BCP
electrospun scaffolds. Tissue Eng. Part A 2014, 20, 3279–3289. [CrossRef] [PubMed]

84. Ranjbar-Mohammadi, M.; Zamani, M.; Prabhakaran, M.; Bahrami, S.H.; Ramakrishna, S. Electrospinning
of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration.
Mater. Sci. Eng. C 2016, 58, 521–531. [CrossRef] [PubMed]

85. Zhang, Y.; Ni, M.; Zhang, M.; Ratner, B. Calcium phosphate-chitosan composite scaffolds for bone tissue
engineering. Tissue Eng. 2003, 9, 337–345. [CrossRef] [PubMed]

86. Kim, I.; Seo, S.; Moon, H.; Yoo, M.; Park, I.; Kim, B.; Cho, C. Chitosan and its derivatives for tissue engineering
applications. Biotechnol. Adv. 2008, 26, 1–21. [CrossRef] [PubMed]

87. Zhang, Y.; Su, B.; Ramakrishna, S.; Lim, C. Chitosan nanofibers from an easily electrospinnable
UHMWPEO-doped chitosan solution system. Biomacromolecules 2007, 9, 136–141. [CrossRef] [PubMed]

88. Jin, H.J.; Fridrikh, S.; Rutledge, G.C.; Kaplan, D. Electrospinning bombyx mori silk with poly(ethylene oxide).
Abstr. Pap. Am. Chem. Soc. 2002, 3, 1233–1239.

89. Samprasit, W.; Kaomongkolgit, R.; Sukma, M.; Rojanarata, T.; Ngawhirunpat, T.; Opanasopit, P.
Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention. Carbohydr. Polym.
2015, 117, 933–940. [CrossRef] [PubMed]

90. Wang, W.; Ciselli, P.; Kuznetsov, E.; Peijs, T.; Barber, A.H. Effective reinforcement in carbon nanotube-polymer
composites. Philos. Trans. A. Math. Phys. Eng. Sci. 2008, 366, 1613–1626. [CrossRef] [PubMed]

91. Behler, K.D.; Stravato, A.; Mochalin, V.; Korneva, G.; Yushin, G.; Gogotsi, Y. Nanodiamond-polymer
composite fibers and coatings. ACS Nano 2009, 3, 363–369. [CrossRef] [PubMed]

92. Demir, M.M.; Horzum, N.; Tasdemirci, A.; Turan, K.; Güden, M. Mechanical Interlocking between Porous
Electrospun Polystyrene Fibers and an Epoxy Matrix. ACS Appl. Mater. Interfaces 2014, 6, 21901–21905.
[CrossRef] [PubMed]

93. Borges, A.L.; Münchow, E.A.; de Oliveira, S.A.C.; Yoshida, T.; Vallittu, P.K.; Bottino, M.C. Effect of
random/aligned nylon-6/MWCNT fibers on dental resin composite reinforcement. J. Mech. Behav.
Biomed. Mater. 2015, 48, 134–144. [CrossRef] [PubMed]

94. Lee, M.W.; An, S.; Jo, H.S.; Yoon, S.S.; Yarin, A.L. Self-healing Nanofiber-Reinforced Polymer Composites:
Tensile Testing and Recovery of Mechanical Properties. ACS Appl. Mater. Interfaces 2015, 7, 19546–19554.
[CrossRef] [PubMed]

http://dx.doi.org/10.1021/bm060649h
http://www.ncbi.nlm.nih.gov/pubmed/17154464
http://dx.doi.org/10.3390/ma8095273
http://dx.doi.org/10.1016/j.jconrel.2004.04.009
http://www.ncbi.nlm.nih.gov/pubmed/15245888
http://dx.doi.org/10.1002/app.21116
http://dx.doi.org/10.1177/0022034513505770
http://www.ncbi.nlm.nih.gov/pubmed/24056225
http://dx.doi.org/10.1088/1748-3182/3/4/046003
http://www.ncbi.nlm.nih.gov/pubmed/18812653
http://dx.doi.org/10.1177/0885328213495903
http://www.ncbi.nlm.nih.gov/pubmed/23839784
http://dx.doi.org/10.1002/term.1712
http://www.ncbi.nlm.nih.gov/pubmed/23475586
http://dx.doi.org/10.1089/ten.tea.2014.0081
http://www.ncbi.nlm.nih.gov/pubmed/24935525
http://dx.doi.org/10.1016/j.msec.2015.08.066
http://www.ncbi.nlm.nih.gov/pubmed/26478340
http://dx.doi.org/10.1089/107632703764664800
http://www.ncbi.nlm.nih.gov/pubmed/12740096
http://dx.doi.org/10.1016/j.biotechadv.2007.07.009
http://www.ncbi.nlm.nih.gov/pubmed/17884325
http://dx.doi.org/10.1021/bm701130e
http://www.ncbi.nlm.nih.gov/pubmed/18078323
http://dx.doi.org/10.1016/j.carbpol.2014.10.026
http://www.ncbi.nlm.nih.gov/pubmed/25498719
http://dx.doi.org/10.1098/rsta.2007.2175
http://www.ncbi.nlm.nih.gov/pubmed/18192168
http://dx.doi.org/10.1021/nn800445z
http://www.ncbi.nlm.nih.gov/pubmed/19236073
http://dx.doi.org/10.1021/am507029c
http://www.ncbi.nlm.nih.gov/pubmed/25485762
http://dx.doi.org/10.1016/j.jmbbm.2015.03.019
http://www.ncbi.nlm.nih.gov/pubmed/25933169
http://dx.doi.org/10.1021/acsami.5b05998
http://www.ncbi.nlm.nih.gov/pubmed/26284888


Materials 2016, 9, 73 18 of 21

95. Ravichandran, R.; Ng, C.C.; Liao, S.; Pliszka, D.; Raghunath, M.; Ramakrishna, S.; Chan, C.K. Biomimetic
surface modification of titanium surfaces for early cell capture by advanced electrospinning. Biomed. Mater.
2012, 7, 015001. [CrossRef] [PubMed]

96. Ainola, M.; Tomaszewski, W.; Ostrowska, B.; Wesolowska, E.; Wagner, H.D.; Swieszkowski, W.; Sillat, T.;
Peltola, E.; Konttinen, Y.T. A bioactive hybrid three-dimensional tissue-engineering construct for cartilage
repair. J. Biomater. Appl. 2016, 30, 873–885. [CrossRef] [PubMed]

97. Subramanian, A.; Lin, H.Y.; Vu, D.; Larsen, G. Synthesis and evaluation of scaffolds prepared from chitosan
fibers for potential use in cartilage tissue engineering. Biomed. Sci. Instrum. 2004, 40, 117–122. [PubMed]

98. Levorson, E.J.; Sreerekha, P.R.; Chennazhi, K.P.; Kasper, F.K.; Nair, S.V.; Mikos, A.G. Fabrication and
characterization of multiscale electrospun scaffolds for cartilage regeneration. Biomed. Mater. 2013, 8, 014103.
[CrossRef] [PubMed]

99. Thorvaldsson, A.; Stenhamre, H.; Gatenholm, P.; Walkenström, P. Electrospinning of highly porous scaffolds
for cartilage regeneration. Biomacromolecules 2008, 9, 1044–1049. [CrossRef] [PubMed]

100. Li, W.; Danielson, K.G.; Alexander, P.G.; Tuan, R.S. Biological response of chondrocytes cultured in
three-dimensional nanofibrous poly (ε-caprolactone) scaffolds. J. Biomed. Mater. Res. Part A 2003, 67,
1105–1114. [CrossRef] [PubMed]

101. Vacanti, N.M.; Cheng, H.; Hill, P.S.; Guerreiro, J.D.; Dang, T.T.; Ma, M.; Watson, S.; Hwang, N.S.; Langer, R.;
Anderson, D.G. Localized delivery of dexamethasone from electrospun fibers reduces the foreign body
response. Biomacromolecules 2012, 13, 3031–3038. [CrossRef] [PubMed]

102. Song, W.; Yu, X.; Markel, D.C.; Shi, T.; Ren, W. Coaxial PCL/PVA electrospun nanofibers: Osseointegration
enhancer and controlled drug release device. Biofabrication 2013, 5, 035006. [CrossRef] [PubMed]

103. Zeng, H.; Li, F.; Wei, H.; Shi, J.F.; Rao, G.Z.; Li, A.; Gou, J.Z. Preliminary study of the dual release baicalin
and rhBMP-2 system to improve periodontal tissue regeneration in minipigs. Shanghai Kou Qiang Yi Xue
2013, 22, 126–131. (In Chinese). [PubMed]

104. Xue, J.; He, M.; Niu, Y.; Liu, H.; Crawford, A.; Coates, P.; Chen, D.; Shi, R.; Zhang, L. Preparation and
in vivo efficient anti-infection property of GTR/GBR implant made by metronidazole loaded electrospun
polycaprolactone nanofiber membrane. Int. J. Pharm. 2014, 475, 566–577. [CrossRef] [PubMed]

105. Verreck, G.; Chun, I.; Peeters, J.; Rosenblatt, J.; Brewster, M.E. Preparation and characterization of nanofibers
containing amorphous drug dispersions generated by electrostatic spinning. Pharm. Res. 2003, 20, 810–817.
[CrossRef] [PubMed]

106. Kenawy, E.; Bowlin, G.L.; Mansfield, K.; Layman, J.; Simpson, D.G.; Sanders, E.H.; Wnek, G.E. Release of
tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend.
J. Controlled Release 2002, 81, 57–64. [CrossRef]

107. Thakur, R.; Florek, C.; Kohn, J.; Michniak, B. Electrospun nanofibrous polymeric scaffold with targeted drug
release profiles for potential application as wound dressing. Int. J. Pharm. 2008, 364, 87–93. [CrossRef]
[PubMed]

108. He, T.; Wang, J.; Huang, P.; Zeng, B.; Li, H.; Cao, Q.; Zhang, S.; Luo, Z.; Deng, D.Y.; Zhang, H. Electrospinning
polyvinylidene fluoride fibrous membranes containing anti-bacterial drugs used as wound dressing.
Colloids Surf. B Biointerfaces 2015, 130, 278–286. [CrossRef] [PubMed]

109. Noh, H.K.; Lee, S.W.; Kim, J.; Oh, J.; Kim, K.; Chung, C.; Choi, S.; Park, W.H.; Min, B. Electrospinning of chitin
nanofibers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts.
Biomaterials 2006, 27, 3934–3944. [CrossRef] [PubMed]

110. Blackwood, K.A.; McKean, R.; Canton, I.; Freeman, C.O.; Franklin, K.L.; Cole, D.; Brook, I.; Farthing, P.;
Rimmer, S.; Haycock, J.W. Development of biodegradable electrospun scaffolds for dermal replacement.
Biomaterials 2008, 29, 3091–3104. [CrossRef] [PubMed]

111. Tang, J.; Han, Y.; Zhang, F.; Ge, Z.; Liu, X.; Lu, Q. Buccal mucosa repair with electrospun silk fibroin matrix
in a rat model. Int. J. Artif. Organs 2015, 38, 105–112. [CrossRef] [PubMed]

112. Damle, S.; Bhattal, H.; Loomba, A. Apexification of anterior teeth: A comparative evaluation of mineral
trioxide aggregate and calcium hydroxide paste. J. Clin. Pediatr. Dent. 2012, 36, 263–268. [CrossRef]
[PubMed]

113. Odabas, M.E.; Alacam, A.; Sillelioglu, H.; Deveci, C. Clinical and radiographic success rates of mineral
trioxide aggregate and ferric sulphate pulpotomies performed by dental students. Eur. J. Paediatr. Dent. 2012,
13, 118–122. [PubMed]

http://dx.doi.org/10.1088/1748-6041/7/1/015001
http://www.ncbi.nlm.nih.gov/pubmed/22156014
http://dx.doi.org/10.1177/0885328215604069
http://www.ncbi.nlm.nih.gov/pubmed/26341661
http://www.ncbi.nlm.nih.gov/pubmed/15133945
http://dx.doi.org/10.1088/1748-6041/8/1/014103
http://www.ncbi.nlm.nih.gov/pubmed/23353096
http://dx.doi.org/10.1021/bm701225a
http://www.ncbi.nlm.nih.gov/pubmed/18260633
http://dx.doi.org/10.1002/jbm.a.10101
http://www.ncbi.nlm.nih.gov/pubmed/14624495
http://dx.doi.org/10.1021/bm300520u
http://www.ncbi.nlm.nih.gov/pubmed/22920794
http://dx.doi.org/10.1088/1758-5082/5/3/035006
http://www.ncbi.nlm.nih.gov/pubmed/23799653
http://www.ncbi.nlm.nih.gov/pubmed/23708021
http://dx.doi.org/10.1016/j.ijpharm.2014.09.026
http://www.ncbi.nlm.nih.gov/pubmed/25240438
http://dx.doi.org/10.1023/A:1023450006281
http://www.ncbi.nlm.nih.gov/pubmed/12751639
http://dx.doi.org/10.1016/S0168-3659(02)00041-X
http://dx.doi.org/10.1016/j.ijpharm.2008.07.033
http://www.ncbi.nlm.nih.gov/pubmed/18771719
http://dx.doi.org/10.1016/j.colsurfb.2015.04.026
http://www.ncbi.nlm.nih.gov/pubmed/25936562
http://dx.doi.org/10.1016/j.biomaterials.2006.03.016
http://www.ncbi.nlm.nih.gov/pubmed/16574218
http://dx.doi.org/10.1016/j.biomaterials.2008.03.037
http://www.ncbi.nlm.nih.gov/pubmed/18448164
http://dx.doi.org/10.5301/ijao.5000392
http://www.ncbi.nlm.nih.gov/pubmed/25744194
http://dx.doi.org/10.17796/jcpd.36.3.02354g044271t152
http://www.ncbi.nlm.nih.gov/pubmed/22838228
http://www.ncbi.nlm.nih.gov/pubmed/22762173


Materials 2016, 9, 73 19 of 21

114. Rizvi, A.; Zafar, M.S.; Farid, W.M.; Gazal, G. Assessment of Antimicrobial Efficacy of MTAD, Sodium
Hypochlorite, EDTA and Chlorhexidine for Endodontic Applications: An In vitro Study. Middle East J.
Sci. Res. 2014, 21, 353–357.

115. Pihlstrom, B.L.; Michalowicz, B.S.; Johnson, N.W. Periodontal diseases. Lancet 2005, 366, 1809–1820.
[CrossRef]

116. Bottino, M.C.; Thomas, V.; Schmidt, G.; Vohra, Y.K.; Chu, T.G.; Kowolik, M.J.; Janowski, G.M. Recent advances
in the development of GTR/GBR membranes for periodontal regeneration—A materials perspective.
Dent. Mater. 2012, 28, 703–721. [CrossRef] [PubMed]

117. Gottlow, J.; Laurell, L.; Lundgren, D.; Mathisen, T.; Nyman, S.; Rylander, H.; Bogentoft, C. Periodontal tissue
response to a new bioresorbable guided tissue regeneration device: A longitudinal study in monkeys. Int. J.
Periodontics Restor. Dent. 1994, 14, 436–449.

118. Al-Arrayed, F.; Adam, S.; Moran, J.; Dowell, P. Clinical trial of cross-linked human type I collagen as a barrier
material in surgical periodontal treatment. J. Clin. Periodontol. 1995, 22, 371–379. [CrossRef] [PubMed]

119. Dowell, P.; Al-Arrayed, F.; Adam, S.; Moran, J. A comparative clinical study: The use of human type I
collagen with and without the addition of metronidazole in the GTR method of treatment of periodontal
disease. J. Clin. Periodontol. 1995, 22, 543–549. [CrossRef] [PubMed]

120. Srouji, S.; Kizhner, T.; Suss-Tobi, E.; Livne, E.; Zussman, E. 3-D Nanofibrous electrospun multilayered
construct is an alternative ECM mimicking scaffold. J. Mater. Sci. Mater. Med. 2008, 19, 1249–1255. [CrossRef]
[PubMed]

121. Han, D.; Gouma, P. Electrospun bioscaffolds that mimic the topology of extracellular matrix.
Nanomed. Nanotechnol. Biol. Med. 2006, 2, 37–41. [CrossRef] [PubMed]

122. Prabhakaran, M.P.; Venugopal, J.; Ramakrishna, S. Electrospun nanostructured scaffolds for bone tissue
engineering. Acta Biomater. 2009, 5, 2884–2893. [CrossRef] [PubMed]

123. Bashur, C.A.; Dahlgren, L.A.; Goldstein, A.S. Effect of fiber diameter and orientation on fibroblast
morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes. Biomaterials 2006, 27,
5681–5688. [CrossRef] [PubMed]

124. Li, W.; Laurencin, C.T.; Caterson, E.J.; Tuan, R.S.; Ko, F.K. Electrospun nanofibrous structure: A novel scaffold
for tissue engineering. J. Biomed. Mater. Res. 2002, 60, 613–621. [CrossRef] [PubMed]

125. Shih, Y.V.; Chen, C.; Tsai, S.; Wang, Y.J.; Lee, O.K. Growth of mesenchymal stem cells on electrospun type I
collagen nanofibers. Stem Cells 2006, 24, 2391–2397. [CrossRef] [PubMed]

126. Ekaputra, A.K.; Zhou, Y.; Cool, S.M.; Hutmacher, D.W. Composite electrospun scaffolds for engineering
tubular bone grafts. Tissue Eng. Part A 2009, 15, 3779–3788. [CrossRef] [PubMed]

127. Yoshimoto, H.; Shin, Y.; Terai, H.; Vacanti, J. A biodegradable nanofiber scaffold by electrospinning and its
potential for bone tissue engineering. Biomaterials 2003, 24, 2077–2082. [CrossRef]

128. Ji, W.; Yang, F.; Ma, J.; Bouma, M.J.; Boerman, O.C.; Chen, Z.; van den Beucken, J.J.; Jansen, J.A. Incorporation
of stromal cell-derived factor-1α in PCL/gelatin electrospun membranes for guided bone regeneration.
Biomaterials 2013, 34, 735–745. [CrossRef] [PubMed]

129. Zhang, Y.; Ouyang, H.; Lim, C.T.; Ramakrishna, S.; Huang, Z. Electrospinning of gelatin fibers and
gelatin/PCL composite fibrous scaffolds. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 72, 156–165.
[CrossRef] [PubMed]

130. Fang, R.; Zhang, E.; Xu, L.; Wei, S. Electrospun PCL/PLA/HA based nanofibers as scaffold for osteoblast-like
cells. J. Nanosci. Nanotechnol. 2010, 10, 7747–7751. [CrossRef] [PubMed]

131. Tyagi, P.; Catledge, S.A.; Stanishevsky, A.; Thomas, V.; Vohra, Y. Nanomechanical properties of electrospun
composite scaffolds based on polycaprolactone and hydroxyapatite. J. Nanosci. Nanotechnol. 2009, 9,
4839–4845. [CrossRef] [PubMed]

132. Jayakumar, R.; Prabaharan, M.; Nair, S.; Tamura, H. Novel chitin and chitosan nanofibers in biomedical
applications. Biotechnol. Adv. 2010, 28, 142–150. [CrossRef] [PubMed]

133. Zafar, M.S.; Belton, D.J.; Hanby, B.; Kaplan, D.L.; Perry, C.C. Functional Material Features of Bombyx Mori
Silk Light vs. Heavy Chain Proteins. Biomacromolecules 2015, 16, 606–614. [CrossRef] [PubMed]

134. Zafar, M.S.; Al-Samadani, K.H. Potential use of natural silk for bio-dental applications. J. Taibah Univ.
Med. Sci. 2014, 9, 171–177. [CrossRef]

135. Marelli, B.; Alessandrino, A.; Fare, S.; Freddi, G.; Mantovani, D.; Tanzi, M.C. Compliant electrospun silk
fibroin tubes for small vessel bypass grafting. Acta Biomater. 2010, 6, 4019–4026. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0140-6736(05)67728-8
http://dx.doi.org/10.1016/j.dental.2012.04.022
http://www.ncbi.nlm.nih.gov/pubmed/22592164
http://dx.doi.org/10.1111/j.1600-051X.1995.tb00163.x
http://www.ncbi.nlm.nih.gov/pubmed/7601918
http://dx.doi.org/10.1111/j.1600-051X.1995.tb00803.x
http://www.ncbi.nlm.nih.gov/pubmed/7560238
http://dx.doi.org/10.1007/s10856-007-3218-z
http://www.ncbi.nlm.nih.gov/pubmed/17701297
http://dx.doi.org/10.1016/j.nano.2006.01.002
http://www.ncbi.nlm.nih.gov/pubmed/17292114
http://dx.doi.org/10.1016/j.actbio.2009.05.007
http://www.ncbi.nlm.nih.gov/pubmed/19447211
http://dx.doi.org/10.1016/j.biomaterials.2006.07.005
http://www.ncbi.nlm.nih.gov/pubmed/16914196
http://dx.doi.org/10.1002/jbm.10167
http://www.ncbi.nlm.nih.gov/pubmed/11948520
http://dx.doi.org/10.1634/stemcells.2006-0253
http://www.ncbi.nlm.nih.gov/pubmed/17071856
http://dx.doi.org/10.1089/ten.tea.2009.0186
http://www.ncbi.nlm.nih.gov/pubmed/19527183
http://dx.doi.org/10.1016/S0142-9612(02)00635-X
http://dx.doi.org/10.1016/j.biomaterials.2012.10.016
http://www.ncbi.nlm.nih.gov/pubmed/23117215
http://dx.doi.org/10.1002/jbm.b.30128
http://www.ncbi.nlm.nih.gov/pubmed/15389493
http://dx.doi.org/10.1166/jnn.2010.2831
http://www.ncbi.nlm.nih.gov/pubmed/21138024
http://dx.doi.org/10.1166/jnn.2009.1588
http://www.ncbi.nlm.nih.gov/pubmed/19928159
http://dx.doi.org/10.1016/j.biotechadv.2009.11.001
http://www.ncbi.nlm.nih.gov/pubmed/19913083
http://dx.doi.org/10.1021/bm501667j
http://www.ncbi.nlm.nih.gov/pubmed/25565556
http://dx.doi.org/10.1016/j.jtumed.2014.01.003
http://dx.doi.org/10.1016/j.actbio.2010.05.008
http://www.ncbi.nlm.nih.gov/pubmed/20466080


Materials 2016, 9, 73 20 of 21

136. Ki, C.S.; Kim, J.W.; Hyun, J.H.; Lee, K.H.; Hattori, M.; Rah, D.K.; Park, Y.H. Electrospun three-dimensional
silk fibroin nanofibrous scaffold. J. Appl. Polym. Sci. 2007, 106, 3922–3928. [CrossRef]

137. Qasim, S.B.; Delaine-Smith, R.M.; Fey, T.; Rawlinson, A.; Rehman, I.U. Freeze gelated porous membranes for
periodontal tissue regeneration. Acta Biomater. 2015, 23, 317–328. [CrossRef] [PubMed]

138. Bottino, M.C.; Thomas, V.; Janowski, G.M. A novel spatially designed and functionally graded electrospun
membrane for periodontal regeneration. Acta Biomater. 2011, 7, 216–224. [CrossRef] [PubMed]

139. Bottino, M.C.; Arthur, R.A.; Waeiss, R.A.; Kamocki, K.; Gregson, K.S.; Gregory, R.L. Biodegradable
nanofibrous drug delivery systems: Effects of metronidazole and ciprofloxacin on periodontopathogens and
commensal oral bacteria. Clin. Oral Investig. 2014, 18, 2151–2158. [CrossRef] [PubMed]

140. Sundaram, M.N.; Sowmya, S.; Deepthi, S.; Bumgardener, J.D.; Jayakumar, R. Bilayered construct for
simultaneous regeneration of alveolar bone and periodontal ligament. J. Biomed. Mater. Res. Part B
Appl. Biomater. 2015, 7. [CrossRef] [PubMed]

141. Ullah, R.; Zafar, M.S. Oral and dental delivery of fluoride: A review. Fluoride 2015, 48, 195–204.
142. Zafar, M.S.; Ahmed, N. Therapeutic roles of fluoride released from restorative dental materials. Fluoride

2015, 48, 184–194.
143. Davies, G.M.; Bridgman, C.; Hough, D.; Davies, R. The application of fluoride varnish in the prevention and

control of dental caries. Dent. Update 2009, 36, 410–412. [PubMed]
144. Ismail, A.I.; Hasson, H. Fluoride supplements, dental caries and fluorosis: A systematic review. J. Am.

Dent. Assoc. 2008, 139, 1457–1468. [CrossRef] [PubMed]
145. Zafar, M.S. Effects of Surface Pre-Reacted Glass Particles on Fluoride Release of Dental Restorative Materials.

World Appl. Sci. J. 2013, 28, 457–462.
146. Dionysopoulos, D. The effect of fluoride-releasing restorative materials on inhibition of secondary caries

formation. Fluoride 2014, 47, 258–265.
147. Khurshid, Z.; Zafar, M.; Qasim, S.; Shahab, S.; Naseem, M.; AbuReqaiba, A. Advances in Nanotechnology

for Restorative Dentistry. Materials 2015, 8, 717–731. [CrossRef]
148. Najeeb, S.; Khurshid, Z.; Matinlinna, J.P.; Siddiqui, F.; Nassani, M.Z.; Baroudi, K. Nanomodified Peek Dental

Implants: Bioactive Composites and Surface Modification—A Review. Int. J. Dent. 2015, 2015, 381759.
[CrossRef] [PubMed]

149. Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Siddiqui, F. Applications of polyetheretherketone (PEEK) in oral
implantology and prosthodontics. J. Prosthodont. Res. 2016, 60, 12–19. [CrossRef] [PubMed]

150. Albrektsson, T.; Brånemark, P.; Hansson, H.; Lindström, J. Osseointegrated titanium implants: Requirements
for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop. 1981, 52, 155–170.
[CrossRef]

151. Brånemark, P.; Breine, U.; Adell, R.; Hansson, B.; Lindström, J.; Ohlsson, Å. Intra-osseous anchorage of dental
prostheses: I. experimental studies. Scand. J. Plast. Reconstr. Surg. Hand Surg. 1969, 3, 81–100. [CrossRef]

152. Cook, S.D.; Kay, J.F.; Thomas, K.A.; Jarcho, M. Interface mechanics and histology of titanium and
hydroxylapatite-coated titanium for dental implant applications. Int. J. Oral Maxillofac. Implant. 1987,
2, 15–22.

153. Jovanovic, S.A.; Spiekermann, H.; Richter, E.J. Bone regeneration around titanium dental implants in
dehisced defect sites: A clinical study. Int. J. Oral Maxillofac. Implant. 1992, 7, 233–245.

154. Berner, S.; Dard, M.; Gottlow, J.; Molenberg, A.; Wieland, M. Titanium-zirconium: A novel material for dental
implants. Eur. Cells Mater. 2009, 17, 189–205.

155. Gottlow, J.; Dard, M.; Kjellson, F.; Obrecht, M.; Sennerby, L. Evaluation of a new titanium-zirconium dental
implant: A biomechanical and histological comparative study in the mini pig. Clin. Implant Dent. Relat. Res.
2012, 14, 538–545. [CrossRef] [PubMed]

156. Zembic, A.; Philipp, A.O.H.; Hämmerle, C.H.F.; Wohlwend, A.; Sailer, I. Eleven-Year Follow-Up of a
Prospective Study of Zirconia Implant Abutments Supporting Single All-Ceramic Crowns in Anterior and
Premolar Regions. Clin. Implant Dent. Relat. Res. 2015, 17, e417–e426. [CrossRef] [PubMed]

157. Javed, F.; Vohra, F.; Zafar, S.; Almas, K. Significance of Osteogenic Surface Coatings on Implants to Enhance
Osseointegration Under Osteoporotic-like Conditions. Implant Dent. 2014, 23, 679–686. [CrossRef] [PubMed]

158. Le Guéhennec, L.; Soueidan, A.; Layrolle, P.; Amouriq, Y. Surface treatments of titanium dental implants for
rapid osseointegration. Dent. Mater. 2007, 23, 844–854. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/app.26914
http://dx.doi.org/10.1016/j.actbio.2015.05.001
http://www.ncbi.nlm.nih.gov/pubmed/25968357
http://dx.doi.org/10.1016/j.actbio.2010.08.019
http://www.ncbi.nlm.nih.gov/pubmed/20801241
http://dx.doi.org/10.1007/s00784-014-1201-x
http://www.ncbi.nlm.nih.gov/pubmed/24535074
http://dx.doi.org/10.1002/jbm.b.33480
http://www.ncbi.nlm.nih.gov/pubmed/26153674
http://www.ncbi.nlm.nih.gov/pubmed/19810396
http://dx.doi.org/10.14219/jada.archive.2008.0071
http://www.ncbi.nlm.nih.gov/pubmed/18978383
http://dx.doi.org/10.3390/ma8020717
http://dx.doi.org/10.1155/2015/381759
http://www.ncbi.nlm.nih.gov/pubmed/26495000
http://dx.doi.org/10.1016/j.jpor.2015.10.001
http://www.ncbi.nlm.nih.gov/pubmed/26520679
http://dx.doi.org/10.3109/17453678108991776
http://dx.doi.org/10.3109/02844316909036699
http://dx.doi.org/10.1111/j.1708-8208.2010.00289.x
http://www.ncbi.nlm.nih.gov/pubmed/20586785
http://dx.doi.org/10.1111/cid.12263
http://www.ncbi.nlm.nih.gov/pubmed/25180473
http://dx.doi.org/10.1097/ID.0000000000000161
http://www.ncbi.nlm.nih.gov/pubmed/25290281
http://dx.doi.org/10.1016/j.dental.2006.06.025
http://www.ncbi.nlm.nih.gov/pubmed/16904738


Materials 2016, 9, 73 21 of 21

159. Wheeler, S.L. Eight-year clinical retrospective study of titanium plasma-sprayed and hydroxyapatite-coated
cylinder implants. Int. J. Oral Maxillofac. Implant. 1996, 11, 340–350. [CrossRef]

160. Sakka, S.; Coulthard, P. Implant failure: Etiology and complications. Med. Oral Patol. Oral Cir. Bucal 2011, 16,
42–44. [CrossRef]

161. Zhang, Q.; Mochalin, V.N.; Neitzel, I.; Knoke, I.Y.; Han, J.; Klug, C.A.; Zhou, J.G.; Lelkes, P.I.; Gogotsi, Y.
Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials 2011, 32, 87–94.
[CrossRef] [PubMed]

162. Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds.
Nat. Nanotechnol. 2012, 7, 11–23. [CrossRef] [PubMed]

163. Passeri, D.; Rinaldi, F.; Ingallina, C.; Carafa, M.; Rossi, M.; Terranova, M.; Marianecci, C. Biomedical
Applications of Nanodiamonds: An Overview. J. Nanosci. Nanotechnol. 2015, 15, 972–988. [CrossRef]
[PubMed]

164. Guimarães, A.; Martins, A.; Pinho, E.D.; Faria, S.; Reis, R.L.; Neves, N.M. Solving cell infiltration limitations of
electrospun nanofiber meshes for tissue engineering applications. Nanomedicine 2010, 5, 539–554. [CrossRef]
[PubMed]

165. Martins, A.; Araújo, J.V.; Reis, R.L.; Neves, N.M. Electrospun nanostructured scaffolds for tissue engineering
applications. Nanomedicine. 2007, 2, 929–942. [CrossRef] [PubMed]

166. He, J.; Liu, Y.; Xu, L.; Yu, J.; Sun, G. BioMimic fabrication of electrospun nanofibers with high-throughput.
Chaos Solitons Fractals 2008, 37, 643–651. [CrossRef]

167. Lee, O.J.; Ju, H.W.; Kim, J.H.; Lee, J.M.; Ki, C.S.; Kim, J.; Moon, B.M.; Park, H.J.; Sheikh, F.A.; Park, C.H.
Development of artificial dermis using 3D electrospun silk fibroin nanofiber matrix. J. Biomed. Nanotechnol.
2014, 10, 1294–1303. [CrossRef] [PubMed]

168. Wang, Z.; Cai, N.; Zhao, D.; Xu, J.; Dai, Q.; Xue, Y.; Luo, X.; Yang, Y.; Yu, F. Mechanical reinforcement of
electrospun water-soluble polymer nanofibers using nanodiamonds. Polym. Compos. 2013, 34, 1735–1744.
[CrossRef]

169. Thompson, C.; Chase, G.; Yarin, A.; Reneker, D. Effects of parameters on nanofiber diameter determined
from electrospinning model. Polymer 2007, 48, 6913–6922. [CrossRef]

170. Tamimi, E.; Ardila, D.; Haskett, D.; Doetschman, T.; Slepian, M.; Kellar, R.; Geest, J.V. Biomechanical
Comparison of Glutaraldehyde-Crosslinked Gelatin Fibrinogen Electrospun Scaffolds to Porcine Coronary
Arteries. J. Biomech. Eng. 2016, 138, 011001. [CrossRef] [PubMed]

171. Frohbergh, M.E.; Katsman, A.; Botta, G.P.; Lazarovici, P.; Schauer, C.L.; Wegst, U.G.; Lelkes, P.I. Electrospun
hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering.
Biomaterials 2012, 33, 9167–9178. [CrossRef] [PubMed]

172. De Vrieze, S.; Van Camp, T.; Nelvig, A.; Hagström, B.; Westbroek, P.; De Clerck, K. The effect of temperature
and humidity on electrospinning. J. Mater. Sci. 2009, 44, 1357–1362. [CrossRef]

173. Zafar, M.; Khurshid, Z.; Almas, K. Oral tissue engineering progress and challenges. Tissue Eng. Regen. Med.
2015, 12, 387–397. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1097/00008505-199700610-00042
http://dx.doi.org/10.4317/medoral.16.e42
http://dx.doi.org/10.1016/j.biomaterials.2010.08.090
http://www.ncbi.nlm.nih.gov/pubmed/20869765
http://dx.doi.org/10.1038/nnano.2011.209
http://www.ncbi.nlm.nih.gov/pubmed/22179567
http://dx.doi.org/10.1166/jnn.2015.9734
http://www.ncbi.nlm.nih.gov/pubmed/26353603
http://dx.doi.org/10.2217/nnm.10.31
http://www.ncbi.nlm.nih.gov/pubmed/20528450
http://dx.doi.org/10.2217/17435889.2.6.929
http://www.ncbi.nlm.nih.gov/pubmed/18095855
http://dx.doi.org/10.1016/j.chaos.2007.11.028
http://dx.doi.org/10.1166/jbn.2014.1818
http://www.ncbi.nlm.nih.gov/pubmed/24804550
http://dx.doi.org/10.1002/pc.22577
http://dx.doi.org/10.1016/j.polymer.2007.09.017
http://dx.doi.org/10.1115/1.4031847
http://www.ncbi.nlm.nih.gov/pubmed/26501189
http://dx.doi.org/10.1016/j.biomaterials.2012.09.009
http://www.ncbi.nlm.nih.gov/pubmed/23022346
http://dx.doi.org/10.1007/s10853-008-3010-6
http://dx.doi.org/10.1007/s13770-015-0030-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Basic Principle and Technique 
	Factors Affecting Electrospinning 
	Solution Related Parameters 
	Polymer Concentration 
	Processing Conditions 
	Effect of Voltage 
	Volumetric Flow Rate 
	Distance of Collector 
	Effect of Conductivity 
	Effects of Solvent 

	Properties of Electrospun (ES) Materials 
	Physical Properties 
	Mechanical Properties 
	Biological Properties 
	Chemical Properties 

	Electrospun Nanofibers for Dental Applications 
	Regeneration of Pulp Dentin Complex 
	Guided tissue Regeneration for Periodontium 
	Caries Prevention 
	Modification of Resin Composites 
	Implant Surface Modification 
	Cartilage Regeneration 
	Drug Delivery 
	Repair of Wounds and Oral Mucosa 

	Limitations of Electrospinning 
	Conclusions 

