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Abstract: Intermetallic compounds are increasingly being expected to be utilized in tribological
environments, but to date their implementation is hindered by insufficient ductility at low and
medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical
composition of Mo–40Ni–13Si (at %). Microstructure characterization reveals that a certain amount
of ductile Mo phases formed during the solidification process of a ternary Mo–Ni–Si molten alloy,
which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties
of the designed alloy—including wear resistance, friction coefficient, and metallic tribological
compatibility—were evaluated under dry sliding wear test conditions at room temperature. Results
suggest that the multiphase alloy possesses an excellent tribological property, which is attributed
to unique microstructural features and thereby a good combination in hardness and ductility.
The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear
debris of the alloy, which was found to be soft abrasive wear.
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1. Introduction

Wear, one of the most frequently encountered failure models for engineering materials, leads to
huge economic losses every year. There has been significant interest among the members of the
scientific community in developing a variety of wear resistant materials [1,2]. Traditional metallic
engineering materials designed for structural application find it difficult to satisfy the requirements
of higher and higher operating stresses and temperatures in mechanical moving components.
Intermetallic compounds are attracting growing attention due to their inherent strong atomic bonds
and high hardness, promising good wear resistant materials [3–6].

Over the past couple of decades, binary intermetallic compound NiMo with a topologically
close-packed δ-phase structure, was studied widely because of its attractive thermodynamic
properties [7–9]. However, little attention was given to NiMo as a wear material or as a coating,
even though some made efforts on its mechanical properties [10]. From the tribological point of view,
the covalent-dominant strong atomic bond endows intermetallic NiMo outstanding adhesive wear
resistance, and the high hardness and anomalous hardness-temperature relation provide an excellent
abrasive wear resistant property [11]. Unfortunately, monolithic NiMo is extremely brittle for structural
application. Hence, how to improve the toughness of NiMo at low and medium temperature, like other
intermetallic compounds, becomes a great and continuous challenge.

To improve room-temperature ductility of intermetallic compounds, recent trends have been
to make multiphase composites by introducing a second and even a third phase which neighbors
in the equilibrium phase diagram [12]. The research of Liu et al. discovered that the NbSS phase
has a remarkable toughening effect in an alloy consisting of NbSS and Nb- and Ti-rich silicides,
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and observed slip steps inside the NbSS during crack propagation, which indicated deformation of the
alloy occurring in the NbSS [13].

A great number of works have proven molybdenum, as well as other refractory metals, possesses
excellent ductility, toughness, and a high melting point, implying it is an ideal toughening phase for
the intermetallic compound [14–18]. For instance, the alloy consisting of Mo3Si and Mo5SiB2 (T2)
as well as Mo-based solid solution phase has shown satisfactory higher fracture toughness values
than monolithic Mo3Si of T2 [19]. Additionally, for the introductory approach, in situ incorporation
of ductile refractory metals into intermetallic compounds has been demonstrated to be effective and
practical [20–22]. An α-Mo phase, with bcc crystal structure, has been in situ formed successfully
in several molybdenum-based metallic silicide alloys as a strategy for improvement of ductility and
toughness [23–25]. In the light of above understanding, the method of in situ incorporation was
employed and the ductile metallic Mo was selected as the toughening phase for the intermetallic
compound NiMo in the present investigation. Regarding wear resistance, intermetallic composites
toughened by ductile metals could be better than non-toughened, even though it may somewhat offset
some deleterious effects associated with the decrease in hardness [26].

Another focus in this novel alloy design is on understanding that the in situ formation of metallic
silicides in Mo–Ni–Si system may further optimize the properties of intermetallic alloy, such as good
creep resistance, low density, and wear resistance. Therefore, additional Si was added intentionally in
the chemical composition for the purpose of achieving one or more in situ metallic silicide phases. To be
satisfied, a certain amount of Mo2Ni3Si phase was identified in novel Mo–40Ni–13Si alloy through the
appropriate design of chemical composition and careful control of the manufacturing process. It is
better that Mo2Ni3Si ternary metal silicide formed in the solidification process than appearance of
binary metal silicides, because ternary metal silicides exhibit better mechanical properties resulting
from the comparatively weaker atomic bonding [27]. Furthermore, metallic slilicide Mo2Ni3Si has
relatively good toughness and high hardness, and is a promising reinforcement phase for wear resistant
metallic materials [28].

In this work, we proposed a novel multiphase intermetallic alloy in ternary Mo–Ni–Si system
which is designed to be used as a structural coating material in wear environments. Microstructure
was characterized and solidification process of novel intremetallic alloy was analyzed. Tribological
properties were evaluated under dry sliding wear test conditions at room temperature, and the
governing wear mechanisms were discussed according to the examination of the worn surface, debris,
and subsurface with scanning electron microscopes (SEM). To rank the improvement of wear resistance,
the potential matrix steel materials, hardened 0.45%C steel and austenitic 1Cr18Ni9Ti stainless steel,
were selected as wear test reference materials.

2. Experimental Procedures

2.1. Alloy Preparation

The Mo–40Ni–13Si alloy was manufactured using commercially pure molybdenum (99.9%),
nickel (99.5%), and silicon (99.96%) with a particle size of 40 to 74 µm. The proportional Mo–Ni–Si
powder blends in the chemical composition Mo–40Ni–13Si (at %)were preheated at 120 ◦C for 4 h to
thoroughly eliminate the absorbed moisture, and then melted using an arc-melting furnace in argon
atmosphere. The technical parameters for the fabricating process were taken according to preliminary
works, which are optimized to be an electric current of 300 A, voltage of 10–12 V, and the pressure of
65 kPa. All ingots were remelted three times to make it homogeneous prior to use for microstructure
characterization, hardness, and wear testing.

2.2. Microstructural Characterizations and Hardness Tests

Several typical ingots of Mo–40Ni–13Si alloy were cut along the vertical section in the middle
for microstructure characterization. The metallographic samples were prepared using standard
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mechanical polishing (ground using a range of 400–1500 grinding paper and polished by diamond
paste from 6 to 1 µm) and chemical etching procedures (etched in HF:HNO3:H2O solution with
volume ratio of 1:6:7). The observations of microstructure were carried out using Axiovert 200mat
invert-type optical microscope (OM, Carl Zeiss Light Microscope GmbH, Göttingen, Germany) and
KYKY-2800B scanning electron microscope (SEM, KYKY Technology Development Ltd., Beijing, China)
with secondary electron imaging mode and energy dispersive spectroscopy (EDS, KYKY Technology
Development Ltd., Beijing, China) analysis. X-ray diffraction (XRD, Rigaku Corporation, Tokyo,
Japan) analyses were conducted to verify the phase constituents of the alloy by D/MSX2500PC X-ray
diffractometer using Cu Kα radiation with a scanning rate of 5◦/min.

The micro-hardness of Mo–40Ni–13Si alloy was measured under a load of 500 g and a load dwell
time of 15 s using a digital HXZ-1000 micro-hardness indenter (Shanghai Optical Instrument Factory,
Shanghai, China). The micro-hardness value of this alloy was determined by taking the mean of at
least five successful measurements. For quantitative analysis of the microstructure, linear intercept
method was used for the purpose of determining the volume fraction of individual phase.

2.3. Wear Tests

All block-like Mo–40Ni–13Si alloy specimens for wear tests were extracted from the central regions
of the arc-melted ingots in the cubic form with a size of 10 mm× 10 mm× 10 mm. The highest potential
application of the Mo–40Ni–13Si alloy is as a coating material on engineering steel matrixes. Hence,
two most-widely applied engineering materials, hardened 0.45%C steel and austenitic 1Cr18Ni9Ti
stainless steel, were selected as comparison test materials in order to rank the increase in wear resistance.
The hardnesses of reference hardened 0.45%C steel and austenitic stainless steel 1Cr18Ni9Ti are about
HV260 and HV640, respectively.

Prior to wear tests, sample preparation involving grinding and polishing were performed with
optimum procedures to achieve repeatable results, considering the effect of roughness and flatness on
wear process, especially in the initial stage. The surfaces of the samples were ground using 600, 800,
1200, and 1500 grinding papers and then polished with 6, 3, and 1 µm diamond pastes, after which the
samples were cleaned with acetone in ultrasonic cleaner.

The sliding friction and wear tests were carried on a MM-200 type block-on-wheel mode machine,
the schematic diagram of which is given in Figure 1. The block-like specimen is pressed against the
outer periphery surface of a hardened 1.0%C–1.5%Cr bearing steel wheel (measured hardness of
HRC63 ± 1) rotating at 400 rpm. Wear tests were conducted at a 49, 98, 147, and 196 N applied load,
0.92 m/s sliding speed, and a total 3312 m sliding distance at ambient temperature in air.
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The weights of the test samples and counterpart wheels were measured before and after the wear
experiments using electronic scales with 0.1 mg accuracy. The volumetric wear loss, converted from
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the weight loss with the aid of a density measurement using the Archimedes principle, was employed
to evaluate the wear resistance of test materials. The average friction coefficient µ was calculated
according to the formula µ = T/RP, where T represents the friction torque, R represents the wheel
radius, and P is the contact load applied on the block-like specimen. Worn surface morphologies,
subsurface microstructure, and debris collected in the wear tests process of both Mo–40Ni–13Si alloy
and reference test steels were finally observed by scanning electron microscope (SEM) and energy
dispersive X-ray spectroscopy (EDS) analysis in order to explore the corresponding post-experimental
wear mechanisms.

3. Results

3.1. Microstructure Characteristics

As can be seen from XRD patterns shown in Figure 2, constituent phases of the Mo–40Ni–13Si
alloy produced using in situ arc-melting route were binary intermetallic compound NiMo, ternary
Mo2Ni3Si metal silicide with a topologically closed packed (TCP) phase having the hP12 MgZn2

type Laves crystal lattice, and refractory metal Mo phase. It is consistent with the expectation of
alloy design.

Figure 3a shows the low magnification OM image of the typical microstructure morphologies
of the Mo–40Ni–13Si alloy, which displays a uniform and dense microstructure. Three phases in the
designed alloy could be identified clearly through careful examination of the SEM image with high
magnification, as labeled in region A, B, and C in Figure 3b. Region A possesses the light gray dendritic
morphology and was enriched in Mo by EDS analysis (seen in Table 1), while region B is the continuous
gray matrix and its chemical composition was mainly Ni and Mo. Region C is a precipitation phase
with an irregular shape and size, involving Ni, Mo, and Si three elements, as shown in Table 1.

Based on the XRD results and EDS analysis, the light gray dendritic phase dispersed uniformly in
the microstructure was identified as the refractory metal Mo dissolved into a certain amount of Ni
and Si, the continuous gray matrix is the binary intermetallic compound NiMo, while the irregularly
shaped precipitation phase is ternary Mo2Ni3Si metal silicide. The volume fraction of refractory metal
Mo dendrites and Mo2Ni3Si precipitation phase examined with the linear intercept method was about
6% and 34%, respectively.
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Table 1. EDS results of individual phase in the Mo–40Ni–13Si alloy.

Phase (Region in Figure 3b)
Content of Element (at %)

Mo Ni Si

Light gray dendrite (A) 93.19 4.45 2.36
Continuous gray matrix (B) 42.82 46.73 10.45

Precipitation phase on continuous matrix (C) 30.93 53.01 16.06

3.2. Hardness and Density

The Mo–40Ni–13Si alloy is somewhat brittle for test bulk hardness due to being mainly composed
of intermetallic phases, so the micro-hardness test was selected to give a hardness value. The alloy
has a high hardness value about HV940, which is attributed to a high volume fraction of hard
Mo2Ni3Si ternary metal silicide and NiMo intermetallic compound. The average hardness for
individual Mo2Ni3Si and NiMo phases were HV1070 and HV910, respectively, carried on a HXZ-1000
micro-hardness indenter with a load of 20 g and a load dwell time of 15 s. It agrees satisfactorily
with the results in NiMo/Mo2Ni3Si intermetallic composite [28]. Correspondingly, the indent size of
the micro-hardness test ranges approximately from 5 to 7 µm for Mo2Ni3Si and from 6 to 8 µm for
NiMo phase. It is difficult to accurately identify the hardness of ductile Mo phase because of its fine
size in the Mo–40Ni–13Si alloy. In our previous work [29], the hardness value of MoSS in composites
fabricated by laser melting and deposition rout was approximately HV620.

Density of the Mo–40Ni–13Si alloy is 9.17 g/cm3 detected with Archimedes’ principle. The density
of reference hardened 0.45%C steel and austenitic stainless steel 1Cr18Ni9Ti is 7.81 g/cm3 and
7.79 g/cm3, identified using the same method for the purpose of comparing the wear volumetric loss.

3.3. Wear Resistant Property

The Mo–40Ni–13Si alloy exhibits outstanding wear resistant properties under room temperature
dry sliding wear test conditions coupled with the hardened 1.0%C–1.5%Cr bearing steel mating
wheel. Figure 4 shows the relationship between volumetric wear loss and the applied load of both
the Mo–40Ni–13Si alloy and reference test materials. It can be seen that volumetric wear losses of the
Mo–40Ni–13Si alloy are considerably lower than those of two comparison test materials under all
selected wear test loads. Owing to the relative lower initial hardness, the wear resistance of austenitic
1Cr18Ni9Ti stainless steel is inferior to that of the hardened 0.45%C steel, which is reflected clearly in
the wear test data at all contact loads.

Another phenomenon that needs to be noted is that the volumetric wear loss of the Mo–40Ni–13Si
alloy increases quite slowly compared with the tremendous increase of the reference materials with the
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increase of applied load, as illustrated in Figure 4. The volumetric wear loss of austenitic 1Cr18Ni9Ti
stainless steel is up to 20 times as high as that of the Mo–40Ni–13Si alloy when the contact load is 196 N.
These results imply that the Mo–40Ni–13Si alloy has a lower wear-load coefficient than traditional
engineering metallic materials at room temperature dry sliding wear conditions and thus is better
when used under higher load wear environments.
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3.4. Friction Coefficient

The friction coefficients along the sliding time were also continuously recorded during the wear
tests. The friction traces of the Mo–40Ni–13Si alloy and two reference materials are clearly different
under the contact load of 147 N, as given in Figure 5. The Mo–40Ni–13Si alloy shows low friction
coefficients and a smooth friction trace (ranging from 0.14 to 0.26 and an average value of 0.2). The other
curves of friction coefficient for two comparison materials manifest higher general values and large
fluctuations throughout the test.

In addition, as indicated in Figure 6, the average friction coefficient of the Mo–40Ni–13Si alloy is
lower than the hardened 0.45%C steel and austenitic 1Cr18Ni9Ti stainless steel at any contact load,
and is extremely insensitive to the contact load, while that of both comparison materials increase
rapidly with the contact load increasing from 49 to 196 N. The possible explanation for the low friction
coefficient of the Mo–40Ni–13Si alloy is that it has high hardness and outstanding adhesive and
abrasive wear resistance resulting from the large volume fraction of intermetallic compound phases.
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3.5. Metallic Tribological Compatibility

A good metallic material for tribological application should not only have prominent wear
resistance properties and a low friction coefficient but also have a remarkable metallic tribological
compatibility. Here, the metallic tribological compatibility refers to the tribo-metallurgical reciprocal
compatibility, i.e., the degree of mutual solubility between metallic friction-pair materials.

A good metallic tribological compatibility means less solubility between the test alloy specimen
and steel wheel. As shown in Table 2, the volumetric wear losses of either block-like samples or
wear counterpart wheel (hardened 1.0%C–1.5%Cr steel) for the Mo–40Ni–13Si alloy is significantly
lower than the two comparative materials at four selected loads. This result implies that the
Mo–40Ni–13Si alloy has better metallic tribological compatibility compared to traditional engineering
materials when coupled with a steel counterpart under room temperature dry sliding wear conditions.
A rule of thumb in tribology is that the tribo-metallurgical reciprocal compatibility primarily relies
on the atomic bonding type of wear contact counterparts. Hence, the covalent-dominant atomic
bonding, which is different with the coupling bearing steel wheel, is responsible for the good metallic
tribological compatibility.

Table 2. Volumetric wear loss of block samples and coupling steel wheels under dry sliding wear
conditions (mm3).

Load (N) Mo–40Ni–13Si
Alloys

Coupling
Wheel

Hardened
0.45%C Steel

Coupling
Wheel

Austenitic 1Cr18Ni9Ti
Stainless Steel

Coupling
Wheel

49 0.34 2.08 1.96 7.11 4.96 11.76
98 0.60 3.57 3.74 10.28 8.40 21.14

147 0.69 5.92 6.24 23.63 14.67 36.71
196 1.16 7.35 9.15 37.42 23.84 58.06

3.6. Worn Surface Morphologies

The SEM micrographs of the worn surfaces of the Mo–40Ni–13Si alloy, two comparative materials
(hardened 0.45%C steel and austenitic 1Cr18Ni9Ti stainless steel) and coupling 1.0%C–1.5%Cr bearing
steel, tested at a contact load of 196 N and a sliding speed of 0.91 m/s for a total sliding distance of
3312 m, are given in Figures 7–9.

It can be seen from Figure 7 that the worn surfaces of the hardened 0.45%C steel and austenitic
1Cr18Ni9Ti stainless steel are very rough and characterized by smearing, scratches, and plastic
deformation. Smearing was more evident on the worn surfaces of austenitic 1Cr18Ni9Ti stainless
steel, whereas the worn surface of hardened 0.45%C steel revealed more scratches. As for the rotating
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counterpart wheel, as shown in Figure 9a,b the worn surfaces coupled with both reference steels
provide evidence of suffering adhesive and abrasive wear. There are more adhesive wear features on
the worn surface coupling with 0.45%C steel (Figure 9a), but relatively less visible plowing compared
to the coupling with austenitic stainless steel.
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However, the worn surface of the Mo–40Ni–13Si alloy is quite smooth and clean, as indicated in
Figure 8a, which is very consistent with the low friction coefficient and smooth trace mentioned above.
There are no characteristic features of metallic adhesion and obvious abrasive wear—i.e., grooves
and materials tearing. It should not be ignored that there exist a small amount of stuck wear debris
particles and some island-like transferred cover layers on the worn surface of the Mo–40Ni–13Si alloy.
The formation mechanism and protective contribution of transferred cover layers during the wear
process has been discussed in our previous works [28].

Through careful examination of the high magnification SEM micrographs (Figure 8b) showing the
worn surface, micro-cracks with the length from 5 to 30 µm were detected on the brittle intermetallic
matrix. Interestingly, the propagation of micro-cracks stopped when approaching the ductile Mo
phase distributed uniformly in microstructure of the Mo–40Ni–13Si alloy. Therefore, the intersection
of micro-cracks and spalling of materials was avoided, which could be evidenced by the fact that no
spalling fragments were found on the worn surface.
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The worn surfaces of 1.0%C–1.5%Cr bearing steel rotating wheel coupling with the Mo–40Ni–13Si
alloy displays extremely narrow micro-plowings and stuck tiny debris powders, as shown in Figure 9c,
implying no adhesion between the block specimen and steel wheel during the sliding wear process.
This phenomenon manifests once again that the Mo–40Ni–13Si alloy has less metallurgical solubility
with traditional engineering steels and better tribological compatibility.

Materials 2016, 9, 986  8 of 14 

 

steels provide evidence of suffering adhesive and abrasive wear. There are more adhesive wear 
features on the worn surface coupling with 0.45%C steel (Figure 9a), but relatively less visible 
plowing compared to the coupling with austenitic stainless steel. 

Figure 7. SEM micrographs showing the worn surface morphologies of the hardened 0.45%C steel (a) 
and austenitic 1Cr18Ni9Ti stainless steel (b) at a contact load of 196 N for a sliding distance of 3312 m. 

However, the worn surface of the Mo–40Ni–13Si alloy is quite smooth and clean, as indicated 
in Figure 8a, which is very consistent with the low friction coefficient and smooth trace mentioned 
above. There are no characteristic features of metallic adhesion and obvious abrasive wear—i.e., 
grooves and materials tearing. It should not be ignored that there exist a small amount of stuck 
wear debris particles and some island-like transferred cover layers on the worn surface of the 
Mo–40Ni–13Si alloy. The formation mechanism and protective contribution of transferred cover 
layers during the wear process has been discussed in our previous works [28]. 

Figure 8. Low (a) and high (b) magnification SEM micrographs showing the worn surface morphologies 
of the Mo–40Ni–13Si alloy at a contact load of 196 N for a sliding distance of 3312 m. 

Materials 2016, 9, 986  9 of 14 

 

Figure 9. Worn surface morphologies of the hardened 1.0%C–1.5%Cr bearing steel wear counterpart 
wheel coupled with the hardened 0.45%C steel (a); austenitic 1Cr18Ni9Ti stainless steel (b); and the 
Mo–40Ni–13Si alloy (c), at a contact load of 196 N for a sliding distance of 3312 m. 

Through careful examination of the high magnification SEM micrographs (Figure 8b) showing 
the worn surface, micro-cracks with the length from 5 to 30 μm were detected on the brittle 
intermetallic matrix. Interestingly, the propagation of micro-cracks stopped when approaching the 
ductile Mo phase distributed uniformly in microstructure of the Mo–40Ni–13Si alloy. Therefore, the 
intersection of micro-cracks and spalling of materials was avoided, which could be evidenced by 
the fact that no spalling fragments were found on the worn surface. 

The worn surfaces of 1.0%C–1.5%Cr bearing steel rotating wheel coupling with the 
Mo–40Ni–13Si alloy displays extremely narrow micro-plowings and stuck tiny debris powders, as 
shown in Figure 9c, implying no adhesion between the block specimen and steel wheel during the 
sliding wear process. This phenomenon manifests once again that the Mo–40Ni–13Si alloy has less 
metallurgical solubility with traditional engineering steels and better tribological compatibility. 

3.7. Wear Debris Morphology 

Figure 10 shows the SEM micrographs of the wear debris collected at each end of wear test for 
three test materials. The difference in morphology of wear debris is consistent with the worn 
surface appearances, shown in Figures 7–9. 

For the designed Mo–40Ni–13Si intermetallic alloy, wear debris displays a size distribution 
from tiny powder, filament-like debris (up to 70 μm in length) to bulk agglomeration (up to 60 μm 
in size) at all applied loads, as illustrated in Figure 10a. Further EDS examination indicates that the 
chemical composition of the tiny powders is 55.44Fe11.01Ni7.93Mo4.06Si20.97O0.59Cr (at %). It is 
easy to deduce that the tiny wear debris powders predominantly originated from the wear 
counterpart wheel, hardened 1.0%C–1.5%Cr bearing steel. The filament-like debris is enriched Fe 
with measurable levels of Cr and O, which indicates that they are the cutting products from the 
steel wheel. Interestingly, the bulk of the debris is comprised of an agglomeration of tiny debris 
powders, which EDS results suggest are complex metal-based phases, with a certain amount of 
oxygen. In comparison, the wear debris of the hardened 0.45%C steel and austenitic 1Cr18Ni9Ti 
stainless steel are extremely large in size, as shown in Figure 10b,c. 

Figure 9. Worn surface morphologies of the hardened 1.0%C–1.5%Cr bearing steel wear counterpart
wheel coupled with the hardened 0.45%C steel (a); austenitic 1Cr18Ni9Ti stainless steel (b); and the
Mo–40Ni–13Si alloy (c), at a contact load of 196 N for a sliding distance of 3312 m.

3.7. Wear Debris Morphology

Figure 10 shows the SEM micrographs of the wear debris collected at each end of wear test for
three test materials. The difference in morphology of wear debris is consistent with the worn surface
appearances, shown in Figures 7–9.

For the designed Mo–40Ni–13Si intermetallic alloy, wear debris displays a size distribution from
tiny powder, filament-like debris (up to 70 µm in length) to bulk agglomeration (up to 60 µm in size)
at all applied loads, as illustrated in Figure 10a. Further EDS examination indicates that the chemical
composition of the tiny powders is 55.44Fe11.01Ni7.93Mo4.06Si20.97O0.59Cr (at %). It is easy to
deduce that the tiny wear debris powders predominantly originated from the wear counterpart wheel,
hardened 1.0%C–1.5%Cr bearing steel. The filament-like debris is enriched Fe with measurable levels
of Cr and O, which indicates that they are the cutting products from the steel wheel. Interestingly,
the bulk of the debris is comprised of an agglomeration of tiny debris powders, which EDS results
suggest are complex metal-based phases, with a certain amount of oxygen. In comparison, the wear
debris of the hardened 0.45%C steel and austenitic 1Cr18Ni9Ti stainless steel are extremely large in
size, as shown in Figure 10b,c.
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3.8. Wear Subsurface

Figure 11 gives longitudinal cross-sections of the worn surfaces at a contact load of 196 N. It can
be seen that no evidence of local plastic deformation, fracture, or selective wear on the wear subsurface
were observed for the multiphase Mo–40Ni–13Si intermetallic alloys. In contrast, serious subsurface
plastic deformation on the longitudinal section along the wear sliding direction occurred for the two
comparing materials, hardened 0.45%C steel and austenitic 1Cr18Ni9Ti stainless steel. The two steels
also exhibited similar depth of deformation under dry sliding wear conditions, which is probably
owing to their similar hardness values.
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Moreover, the Mo–40Ni–13Si alloy had similar morphologies of worn surface and subsurface at
different loads. Thus, the wear resistance of the designed intermetallic alloy materials—including
wear loss, surface wear, and subsurface morphologies—was independent on contact loads.

4. Discussion

The microstructure of the arc-melted Mo–40Ni–13Si intermetallic alloy (shown in Figure 3)
demonstrates the presence of intermetallic NiMo phase, as well as a certain amount of molybdenum
dendrites and ternary metal Mo2Ni3Si silicide at room temperature, which is consistent with the alloy
design in high quality. Now, it is necessary to analyze the solidification process of the Mo–40Ni–13Si
multiphase alloy because, up to the current knowledge accessible for the authors, little information is
given concerning the solidification of the ternary Mo–Ni–Si system alloy.

Refractory metal Mo firstly started nucleating and growing as the liquid alloy cooled, because
Mo has the highest melting point (2623 ◦C) among three phases of the Mo–40Ni–13Si alloy. In the
very beginning of solidification, the nucleation location of the Mo crystalline grain is random in
homogeneous melt if the heterogeneous nucleation on the surface of the crucible is not taken into
account, which featured a uniform distribution of Mo dendrites in the microstructure. The Mo grain
grew dendritically with successive solidifying and the change of solid and liquid phase composition
depended on the local temperature and phase diagram.

Following that, the remaining liquid became relatively poor in Mo and rich in Ni, and the
binary intermetallic compound NiMo phase formed surrounding Mo dendrites through peritectic
transformation (L + α(Mo)→ δ(NiMo) at 1362 ◦C). As indicated in Table 1, an excessive amount of
Si (approximately 10%) was dissolved in the NiMo phase, which considerably surpassed the limit
in that Si in NiMo δ-phase should be less than 1% (at %) [30]. The reason behind this is possibly the
incomplete diffusion of Si owing to non-equilibrium solidification of undercooled Mo–40Ni–13Si alloy
melt at a fast cooling rates.

Ternary metal silicide Mo2Ni3Si is a typical hP12 MgZn2-type Laves phase with the lattice
parameters of a = 0.47 nm and c = 0.747 nm. The MgZn2-type Laves phase was reported to be stable
below 1200 ◦C [30]. Hence, further decreasing the melt temperature and continuously changing
the element content in the molten alloy, Mo2Ni3Si phase formed as the solidification product of the
remaining residual liquid in the last period of the solidification process.

The magnitude of the wear loss depends on the metallographic structure of the work-materials.
In this regard, the novel Mo–40Ni–13Si multiphase intermetallic alloy appears to have an ideal
microstructure. The refractory metal Mo is well known for its ductility and toughness, and the
ternary metal silicide Mo2Ni3Si with topologically closed packed (TCP) structure possesses high
hardness and strong atomic bonds. More importantly, the uniform distribution of ductile fine
Mo dendritic phase and hard Mo2Ni3Si on continuous matrix composed by binary intermetallic
compound NiMo (having a complex ordered orthorhombic pseudo-tetragonal structure [31]) provides
the Mo–40Ni–13Si alloy an excellent combination of strength and toughness, which is undoubtedly
beneficial for tribological properties.

Besides the microstructure, the wear of metallic materials is directly proportional to hardness.
In resisting abrasive wear attacks, such as micro-cutting and -plowing, binary intermetallic compound
NiMo and molybdenum nickel silicide Mo2Ni3Si phases play a critical role because of the inherent
high hardness, under dry sliding wear test environments. Moreover, the Mo2Ni3Si phase scattered on
continuous NiMo matrix can endure the frictional heating and maintain its high hardness during the
dry sliding wear process even under a high contact load of 196 N, which resulted from the anomalous
hardness-temperature relationship of metal silicides.

The behavior of metallic materials in wear conditions is not determined by microstructure and
hardness, but also by chemical affinity of decoupled wear elements. The two steel comparison
materials have the same metallic bond with the wear coupling wheel, which lead to a strong chemical
affinity and serious wear loss. While the covalent-dominant atomic bonding attributes of NiMo
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and Mo2Ni3Si phases in the Mo–40Ni–13Si alloy lead to poor chemical affinity with its wear steel
counterpart. It is the reason why no metallic adhesion occurred between the sliding surfaces when the
novel intermetallic alloy had a slide-interaction with the metallic counterpart (hardened 1.0%C–1.5%Cr
bearing steel wheel). Therefore, the strong covalent-dominant atomic bonding attributes of NiMo and
Mo2Ni3Si phases endow the Mo–40Ni–13Si alloy excellent resistant capability to adhesive wear
damages from metallic bonding to its steel counterpart, and prevented the intermetallic matrix
from plastic deformation, adhesion, and materials-transferring, as well as a welding joint to the
metallic asperities on the contact surface of the slide-coupling metallic counterpart. Both the block-like
alloy sample and metallic coupling wheel gave a relatively smooth worn surface after the wear test,
as indicated in Figures 8 and 9c. Furthermore, the low friction coefficient and excellent metallic
tribological compatibility of the Mo–40Ni–13Si alloy are also apparently results of the different atomic
bonds with the coupling steel wheel

Besides the above mentioned, the increase in wear resistance of the Mo–40Ni–13Si alloy can
also be associated with the contribution of ductile Mo phase on toughness improvement. Note that
some micro-cracks formed in the brittle intermetallic compound matrix of the Mo–40Ni–13Si alloy,
as displayed in Figure 8b. In the friction and wear test process, the block-like alloy sample suffered not
only normal compressive stress from the coupling steel wheel but also shear stress induced by friction
between two contact surfaces, which is responsible for the formation of micro-cracks on the brittle
intermetallic matrix. The driving force to initiate micro-crack extending is higher relative to NiMo and
Mo2Ni3Si phase when the micro-cracks grew approaching the ductile Mo phase. The propagating
crack became locally impeded in front of ductile Mo dendrites. These phenomena imply that the in situ
incorporation and even distribution of refractory metal Mo with high ductility and toughness in the
intermetallic compound matrix also had a dominant role in supplying an excellent toughening effect.
The increase in ductility is also a highly desirable property for wear resistance intermetallic-based
materials. Combining the worn surface and debris morphologies, taking the friction coefficient into
account, the dry sliding wear process could be deduced as follows. For two reference metallic materials,
serious abrasive and adhesive wear practices, which are characterized by unwanted displacement
and attachment of wear debris and materials from one surface to another, happened following the
short early run-in period. Whereas, for the novel Mo–40Ni–13Si alloy, the adhesion on contact
surfaces is difficult owing to the different atomic bonding features between the test alloy and coupling
1.0%C–1.5%Cr bearing steel wheel. The rotating steel wheel was removed gradually in the form of
micro-cutting by coupling the block-like alloy specimen. The metal debris, mainly produced from the
steel wheel, was oxidized under the effect of friction heat. Some wear debris on the sliding surfaces
became metal oxide layers during the sliding motion, which produced an anti-wear effect. The tiny
debris particles likely act as a good solid lubricant between the wear couples and hence are helpful to
the improving of wear resistance and metallic tribological compatibility. Therefore, the Mo–40Ni–13Si
alloy only suffered soft abrasive wear from debris and superficial oxidation due to tribo-chemical
reactions. This is highly consistent with the low wear loss and smooth worn surface.

5. Conclusions

A novel wear resistant Mo–40Ni–13Si multi-phase intermetallic alloy was fabricated successfully
with Mo–Ni–Si powder blends by arc-melting technique. The microstructure of the Mo–40Ni–13Si
alloy shows a uniform distribution of primary refractory metal Mo dendrites on continuous binary
intermetallic compound NiMo matrix as well as a certain amount of ternary metal silicide Mo2Ni3Si
precipitation phase. The Mo–40Ni–13Si alloy exhibits outstanding wear resistant property and sluggish
wear-load characteristics under selected room temperature dry sliding wear conditions, which are
attributed to its unique microstructural features and effective combination of strength, ductility,
and toughness. Ductile Mo dendritic phase plays a positive role in toughening and improving wear
resistance of the intermetallic alloy through stopping the propagation of micro-cracks over the duration
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of wear tests. The dominant mechanism of material removal and wear for the Mo–40Ni–13Si alloy is
soft abrasive wear in a room temperature, dry sliding wear environment.
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