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Abstract: This paper explores the fracture process based on finite element simulation. Both probabilistic
and deterministic methods are employed to model crack initiation, and several commonly used criteria
are utilized to predict crack growth. It is concluded that the criteria of maximum tensile stress, maximum
normal stress, and maximum Mises stress, as well as the Coulomb-Mohr criterion are able to predict
the initiation of the first crack. The mixed-mode criteria based on the stress intensity factor (SIF), energy
release rate, and the maximum principal stress, as well as the SIF-based maximum circumferential
stress criterion are suitable to predict the crack propagation.
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1. Introduction

Windows are among the weakest parts in a building and have drawn great attention when
considering the case of fire. Upon heating, a window glass may break and release the accumulated
thermal stress. This opens a gate for oxygen flow from the outside into the room, and thus accelerates
the fire development. The breakage of glass exposed to fire includes two stages. First, cracks initiate
and propagate in a glass that is under heating. Then they coalesce to form “islands”, followed by the
falling out of the fragments. Since this process may exert considerable influence on the development
of a fire, understanding this mechanism is of important significance not only for fundamental research
but also for practical applications.

The edges of a window glass are covered by a frame. When exposed to a fire, the temperatures
in the central portion and edge region are different. It is believed that the glass cracks when this
temperature difference reaches a critical value. However, the data of the critical temperature difference
proposed by different authors exhibit considerable discrepancy. For example, the theoretical predictions
given by Keski-Rahkonen [1] and Pagni and Joshi [2–4] are 80 ◦C and 58 ◦C, respectively, while the
experimental measurements reported by Skelly et al. [5] and Shields et al. [6] vary from 90 to 150 ◦C,
respectively. Klassen et al. [7] examined the effect of sample size on the temperature difference for crack
initiation, and found that the critical values for small (305 × 305 mm2) and medium (609 × 1219 mm2)
samples are less than 200 ◦C and 300 ◦C, respectively.

The non-uniform temperature distribution in a glass exposed to fire may be influenced by
various factors, such as the thermal and mechanical properties of the glass, the decay length of
flame radiation, and the heating methods [3–5]. In particular, the presence of surface flaws can
significantly reduce the practical strength of a glass product [8]. These factors obviously endow
some probabilistic characteristics to crack initiation in glass [9]. For this reason, Joshi and Pagni [4]
proposed a three-parameter cumulative Weibull function that can be used to model the fracture
of ordinary window glass, and Hietaniemi [9] developed a probabilistic approach to evaluate the
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breakage condition for a window pane heated by a fire. Nonetheless, research in this direction is still
under way, and the current capability of predicting crack initiation and propagation in glass can and
should be largely enhanced. This is the motivation of the present study. Based on a finite element
simulation, this paper explores the fracture process of a window glass under the thermal loading of fire.
Both the probabilistic and deterministic methods are adopted, and the main objective is to examine
the validities of some commonly used criteria of crack initiation and propagation for window glasses
under fire conditions.

2. Thermal Stress Distribution

In the case of a fire, window glass is normally subjected to a non-uniform heating, due to the
fact that the temperature of the upper portion is higher than that of the lower portion. To investigate
the glazing behavior, a simple assumption of a three layer rising temperature was adopted. It is
the authors’ belief that although this assumption is not the same as a real fire, it is suitable for the
investigation in the present work, as the objective is to investigate different criteria and determine some
suitable methods to predict crack initiation and propagation. A square glass pane with a dimension of
0.003 × 0.3 × 0.3 m3 was used in the simulation. As shown in Figure 1, the edge of the glass pane is
covered by a frame with a width of 0.02 m. The central portion of the pane is divided vertically into
three regions in which the heating rates are different. The sample was heated at 300 K for 60 s, and the
final temperatures in the upper, middle, and lower regions were 400 K, 380 K, and 345 K, respectively.
At the edge, the glass is shaded by the window frame, so the glass rising temperature is quite small
in a real fire. Therefore, the glass edge temperature is assumed to be invariant. Using an in house
software, the thermal stress in the glass was computed via 45 × 45 × 2 hexahedron elements [10],
with material constants cited from previous studies [11–14]. It is noted that some glass parameters
are temperature-dependent [15], but in the present simulation the temperature range is very small
and when the crack occurs, the maximum temperature in glazing is around 380 K. In such a small
temperature range, the variance of material parameters is very limited [16] and is thus ignored in the
simulation. Figure 2a,b reports the calculated distributions of the temperature and von Mises stress,
respectively. It can be seen that the von Mises stress attains its maximum value in the central part of
the upper edge. All the other stress components, including the principal stress values σ1, σ2, and σ3

are obtainable. The results are used as a starting point in the subsequent analysis of crack initiation.
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where σb is the breaking stress, σ0 and m are the scale and shape parameters in the Weibull 
distribution function, and σu is often referred to as the zero strength or lowest strength of the 
specimen. The values of m, σ0, and σu were obtained by data fitting and the detailed values are listed 
in Table 1 [4]. Further experiments by Pagni [17] with different glass thicknesses enable one to assess 
the dependence of these parameters on the glass thickness L. The equations characterizing this 
dependence, written in a non-dimensional form, are as follows [9,17]: 
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Figure 2. Distributions of temperature and von Mises stress in the glass before crack initiation.
(a) Temperature distribution in glazing; (b) Von Mises Stress. (“3.8E+07” represents “3.8 × 107”
in legend).

3. Modeling of Crack Initiation

As the glass crack initiation shows some stochastic behaviour, a probabilistic criterion is used to
predict the glass crack initiation. For comparison, another deterministic criterion is employed in the
simulation to predict when and where a crack initiates in the glass pane under the thermal conditions.

3.1. Probabilistic Criterion

Based on their experiments of the four-point bending test for 59 glass plates, Joshi and Pagni [4]
described the distribution of the breaking stress by a three-parameter cumulative Weibull function
as follows:

F(σb) =

{
0 σb < σu

1− exp[−( σb−σu
σ0

)
m
] σb ≥ σu

(1)

where σb is the breaking stress, σ0 and m are the scale and shape parameters in the Weibull distribution
function, and σu is often referred to as the zero strength or lowest strength of the specimen. The values
of m, σ0, and σu were obtained by data fitting and the detailed values are listed in Table 1 [4].
Further experiments by Pagni [17] with different glass thicknesses enable one to assess the dependence
of these parameters on the glass thickness L. The equations characterizing this dependence, written in
a non-dimensional form, are as follows [9,17]:
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Table 1. Parameters for two- and three-parameter Weibull Distribution Function (4).

Weibull Function m σ0 (MPa) σu (MPa)

Two-parameter 3.20 74.1 –
Three-parameter 1.21 33.0 35.8
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3.1.1. Two-Parameter Weibull Distribution

When σu is taken as zero, Equation (1) becomes the two-parameter Weibull distribution. In this
case, the probability distribution of crack initiation in the glass is shown in Figure 3. It can be noted
that the probability is higher in the edge region than in the central portion of the pane. The highest
probability occurs in the portion near the central part of the upper edge, where both the temperature
and tensile stress attain their maximum values. At the two side edges, the probability becomes smaller.
The smallest probability appears at the lower edge. The Weibull method can predict the probability
distribution of glass crack initiation, and the maximum value is selected here. In our simulations,
we postulate that the glass cracks if the probability is larger than 0.5. As to the random crack initiation
location, this needs another model for its prediction [18], which is not discussed here.
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3.1.2. Three-Parameter Weibull Distribution

The three-parameter Weibull distribution is more robust and may provide a better characterization of
the data [19]. By setting the same simulation condition, the probability distribution of the three-parameter
model is obtained and shown in Figure 4. It can be seen that the contour plot is similar to that of the
two-parameter model. A slightly different feature is that the highest value now appears exactly in the
central part of the upper edge. The values of the critical temperature difference for the first crack are
predicted as 94 ◦C and 93 ◦C by the two- and three-parameter models, respectively. The results exhibit
good coincidence and are close to the value of 90 ◦C reported by Skelly [5].
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3.2. Deterministic Criterion

Another way to predict the crack initiation is to use a deterministic criterion. To perform this,
we employ the following five strength theories:

3.2.1. Maximum Normal Stress Criterion

The maximum normal stress criterion, also known as Coulomb’s criterion, states that a crack
occurs when the maximum normal stress reaches the ultimate strength of the material [20]. The ultimate
tensile strength is smaller than the compressive strength in most cases. We assume the same ultimate
strength Sut in tension and compression, which means that the crack forms in the multi-axial state
of stress, when the maximum principal normal stress exceeds the ultimate tensile or compressive
strength. This is the safer way to predict the crack initiation, and can be written as:

max(σ1, σ2, σ3) ≥ Sut (5)

where Sut is the ultimate tensile stress of the glass pane. Here Sut was taken as 40 MPa for the float
glass without consideration of flaw distribution. The distribution of max(σ1, σ2, σ3)/Sut is plotted in
Figure 5. Similar to the results given by the probabilistic criterion, the maximum value is seen at the
center of the upper edge. At the center of the glass pane, there are some grades which are not visible in
Figures 3 and 4. These differences are caused by the calculation methods.
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3.2.2. Coulomb-Mohr Criterion

The Coulomb-Mohr criterion asserts that fracture occurs when the principal stresses satisfy the
following condition [21]:

σ1

Sut
− σ3

Suc
≥ 1 (6)

with Sut and Suc being the ultimate tensile and compressive strengths, respectively. Note that both
σ3 and Suc are always negative. As can be noted in Figure 6, the maximum value of σ1/Sut − σ3/Suc

is located at the center of the upper edge, meaning that the cracking of the glass initiates from
that area. This case is consistent with the foregoing predictions. Considerable differences between
Figures 5 and 6 appear in the exposed part of the pane, but have no significant effect on crack initiation
because the stress there is much smaller than that in the edge region.
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3.2.3. Maximum Principal Stress Criterion

The maximum principal stress criterion can be expressed by:

σ1

Sut
≥ 1 (7)

This means that the crack occurs when the largest principal stress σ1 exceeds the uniaxial tensile
strength. Although this criterion allows for a quick and simple comparison with experimental data,
it is rarely suitable for design purposes [22]. The distribution of σ1/Sut is depicted in Figure 7. As in
Figures 5 and 6, the maximum value is also located at the top center of the glass edge. At the same time,
it is interesting to see that the distribution in the exposed region of the glass resembles a combination
of those shown in Figures 5 and 6. Since the only involved principle stress σ1 is always positive, this
criterion can be used only if the glass is under expansion.
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3.2.4. Maximum Mises Stress Criterion

Also known as the shear-energy theory or the maximum distortion energy theory, this criterion
states that a material starts to crack at a location where the von Mises stress attains the yield
strength [23]:
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σvm

0.577Sut
≥ 1 (8)

As shown in Figure 8, the maximum value of σvm/0.577Sut appears at the top center, in accordance
with the results given by the other criteria mentioned above. However, clear gradation can be seen
in the three regions where the temperatures are different due to unequal heating rates. In all three
regions, the lowest Mises stress occurs at the central part, implying that it is difficult for a crack to
initiate there.
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3.2.5. Maximum Shear Stress Criterion

The maximum shear stress criterion is also known as the Tresca yield criterion, and it predicts
failure of a material when the absolute maximum of the shear stress reaches the strength of simple
tension [23], i.e.,

max(σxy, σxz, σyz)

0.5Sut
≥ 1 (9)

The distribution of max(σxy, σxz, σyz)/0.5Sut is shown Figure 9. The pattern is dramatically
different from those obtained from any other criteria, and the largest value appears near the top-left
corner. However, this does not mean that cracks will initiate from that position as well, because under
the thermal loading the normal stresses are much larger than the shear stress. Therefore, this criterion
cannot be used to predict crack initiation as it excludes the contribution from normal stresses.
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All the methods mentioned above were applied to examine the time to first crack, and the results
are listed in Table 2. For the reasons demonstrated above, no crack appears during the period of
simulation when the maximum shear stress criterion is used. This exception aside, one can see that
the deterministic methods No. 3 to 6 give shorter times to first crack than the probabilistic methods
No. 1 to 2. Particularly, the Maximum normal stress, Coulomb-Mohr, and Maximum principle criteria
lead to an identical result of 23.5 s. This is the shortest time to first crack and can be used as a criterion
for crack initiation. In comparison, the maximum von Mises stress criterion results in a slightly longer
time of 25 s.

Table 2. Time to first crack predicted by various criteria.

No. Criteria ∆T, ◦C σy, MPa σvm, MPa σ1, MPa Time, s

1 Two-parameter Weibull 94 67.78 67.23 67.79 44.0
2 Three-parameter Weibull 93 60.50 59.80 60.50 43.0
3 Maximum normal stress 76.8 40.03 39.48 40.03 23.5
4 Coulomb-Mohr 76.8 40.03 39.48 40.03 23.5
5 Maximum principle stress 76.8 40.03 39.48 40.03 23.5
6 Maximum von Mises stress 78.0 40.72 40.14 40.73 25.0
7 Maximum shear stress no crack – – – –

4. Modeling of Crack Propagation

Three linearly independent cracking modes are categorized as Mode I, II, and III, as shown in
Figure 10. Mode I is an opening mode where the crack surfaces move directly apart and it is the most
common load type encountered in engineering design. Mode II is a sliding mode where the crack
surfaces slide over one another in a direction perpendicular to the leading edge of the crack. Mode III
is a tearing mode where the crack surfaces move relative to one another and parallel to the leading
edge of the crack. Different subscripts are used to designate the stress intensity factor (K) and the
energy release rate (G) for the three different modes. The K and G for mode I are designated KI and GI

when applied to the crack opening mode. The mode II stress intensity factor and energy release rate,
KII and GII, are applied to the crack sliding mode, and the mode III stress intensity factor and energy
release rate, KIII and GIII, are applied to the tearing mode.
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Numerical simulation of crack propagation has been a challenging problem for many years, and
discrete crack propagation modeling approaches using remeshing techniques are usually adopted.
The moving tip remesh method is utilized here to refine the tip field of the crack. The following six
criteria are chosen to determine whether a crack grows or is arrested.

4.1. Mixed-Mode Criterion Based on SIFs

The SIFs-based mixed-mode criterion is commonly used to predict crack growth. It assumes that
cracks start to grow once the stress intensity factors KI, KII, and KIII satisfy the following condition [24]:

(
KI

KIC
)

α

+ (
KII

KIIC
)

β

+ (
KIII

KIIIC
)

γ

= 1 (10)
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where KIC, KIIC, and KIIIC denote the values of fracture toughness of the I, II and III modes, respectively,
and α, β, and γ are empirical constants. Choosing α = β = 2, and ignoring the term of the tearing
mode γ, as suggested by Wu [25], yields

(
KI

KIC
)

2
+ (

KII

KIIC
)

2
= 1 (11)

Based on this criterion, the crack propagation path is predicted and shown in Figure 11. The crack
starts from the center of the upper edge, and then propagates downwards to the center of the upper
region in the pane. During this process, as illustrated in Figure 12, KI is initially larger than KII and KIII

and thus dominates the crack direction. Thereafter, KII becomes larger than KI, so the crack changes
the propagation direction to the right of the glass.

Materials 2016, 9, 794  9 of 17 

 

1)()()(
IIIC

III

IIC

II

IC

I  

K
K

K
K

K
K

 (10) 

where KIC, KIIC, and KIIIC denote the values of fracture toughness of the I, II and III modes, respectively, 
and α, β, and γ are empirical constants. Choosing 2   , and ignoring the term of the tearing 
mode γ, as suggested by Wu [25], yields 

1)()( 2

IIC

II2

IC

I 
K
K

K
K

 (11) 

Based on this criterion, the crack propagation path is predicted and shown in Figure 11. The 
crack starts from the center of the upper edge, and then propagates downwards to the center of the 
upper region in the pane. During this process, as illustrated in Figure 12, KI is initially larger than KII 
and KIII and thus dominates the crack direction. Thereafter, KII becomes larger than KI, so the crack 
changes the propagation direction to the right of the glass. 

 
Figure 11. Crack path predicted by the mixed-mode criterion based on SIFs. 

0 5 10 15 20 25 30
-1x107

0

1x107

2x107

3x107

4x107

5x107

6x107

7x107

S
IF

s 
(P

a
m

 0.
5
)

Time step (s)

 K
I

 K
II

 K
III

 
Figure 12. Variation of SIFs associated with the mixed-mode criterion based on SIFs. 

4.2. Mixed-Mode Criterion Based on Energy Release Rates 

In this case, cracks are assumed to grow if the energy release rates GI, GII, and GIII satisfy [24] the 
following condition: 

Figure 11. Crack path predicted by the mixed-mode criterion based on SIFs.

Materials 2016, 9, 794  9 of 17 

 

1)()()(
IIIC

III

IIC

II

IC

I  

K
K

K
K

K
K

 (10) 

where KIC, KIIC, and KIIIC denote the values of fracture toughness of the I, II and III modes, respectively, 
and α, β, and γ are empirical constants. Choosing 2   , and ignoring the term of the tearing 
mode γ, as suggested by Wu [25], yields 

1)()( 2

IIC

II2

IC

I 
K
K

K
K

 (11) 

Based on this criterion, the crack propagation path is predicted and shown in Figure 11. The 
crack starts from the center of the upper edge, and then propagates downwards to the center of the 
upper region in the pane. During this process, as illustrated in Figure 12, KI is initially larger than KII 
and KIII and thus dominates the crack direction. Thereafter, KII becomes larger than KI, so the crack 
changes the propagation direction to the right of the glass. 

 
Figure 11. Crack path predicted by the mixed-mode criterion based on SIFs. 

0 5 10 15 20 25 30
-1x107

0

1x107

2x107

3x107

4x107

5x107

6x107

7x107

S
IF

s 
(P

a
m

 0.
5
)

Time step (s)

 K
I

 K
II

 K
III

 
Figure 12. Variation of SIFs associated with the mixed-mode criterion based on SIFs. 

4.2. Mixed-Mode Criterion Based on Energy Release Rates 

In this case, cracks are assumed to grow if the energy release rates GI, GII, and GIII satisfy [24] the 
following condition: 

Figure 12. Variation of SIFs associated with the mixed-mode criterion based on SIFs.

4.2. Mixed-Mode Criterion Based on Energy Release Rates

In this case, cracks are assumed to grow if the energy release rates GI, GII, and GIII satisfy [24] the
following condition:

(
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GIC
)

α
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GII

GIIC
)

β
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GIIIC
)

γ

= 1 (12)
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where GIC, GIIC, and GIIIC are the critical energy release rates in the I, II and III modes, respectively,
and α, β, and γ are constants. By setting GIc = GIIc = GIIIc = Gc and α = β = γ = 1, the above condition
is reduced to the fracture criterion based on the total energy release rate [26]:

G = GI + GII + GIII = Gc (13)

This criterion is different from the SIFs-based mixed-mode criterion in the power value of α, β,
and γ. The KIII is ignored in the SIFs-based mixed-mode criterion and GIII is considered in the energy
release rates based mixed-mode criterion. The simulated crack path using this criterion is plotted
in Figure 13. In comparison with the case of the SIF criterion, a difference is that the crack changes
its direction once again when it reaches the right edge of the pane and then propagates upwards.
For elucidation, the variations of the SIFs and energy release rates during the whole process are
depicted in Figures 14 and 15. It is seen that the growth of the crack is first dominated by KII or GII,
and then by KI or GI, as in the situation shown in Figure 12. However, in the last stage when the
crack reaches the right edge of the glass, the values of KII and KI come very close to each other, and
neither can dominate the crack direction. A possible result in this circumstance is the vertical crack
propagation, because the horizontal path is constrained by the protecting frame.
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4.3. SIF-Based Maximum Circumferential Stress Criterion

This criterion states that a crack grows in the direction of the maximum circumferential
stress [24,27] which is determined by:

Ke = cos
θ0

2
(KIeff cos2 θ0

2
− 3

2
KI Isinθ0) = KIC (14)

KIeff = KI + B|KIII| (15)

where B is an empirical factor, Ke is the effective stress intensity factor, KIC is the fracture toughness, and
θ0 is the angle of crack growth. According to Equations (14) and (15), the simulated crack path is shown
in Figure 16. Again, a significant difference can only be found at the later stage of crack propagation:
the crack is arrested once it runs into the edge region protected by the frame. This phenomenon can
be understood with the aid of Figure 17 in which the variations of the SIFs are given. Although KII

is larger than KI at that stage, it is not sufficient to drive further growth of the crack arriving at the
edge region.
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4.4. Criterion Based on Maximum Principal Stress

This criterion states that a crack grows in the direction where the maximum principal stress
exceeds the tensile strength of the material. The implementation relies on a detailed stress distribution
and thus requires very fine meshes in the vicinity of the crack tip in the finite element simulation.
Figure 18 shows the propagation path of the crack. The result is almost the same as that predicted via
the mixed-mode criterion based on the energy release rate. The corresponding variation of the SIF,
plotted in Figure 19, is almost the same as that given in Figure 14 as well. Therefore it can be concluded
that both criteria result in almost the same path of crack propagation.
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4.5. Criterion Based on Crack Tip Opening Angle (CTOA)

According to this criterion, the crack is extended if the CTOA exceeds a critical value [28].
The evaluation of the CTOA is based on the angles of sub-cracks and in the simulation of uniform crack
growth, and the actual 3D crack angle is considered as the average of all the sub-crack angles. By setting
the critical CTOA value as 0.00001 for the glass [29], the crack path is obtained and shown in Figure 20.
It is visible that the crack starts from the center of the upper edge, then runs downwards to the center
of the upper region with higher temperature. After some frequent but short-lived transitions in the
direction, the crack goes back before reaching the boundary between the upper and middle regions,
finally forming an island in the upper region. The variations of the associated SIFs are provided in
Figure 21. It can be seen that KI tends to decrease with the crack growth, and KII exhibits considerable
fluctuation, while KIII remains nearly constant. In the initial stage KI is larger than KII and KIII, thus
dominating the crack growth. After about 13 time steps KI becomes smaller, and KII and KIII start to
dominate the growth alternatively. This explains why the crack changes its direction frequently and
leaves behind a closed trajectory to form an island.
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4.6. Criterion Based on Crack Tip Opening Displacement (CTOD)

This criterion postulates the growth of a crack when the current CTOD reaches a critical value,
along the direction that causes either the opening or the shearing component of the CTOD at the new
crack tip to be the absolute maximum. In the simulation of uniform crack growth, the actual 3D crack
displacement is considered as the average of those for all the sub-crack angles [30]. L.C.S. Nunes and
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J.M.L. Reis [31] experimentally studied the CTOD and crack extension of glass using the digital image
correlation method. It was found that the glass fiber starts to extend when the CTOD is larger than
0.00001 m. Based on this work, the critical CTOD value is taken as 0.00001 m to predict the glass
extension here. The computed crack path is shown in Figure 22, with the corresponding variations
in the SIFs given in Figure 23. The crack initiates at the top center of the glass, and propagates down
towards the center of the upper region. After KII becomes larger than KI, the crack turns to the right and
is then arrested when the CTOD becomes less than 0.00001 m. From that time on, large fluctuations
of the SIFs occur and the magnitude of KI is always smaller than those of KII and KIII. Thus the
direction of the crack is changed, leading to the formation of an island at the center of the upper region.
When the CTOD is larger than 0.00001 m, such as 0.00002 m and 0.0001 m, the simulation results show
that the crack no longer grows anymore under the same thermal loading condition. When the CTOD
is smaller than 0.00001 m, such as 0.000005 m, the crack also grows. However, by comparing this with
the other cases and Nune’s work [31], 0.000005 m is not suitable to predict the crack growth.
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4.7. Discussion

Several criteria for crack initiation and propagation are examined in the simulation. It should
be noted that in a fire the heat transfer between glass and smoke or fire is very complicated, and
includes radiation and convention, and the interaction of the fire and glass may markedly change
the enclosure fire dynamic. These factors as well as the inherent characteristics in brittle materials,
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such as microcracks [32], may cause the crack initiation to be very random. On the other hand, from
previous experiments it was found that despite the tests that were conducted under nearly identical
conditions, the critical breakage stresses distributed randomly [4]. Thus, uncertainty exists in crack
initiation and when considering the fire scenario and glass properties, it is difficult to predict glass
breakage occurrence very accurately. Regarding the crack path, according to the numerical results
there are essentially two kinds of crack path. The first is the crack path that starts from the central
upper edge and then terminates after turning nearly a right-angle at the right edge of the upper
region, as predicted by using the criteria based on SIFs, energy release rates, and maximum principal
stresses, as well as the SIF-based maximum circumferential stress criterion. The other is the crack
path initiating from the upper center of the pane edge and stopping in the central part of the upper
region with the formation of an island, as predicted by the CTOA- and CTOD-based crack growth
criteria. If the conditions in the experiments are controlled very strictly to generate the crack path,
the phenomenon in crack propagation, such as oscillatory behavior, may be deterministic rather than
a statistical process [33,34], while also due to the microcrack and thermal gradient, the crack path
presents probabilistic characteristics in a fire. For comparison, a typical experimental result of the
crack path in a heated glass pane that was observed in our previous study [35] is shown in Figure 24.
The glass critical strain decreases with increasing microcrack size, so the edge of the glass has been
polished to avoid the strength reduction. The experimental condition is similar to that used in the
simulation, and for more information please refer to [35]. The crack in Figure 24 initiates from the
top center of the glass, and propagates along the upper edge to the right and left. Relatively, the
situation seems more consistent with the first kind of crack path in the simulation. It is therefore
believed that the criteria based on SIFs, energy release rates, and maximum principal stresses, as well
as the SIF-based maximum circumferential stress criterion, are more suitable for use in predicting crack
growth in glazing exposed to a fire, rather than the CTOA- and CTOD-based criteria. Unfortunately,
the program used here can currently only model one crack propagation, and further effort is needed to
develop a code which can simulate the complicated process of crack initiation and growth in a real
fire scenario.
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glass pane under a fire condition has been investigated using the finite element method. Both the
probabilistic and deterministic methods were adopted to examine crack initiation, while several
commonly used criteria were utilized to predict crack propagation. Through detailed data analysis
and comparison with the experimental observations, the following conclusions can be made.

The two- and three-parameter Weibull distributions give almost the same location and
temperature difference for crack initiation. However, the predicted critical temperature difference is
much larger than that determined via the criteria of maximum tensile stress, maximum normal stress,
and maximum Mises stress, as well as the Coulomb-Mohr criterion. These last four criteria can be used
to model the initiation of the crack in the glass pane. In contrast, the maximum shear stress criterion
predicts no crack initiation and thus should be abandoned.

The mixed-mode criteria based on SIF, energy release rate, and the maximum principal stress,
as well as the SIF-based maximum circumferential stress criterion, can provide relatively consistent
crack propagation paths with the experiment. At the same time, the predictions via the CTOA- and
CTOD-based crack growth criteria show considerable differences. Consequently, the first four criteria
are more suitable for modeling the crack propagation.

The actual case of glass crack in fire is very complex, and includes bifurcations and multi-cracks.
The fracture theory and technology to simulate such a complicated phenomenon are still under
development. At present, only one crack is simulated, and the simulation of multi-cracks will have to
be performed in the future. Once the multi-crack can be simulated, it will be easier to compare the
simulated results with experimental results.
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