## **Supplementary Materials**

| Authors           | Pub. Year | Method    | ΤΡΒ (μ     | ım μm <sup>-3</sup> ) | Volume under study<br>(μm³) |  |  |  |  |
|-------------------|-----------|-----------|------------|-----------------------|-----------------------------|--|--|--|--|
|                   |           | _         | total      | active                |                             |  |  |  |  |
| Wilson [13]       | 2009      | FIB-SEM   | 4.2        | 3.7                   | 109                         |  |  |  |  |
| Shearing [14]     | 2009      | FIB-SEM   | 10.58      | 5.39                  | 75                          |  |  |  |  |
|                   |           |           | 9.36       | 4.25                  | 722                         |  |  |  |  |
| Grew [15]         | 2010      | X-ray     | 22.4       | 7                     | 2.2                         |  |  |  |  |
| Sumi [7]          | 2010      | FIB-SEM   | 2.49       |                       | 1727.6                      |  |  |  |  |
|                   |           |           | 2.39       |                       | 2824                        |  |  |  |  |
| 01.11 54.03       | 0040      |           | 2.11       |                       | 2490.6                      |  |  |  |  |
| Shikazono [16]    | 2010      | FIB-SEM   | 2.556      | 0.45                  | 972                         |  |  |  |  |
| Shearing [17]     | 2010      | FIB-SEM   | 12.99      | 8.15                  | 50.5                        |  |  |  |  |
| Guan [18]         | 2011      | X-ray     | 3.37       | 2.19                  | 283                         |  |  |  |  |
| Guan[19]          | 2011      | X-ray     | 4.44       |                       | 199.439                     |  |  |  |  |
| Wilcon [20]       | 2011      |           | 3.1        |                       | 259.2                       |  |  |  |  |
| Wilson [20]       | 2011      | FID-SEIVI | 3.97       |                       | 490                         |  |  |  |  |
|                   |           |           | 2.04       |                       | 530                         |  |  |  |  |
|                   |           |           | 2.07       |                       | 671                         |  |  |  |  |
| Vivet [21]        | 2011      | FIR-SEM   | 2.00       | 74                    | 957.9                       |  |  |  |  |
| vivet [2 i]       | 2011      |           | 8.8        | 7.7                   | 349.4                       |  |  |  |  |
|                   |           |           | 0.0        |                       | 634.2                       |  |  |  |  |
|                   |           |           | 5.5<br>7.5 | 11                    | 687.1                       |  |  |  |  |
|                   |           |           | 11.2       | 7.4                   | 957.9                       |  |  |  |  |
|                   |           |           | 7.2        | 53                    | 703.2                       |  |  |  |  |
| Cronin [8]        | 2011      | FIR-SEM   | 3 37       | 2.6                   | 914                         |  |  |  |  |
|                   | 2011      |           | 2.5        | 0.74                  | 1121                        |  |  |  |  |
| Kanno [22]        | 2011      | FIR-SEM   | 2.0        | 0.74                  | 2424                        |  |  |  |  |
|                   | 2011      |           | 1 92       |                       | 3905                        |  |  |  |  |
|                   |           |           | 2.05       |                       | 17399                       |  |  |  |  |
| Kishimoto [23]    | 2011      | FIB-SEM   | 2.37       |                       | 1205                        |  |  |  |  |
|                   | 2011      | TID OLIN  | 2.07       |                       | 1013                        |  |  |  |  |
|                   |           |           | 2.10       |                       | 1664                        |  |  |  |  |
| Chen-Wiegart [24] | 2012      | X-rav     | 3.06       | 2 89                  | 3600                        |  |  |  |  |
| Jiao [25]         | 2012      | FIB-SEM   | 3.02       | 2.00                  | 3901 1                      |  |  |  |  |
| 0100 [20]         | 2012      | TID OLIM  | 2.48       | 1 59                  | 3165.9                      |  |  |  |  |
|                   |           |           | 27         | 2.36                  | 3608                        |  |  |  |  |
|                   |           |           | 2 17       | 1.81                  | 3428 7                      |  |  |  |  |
|                   |           |           | 2.37       | 2.08                  | 3276.8                      |  |  |  |  |
|                   |           |           | 2.12       | 1 71                  | 2490                        |  |  |  |  |
| Matsui [26]       | 2012      | FIB-SEM   | 2 49       | 2 02                  | 1967.3                      |  |  |  |  |
| matoa. [20]       |           | 110 02.00 | 1.68       | 1.28                  | 3369.2                      |  |  |  |  |
| Jiao [27]         | 2012      | FIB-SEM   | 1 29       |                       | 3901                        |  |  |  |  |
| 0.00 [21]         |           | 110 02.00 | 1.02       |                       | 3165.9                      |  |  |  |  |
|                   |           |           | 0.98       |                       | 2847.6                      |  |  |  |  |
| Kennouche [28]    | 2013      | FIB-SEM   | 2.98       | 2.59                  | 5696                        |  |  |  |  |
|                   |           |           | 2.09       | 1.65                  | 5978                        |  |  |  |  |
|                   |           |           | 1.58       | 1.18                  | 5962                        |  |  |  |  |
|                   |           |           | 1.21       | 1.04                  | 7340                        |  |  |  |  |
|                   |           |           | 1.88       | 1.42                  | 5903                        |  |  |  |  |
|                   |           |           | 2.21       | 1.91                  | 6148                        |  |  |  |  |
| Cronin [29]       | 2013      | X-ray     | 3.06       | 2.89                  | 3641                        |  |  |  |  |
| Kishimoto [30]    | 2013      | FIB-SEM   | 1.23       | 0.345                 | 2495                        |  |  |  |  |
|                   |           |           | 1.79       | 1.53                  | 1754                        |  |  |  |  |
|                   |           |           | 1.64       | 0.297                 | 2203                        |  |  |  |  |
| Kremski [31]      | 2013      | FIB-SEM   | 3.37       | 2.89                  | 1000                        |  |  |  |  |
|                   |           | FIB-SEM   | 2.5        | 1.75                  | 1000                        |  |  |  |  |
|                   |           | TXM       | 1.87       | 1.45                  | 3000                        |  |  |  |  |
|                   |           | TXM       | 1.17       | 1.03                  | 3000                        |  |  |  |  |
| Song [32]         | 2013      | X-ray     | 0.68       | 0.56                  | 485.514                     |  |  |  |  |
| Viretta [33]      | 2014      | X-ray     | 4.63       | 3.07                  | 828.1                       |  |  |  |  |
|                   |           |           | 3.46       | 2.61                  | 46656                       |  |  |  |  |
| Joos [34]         | 2014      | FIB-SEM   | 2.56       |                       | 972                         |  |  |  |  |
|                   |           | FIB-SEM   | 4.36       |                       | 328                         |  |  |  |  |
|                   |           | FIB-SEM   | 1.76       |                       | 792                         |  |  |  |  |
|                   |           | FIB-SEM   | 2.14       |                       | 559                         |  |  |  |  |
| Wang [35]         | 2014      | FIB-SEM   | 6.14       | 5.16                  | 14.4                        |  |  |  |  |
| Shimura [36]      | 2014      | FIB-SEM   | 2.47       | 1.89                  | 2719.8                      |  |  |  |  |
|                   |           |           | 2.51       | 1.65                  | 2197.44                     |  |  |  |  |
|                   |           |           | 2.46       | 1.93                  | 1913.9                      |  |  |  |  |
|                   |           |           | 2.15       | 1.64                  | 2365.4                      |  |  |  |  |
|                   |           |           | 2.53       | 1.64                  | 1713.5                      |  |  |  |  |
|                   |           |           | 2.19       | 1.58                  | 1797.1                      |  |  |  |  |
|                   |           |           | 2.61       | 2.08                  | 1624.9                      |  |  |  |  |
|                   |           |           | 3.79       | 2.83                  | 1964.3                      |  |  |  |  |
| Kubota [37]       | 2015      | FIB-SEM   | 2.49       | 2.02                  | 1958.6                      |  |  |  |  |
|                   |           |           | 2.12       | 1.8                   | 666.6                       |  |  |  |  |
|                   |           |           | 2.14       | 1.63                  | 664.9                       |  |  |  |  |

**Table S1.** Summary of TPB lengths determined by several groups available in literature.

The TPB densities of the anodes investigated in this study are compared with numerous TPB values for Ni-YSZ materials available from literature [7,8,13–37] (see Figure 3 and Table S1). The TPB densities are plotted *versus* the volume of the analyzed data cube from tomography. It shows that most reported TPB densities are in the range of  $1-4 \mu m^{-2}$ . The six data points for fine, medium and coarse anodes before and after redox cycling also fit into this "normal" TPB-range (red crosses). The scatter  $(1-4 \mu m^{-2})$  is mainly attributed to true microstructure variations (*i.e.*, different coarseness of the microstructures and different anode compositions). Some minor scatter may be also due to the fact that different image analysis techniques are used for TPB measurements (*i.e.*, centroid method, volume expansion method, classical edge length). However, Figure 3 also illustrates that in some cases extraordinary high TPB values (>>5  $\mu$ m<sup>-2</sup>) are reported. This is only the case, when the analyzed data volume decreases below 1000 µm<sup>3</sup>. It is indeed possible that some nanostructured materials do have much higher TPBs, which can be captured with small image windows at high resolution. But for most materials such high TPB-values are not realistic. It is thus probable that the high TPB values are due to the fact that the analyzed data cubes are smaller than the representative elementary volume (REV). In this context, Figure 3 also documents that our own analyses are based on comparably large data cubes ( $6000-12,000 \ \mu m^3$ ).



**Figure S1.** Representative impedance curves for the fine, medium, and coarse samples before redox cycling. The contributions to the polarization resistance are not easy to distinguish by simple inspection of the impedance arcs.

Table S2. An example output from the TPB analysis described in the experimental section.

| volume size in                                      | х        | у        | z        | 500         | 500          | 500 |         |     |        |      |        |         |     |     |      |      |         |       |     |     |       |      |        |             |                |                |        |   |        |            |
|-----------------------------------------------------|----------|----------|----------|-------------|--------------|-----|---------|-----|--------|------|--------|---------|-----|-----|------|------|---------|-------|-----|-----|-------|------|--------|-------------|----------------|----------------|--------|---|--------|------------|
| voxel size in                                       | х        | v        | z        | 24.41       | 24.41        | 25  |         |     |        |      |        |         |     |     |      |      |         |       |     |     |       |      |        |             |                |                |        |   |        |            |
| number for all phases in the image                  | 0        | 100      | 200      |             |              |     |         |     |        |      |        |         |     |     |      |      |         |       |     |     |       |      |        |             |                |                |        |   |        |            |
| number of voxels per phase<br>total number of TPB's | 45180968 | 49923115 | 29895917 |             |              |     |         |     |        |      |        |         |     |     |      |      |         |       |     |     |       |      |        |             |                |                |        |   |        |            |
| total number of TPR vexels                          | 726147   |          |          |             |              |     |         |     |        |      |        |         |     |     |      |      |         |       |     |     |       |      |        |             |                |                |        |   |        |            |
| total length of skaletonized TPP's                  | 2457412  |          |          |             |              |     |         |     |        |      |        |         |     |     |      |      |         |       |     |     |       |      |        |             |                |                |        |   |        |            |
| total length of skeletonized 1PD s                  | 3437412  |          |          |             |              |     |         |     |        |      |        |         |     |     |      |      |         |       |     |     |       |      |        |             |                |                |        |   |        |            |
|                                                     |          |          | COG (Ce  | nter of Gra | vity) noints |     |         |     |        |      |        |         |     |     |      |      |         |       |     |     |       |      |        |             |                |                |        |   |        |            |
|                                                     |          |          | 000 (08  |             | vity) points |     |         |     |        |      |        |         |     |     |      |      |         |       |     |     |       |      |        | LINRE       | DUCED          | REDUCED VOLUME |        |   | RVC +  | 111 in all |
| TPB No.                                             | voxels   | length   | х        | У           | z            |     | PHASE 1 |     |        |      |        | PHASE 2 |     |     |      |      | PHASE 3 |       |     |     |       |      | VOLUME |             | CRITERIA (RVC) |                | nhases |   |        |            |
|                                                     |          |          |          |             |              |     | 0       | 0   |        |      | _      |         |     | 0   |      |      |         |       |     | 0   |       |      |        | VOYEL       | LENCTU         |                |        |   | VOVEL  | LENCTU     |
|                                                     |          |          |          |             |              | x=0 | y=0     | 2=0 | x=111X | y=my | 2=1112 | x-0     | y-u | 2=0 | x-mx | y=my | 2=1114  | 2 X=0 | y=0 | 2=0 | x-110 | y-my | 2=1112 | VUXEL       | LENGTH         | x              | У      | 2 | VUXEL  | LENGTH     |
| 1                                                   | 227      | 812.2    | 11887.7  | 122.1       | 150          | 0   | 1       | 1   | 1      | 0    | 0      | 1       | 1   | 1   | 1    | 1    | 1       | 0     | 1   | 1   | 1     | 0    | 0      | 227         | 812.2          | 0              | 0      | 0 | 0      | 0          |
| 2                                                   | 62       | 144.6    | 6883.6   | 73.2        | 75           | 1   | 1       | 1   | 1      | 1    | 1      | 1       | 1   | 1   | 1    | 1    | 1       | 1     | 1   | 1   | 1     | 1    | 1      | 62          | 144.6          | 1              | 0      | 0 | 0      | 0          |
| 12                                                  | 28310    | 135641.4 | 2245.7   | 3148.9      | 3150         | 1   | 1       | 1   | 1      | 1    | 1      | 1       | 1   | 1   | 1    | 1    | 1       | 1     | 1   | 1   | 1     | 1    | 1      | 28310       | 135641.4       | 1              | 1      | 1 | 28310  | 135641.4   |
| 86                                                  | 577      | 2742.7   | 1196.1   | 4052.1      | 725          | 1   | 1       | 1   | 1      | 1    | 1      | 0       | 0   | 0   | 0    | 0    | 0       | 0     | 0   | 1   | 0     | 0    | 0      | 0           | 0              | 0              | 1      | 0 | 0      | 0          |
|                                                     |          | :        |          | :           | :            |     |         |     |        | 1    |        |         |     |     |      |      |         | 1     |     |     |       |      | :      |             |                | 1              | :      |   | ÷ .    | :          |
|                                                     |          |          |          |             |              |     |         |     |        |      |        |         |     |     |      |      |         |       |     |     |       |      |        |             |                |                |        |   |        |            |
| 927                                                 | 1        | 0        | 73.2     | 5297.0      | 12450        | 1   | 0       | 0   | 0      | 0    | 1      | 1       | 1   | 1   | 1    | 1    | 1       | 1     | 1   | 1   | 1     | 1    | 1      | 0           | 0              | 0              | 1      | 0 | 0      | 0          |
| TOTAL                                               | 736147   | 3457412  |          |             |              |     |         |     |        |      |        |         |     |     |      |      |         |       |     |     |       |      |        | 629394      | 3018093        |                |        |   | 477597 | 2322296    |
|                                                     |          |          |          |             |              |     |         |     |        |      |        |         |     |     |      |      |         |       |     |     |       |      |        | TOTAL T     | PB-active      |                |        |   | TOTAL  | TPB-active |
|                                                     |          |          |          |             |              |     |         |     |        |      |        |         |     |     |      |      |         |       |     |     |       |      | witho  | without RVC |                |                |        |   | n RVC  |            |

Table S2 shows an example of the output sheet from the TPB analysis. The results include the number of discrete TPB lines, and the corresponding number of voxels and associated length (in metric units). Each TPB line is described by its center of gravity (COG) where the TPB is located in 3D space (in *x*, *y* and *z* coordinates). The connectivity of each phase in each TPB object is checked with respect to the 6 faces of the cube. For our anodes with 3 phases (Ni, YSZ, Pores) multiplied by 6 directions this results in 18 characteristic connectivity checks. This method can also be used to analyze the TPB within a sub-region in the total volume, in order to suppress effects from boundary truncation. Specific criteria (i.e. start and end of the sub-region with the corresponding connectivity criteria in *x*, *y* and *z*-directions) can be introduced. To identify active TPBs in anodes the connectivity

criteria have to consider three specific contacts: with the electrolyte (YSZ), with the current collector (Ni) and with the gas channel (pores). The total TPB length is then evaluated from the total cube volume (without any connectivity check), whereas the active TBP lengths are determined using the specific connectivity check for TPBs in the reduced volume.