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Abstract: π-Conjugated polymers based on indigo unit were prepared. Dehalogenative 

polycondensation of N-hexyl-6,6'-dibromoindigo with a zerovalent nickel complex gave  

a homopolymer, P(HexI), in 77% yield. Copolymer of N-hexyl-indigo and pyridine, 

P(HexI-Py), was also prepared in 50% yield. P(HexI) showed good solubility in  

organic solvents, whereas P(HexI-Py) was only soluble in acids such as HCOOH. The 

weight-average molecular weights (Mw) of P(HexI) and P(HexI-Py) were determined  

to be 10,000 and 40,000, respectively, by a light scattering method. Pd-catalyzed 

polycondensation between 6,6'-dibromoindigo with N-BOC (BOC = t-butoxycarbonyl) 

substituents and a diboronic compound of 9,9-dioctylfluorene afforded the corresponding 

alternating copolymer, P(BOCI-Flu), as a deep red solid in 98% yield. P(BOCI-Flu) was 

soluble in N-methyl-2-pyrroridone and showed an Mw of 29,000 in GPC analysis. 

Treatment of P(BOCI-Flu) with CF3COOH smoothly led to a BOC-deprotection reaction 

to give an insoluble deep green polymer, P(I-Flu), in a quantitative yield. Diffuse 

reflectance spectra of powdery P(BOCI-Flu) and P(I-Flu) showed peaks at about 580 nm 

and 630 nm, respectively, which are thought to originate from the indigo unit. 
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1. Introduction 

Indigo is one of the most important and popular dyes [1,2] and has widely been used at industrial 

level. Recently indigo [3–6] and compounds based on a isomer of indigo (isoindigo) [6–11] are 

gathering attention as active materials for electronic devices such as field effect transistors and solar 

cells (renaissance of color [6]); they are thought to be good candidates for electron-withdrawing (or 

electron-deficient) electronically active materials. Especially the isoindigo unit shown in Chart 1 has 

received strong attention, and various π-conjugated polymers and oligomers containing isoindigo in 

their main chains have been prepared [6–14] since Reynolds’ group reported synthesis of such 

compounds. However, examples of π-conjugated polymers containing the indigo unit in the main chain 

are not many [15]. Because indigo has strong historical and basic chemical backgrounds, development 

of the chemistry of indigo-based polymers seems to be important.  

Chart 1. Indigo-6,6'-diyl unit and isoindigo-6,6'-diyl unit used for the component in 

polymer main chains (R = H, alkyl, etc.). 

 

Previously, our group reported indigo-incorporated poly(pyridine-2,5-diyl), P(I-Py) shown in  

Chart 2, and investigated optical properties of the polymer [15,16]; e.g., film of P(I-Py) showed  

third-order nonlinear optical susceptibility, χ
(3)

, comparable to that of π-conjugated polymers with 

sufficiently long π-conjugation systems [15]. 

Chart 2. Copolymer of pyridine and indigo, P(I-Py). 

 

However, P(I-Py) was soluble only in special solvents such as formic acid and insoluble in 

common organic solvents (presumably due to the formation of intermolecular hydrogen bonds; see 

below), which made it difficult to investigate chemical properties of the polymer well. 

As a step for getting more information about indigo-based polymers, we introduced solubilizing 

substituents (hexyl and BOC (t-butoxycarbonyl) groups) at the N–H group in the indigo unit and have 
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prepared the following polymers shown in Chart 3. Herein we report syntheses of these polymers and 

UV-Vis data of the polymers. 

Chart 3. Synthesized π-conjugated indigo polymers with solubilizing and protecting groups. 

 

As shown in Chart 1, the isoindigo-6,6'-diyl unit forms formally fully π-conjugation system along 

the polymer main chain. On the other hand, the indigo-6,6'-diyl unit does not have such a system and 

effective expansion of the π-conjugation system along the polymer main chain is not expected. 

However, it may be possible to form a cross π-conjugation system [17] via the C=O carbonyl group 

under certain conditions; such a cross π-conjugated unit sometimes forms expanded electron systems 

along the polymer chain via the unit [17–20]. In addition, when the indigo-6,6'-diyl unit (abbreviated 

as In; R = H in Chart 1) is chemically reduced, the formed In
2−

 might be able to form formally fully  

π-conjugated system along the polymer chain [16]. 

The BOC group is a convenient group which protects the possibly reactive N–H group of the indigo 

unit during the polymerization and undergoes clean thermal and acid-induced deprotection to recover 

the N–H group (e.g., N–COOCMe3 → NH + CO2 + CH2=CMe2) [21–26] when desired. As described 

below P(BOCI-Flu) also undergoes the clean deprotection reaction. 

We now report results of the synthesis and chemical properties of the above polymers. 

2. Results and Discussion 

2.1. Synthesis of Polymers 

2.1.1. PHexI and P(HexI-Py) 

Scheme 1 shows synthetic routes for the starting monomer 1, PHexI and P(HexI-Py). Reaction of 

disodium salt of 6,6'-dibromoindigo [27] with 1-bromohexane at 50 °C gave 1 as an orange solid. 

Dehalogenative polycondensation [28] of 1 using zerovalent-nickel-complex ([Ni(0)La]; L = neutral 

chelating ligands such as bpy (2,2'-bipyridyl) and cod (1,5-cyclooctadiene)) afforded PHexI in 77% 

yield. P(HexI-Py) was also obtained in 50% yield by a 1:1 random polycondensation of 1 with  

2,5-dibromopyridine at 60 °C.  
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Scheme 1. Synthetic routes to monomer 1, PHexI, and P(HexI-Py). The polycondensation 

is accompanied by the formation of NiBr2La. 

 

PHexI showed good solubility in organic solvents such as chloroform. However, P(HexI-Py)  

was only soluble in acids such as formic acid, similarly to a π-conjugated homopolymer of pyridine, 

poly(pyridine-2,5-diyl) [29]. PHexI and P(HexI-Py) showed weight-average molecular weights  

(Mw) of 10,000 (in chloroform) and 40,000 (in formic acid), respectively, as measured by a light 

scattering method. 

Figure 1 shows IR spectra of 1, PHexI, and P(HexI-Py). As shown in Figure 1, the IR spectrum of 

PHexI resembles that of 1, indicating that the polymerization proceeded with maintaining the unit 

structure of dihexylindigo. The IR spectrum of P(HexI-Py) shows additional absorption peaks originated 

from the pyridine-2,5-diyl unit at approximately 1460 and 830 cm
−1

 (cf. charts (c) and (d) in Figure 1), 

in addition to the dihexylindigo-originated IR peaks. 
1
H NMR spectra of PHexI and P(HexI-Py) are shown in Figure S1 in Supporting Materials. The 

area ratio between peaks in the aromatic-H region and those in the aliphatic region essentially agrees 

with the polymer structures. Based on the 
1
H NMR results, P(HexI-Py) is thought to contain the 

dihexylindigo and pyridine-2,5 units in agreement with the feeding ratio (1:1) of the two monomers. 

2.1.2. P(BOCI-Flu) and Its Deprotection 

The route for the preparation of P(BOCI-Flu) and BOC-deprotection of P(BOCI-Flu) are outlined in 

Scheme 2. BOC-protected 6,6'-dibromoindigo (monomer 2) was prepared according to the literature [5,30].  

Pd-catalyzed polycondensation of 2 with a diboronic compound of dioctylfluorene proceeded 

smoothly to afford P(BOCI-Flu), as a deep red solid in 98% yield. P(BOCI-Flu) was soluble in  

N-methyl-2-pyrrolidone (NMP) and THF, and had low solubility in chloroform. The GPC curve of this 

polymer (eluent = NMP) showed a unimodal molecular weight distribution, with a peak molecular 

weight (Mp) of 18,000 and Mw of 26,000, respectively. Deprotection of the BOC group in P(BOCI-Flu) 
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was carried out by treatment of this polymer with CF3COOH [23] and P(I-Flu) was obtained as a deep 

green solid in a quantitative yield. BOC-deprotected P(I-Flu) obtained thus was insoluble in common 

organic solvents and partly soluble in formic acid. 

Figure 1. IR spectra of (a) 1; (b) PHexI; (c) P(HexI-Py) and (d) poly(pyridine-2,5-diyl) [29]. 

 

Scheme 2. Synthetic routes to P(BOCI-Flu) and deprotection of the BOC group in 

P(BOCI-Flu) by treatment with acid (CF3COOH). 
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In the IR spectrum of P(BOCI-Flu) shown in Figure 2, the large peak observed at around 1750 cm
−1

 

is assigned to ν(C=O). 

Figure 2. IR spectra of (a) P(BOCI-Flu) and (b) its deprotected (CF3COOH-treated) 

product. The absorption peak at approximately 2300 cm
−1

 is due to CO2 in air. 

 

The IR pattern in the C=O carbonyl region of P(BOCI-Flu) resembles that of monomer 2 shown in 

Figure 3 (curve b). 

Figure 3. Comparison of IR spectra of (a) 6,6'-dibromoindigo without the BOC group;  

(b) monomer 2 with the BOC protecting groups and (c) BOC-deprotection  

(CF3COOH-treated) product of 2. 

 

The IR spectrum of a BOC-deprotection product of monomer 2 (curve c in Figure 3) essentially 

agrees with that of 6,6'-dibromoindigo without the BOC group (curve a), indicating that the  

BOC-deprotection proceeds cleanly with the low-molecular-weight compound 2. 

The IR data shown in Figure 2 indicate that the deprotection of P(BOCI-Flu) with CF3COOH [23] 

also proceeds cleanly. After the deprotection of the BOC group, P(BOCI-Flu) became insoluble in 

organic solvents, in spite of the presence of two octyl groups at the fluorene unit, presumably due  

to the formation of intermolecular hydrogen bonds between the N–H group and the C=O carbonyl 
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group [31,32]. Indigo and its derivatives are usually hardly soluble in common organic solvents when 

the N-H hydrogen is not substituted. 
1
H NMR spectrum of P(BOCI-Flu) shown in Figure S2 in Supporting Materials is reasonable for 

its structure. The peaks observed in the aliphatic-H region are originated from the alkyl protons of the 

fluorene unit and methyl protons of the BOC group in the indigo unit. The 
1
H NMR spectrum shows 

broad peaks in the range from δ 7.5 to 9.0 which are assigned to the aromatic-Hs. 

Thermal stability of P(BOCI-Flu) and P(I-Flu) was examined by thermogravimetric analysis 

(TGA), and their TGA curves are shown in Figure S3 in Supporting Materials. For P(BOCI-Flu), the 

deprotection of the BOC group started at about 175 °C, and gave a weight loss of 25%, which is 

roughly in agreement with the calculated weight loss in the deprotection (22.8%). P(I-Flu) showed  

5 wt% loss temperature at 190 °C. 

2.2. UV-Vis Absorption 

Optical properties were mainly studied with P(BOCI-Flu) with good solubility in organic solvents. 

Figure 4 shows UV-Vis spectra of monomer 2 and P(BOCI-Flu) in THF. UV-Vis spectrum of 2 exhibits 

a peak at 542 nm, which is shifted to a shorter wavelength from that of indigo at λmax = 610 nm [32]. 

This shift is thought to be due to a hypochromic effect of Br on indigo [31] and/or twisting of the C=C 

connecting bond caused by the BOC group; Miehe et al. [33] reported twisting of the C=C bond by 

introduction of methyl groups at N. 

Figure 4. UV-Vis spectra of (a) monomer 2 and (b) P(BOCI-Flu) in THF. 

 

For P(BOCI-Flu), the UV-Vis peak of the indigo unit becomes much weaker and a new strong peak 

appears at 422 nm between the peak positions of fluorene (λmax = 301 nm [34]) and indigo. Both indigo 

(molar absorption coefficient: log (ε/M
−1

cm
−1

) = 4.3 [32]) and fluorene (log (ε/M
−1

cm
−1

) = 4.0 [34]) are 

strong chromophores, and the appearance of the new peak at 422 nm suggests a strong electronic 

interaction between the indigo and fluorene units. The formally fully π-conjugated copolymers 

between isoindigo and aromatic units also show new UV-Vis peaks [7–11], and a copolymer between 

isoindigo and dialkylfluorene (P1 in reference [10]) shows a UV-Vis peak at 564 nm; the longer 

wavelength of P1 suggests a better electron expansion along the polymer main chain compared with 
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P(BOCI-Flu). The UV-Vis spectrum of P(BOCI-Flu) film (cf. Figure S4 in Supporting Materials) 

gives an absorption pattern similar to that measured in solution, and starts at about 610 nm, which 

gives a band gap of 2.0 eV. 

Deprotection of a dark red solid of P(BOCI-Flu) with CF3COOH (vide ante) gave a dark green 

solid P(I-Flu). Because P(I-Flu) was not soluble, this color change was followed by diffuse 

reflectance spectroscopy [35] using solid samples of P(BOCI-Flu) and P(I-Flu). 

Figure 5 shows diffuse reflectance (DR) spectra of powdery P(BOCI-Flu) (curve a) and P(I-Flu) 

(curve b). The DR spectrum of monomer 2 is shown in Figure S5 in Supporting Materials, the DR 

spectrum of 2 essentially agrees with the UV-Vis spectrum observed in THF (cf. Figure 4), suggesting 

the absence of an intermolecular electronic interaction in the solid of 2. 

Figure 5. Diffuse reflectance (DR) spectra of (a) P(BOCI-Flu) and (b) P(I-Flu). 

 

The DR spectrum of P(BOCI-Flu) exhibits peaks at positions different from those observed with 

the solution sample (cf. Figure 4), suggesting a strong intermolecular electronic interaction between the 

polymer molecules in the solid state, similarly to cases of isoindigo-based polymers and oligomers; the 

UV-Vis spectra of solid samples of the isoindigo-based polymers and oligomers sometimes showed a 

bathochromic shift from those of solutions [7,10]. 

By the deprotection, the absorption bands seem to be shifted to longer wavelengths, and one of the 

absorption bands seems to shift to a near infrared region. This shift accompanied with the deprotection 

is associated with a UV-Vis peak shift of N,N-diBOC-indigo to indigo, which is induced by acid [36]. 

UV-Vis spectra of P(HexI) and P(HexI-Py) in HCOOH are shown in Figure S6 in Supporting 

Materials. They show absorption peaks at 300 nm (P(HexI)) and 330 nm (P(HexI-Py)), respectively, 

which are thought to originate from the indigo unit. However, the peak at around 600 nm, which  

is characteristic of indigos and was observed in the spectrum of P(BOCI-Flu), was not detected, 

suggesting that electronic state of the H-chromophore in the indigo unit is affected by the interaction 

between proton(s) of HCOOH and the carbonyl group in the indigo unit.  

2.3. Electrochemical Behavior 

Electrochemical responses of P(HexI-Py) and P(BOCI-Flu) were investigated by cyclic 

voltammetry (CV) in CH3CN. Film of P(HexI-Py) cast on a Pt plate received electrochemical 
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reduction, reflecting an electron deficient nature of the pyridine ring, and a CV reduction peak 

appeared at −2.2 V vs. Ag
+
/Ag (cf. Figure S7 in Supporting Materials). The peak position is located 

near that observed for polypyridines [29]. In the case of P(BOCI-Flu), it became soluble in the 

CH3CN solution when reduction potential over −2.0 V Ag
+
/Ag was applied, suggesting the formation 

of an ionic polymer. Because of this, the investigation of CV of P(BOCI-Flu) was difficult.  

3. Experimental Section 

3.1. Measurements and Procedure 

NMR spectra were recorded on JEOL JNM-EX90 and EX400 spectrometers (JEOL Ltd., Akishima, 

Japan). IR spectra were taken using JASCO-IR 810 and 460 spectrometers (JASCO Corporation, 

Hachioji, Japan). UV-vis spectra were measured with Shimadzu UV-3100PC and UV-2500PC 

spectrometers (SHIMADZU Corporation, Kyoto, Japan). Gel permeation chromatography (GPC) of 

P(BOCI-Flu) was performed at TOSOH Analysis and Research Center Co., Ltd using a TOSOH 

HLC-8120GPC liquid chromatograph (Tosoh Corporation, Tokyo, Japan), NMP as the eluent, and 

polystyrene standards. Measurements of Mw by the light scattering method were carried out using an 

OTSUKA DLS-700 spectrophotometer (Otsuka Electronics Co., Ltd., Hirakata, Japan). Diffuse 

reflectance spectra of powdery polymers and monomer 2 were measured on a Shimadzu UV-3101PC 

spectrometer equipped with an integrating sphere assembly and converted to UV-Vis absorption 

spectra using Kubelka-Munk theory [35]. BaSO4 was the reference standard. TGA curves were taken 

using Rigaku TG 8120 thermometric system (Rigaku Corporation, Tokyo, Japan). Cyclic voltammetry 

(CV) was performed with a Hokuto Denko HA-301 galvanostat/potentiostat (HOKUTO DENKO 

Corporation, Tokyo, Japan) and a Hokuto Denko HB-104 function generator. Cyclic voltammograms 

were obtained for films of the polymers laid on a Pt plate (1 cm × 1 cm) in a CH3CN solution of 

[NEt4][BF4] (0.1 M) with a Pt counter electrode and an Ag
+
/Ag reference electrode. The preparation of 

polymers was carried out under inert gas using standard Schlenk techniques. 

3.2. Materials 

6,6'-Dibromoindigo [27], BOC-protected 6,6'-dibromoindigo (2) [5,30], Ni(cod)2 (cod =  

1,5-cyclooctadiene) [37,38] and Pd(PPh3)4 [39] were prepared as previously reported. Commercially 

available Ni(cod)2 was also used. 9,9-Dioctylfluorene-2,7-diboronic acid bis(1,3-propanediol) ester 

was purchased from Sigma-Aldrich Co. LLC (Sigma-Aldrich Co. LLC., St. Louis, USA). 

3.3. Synthesis of N,N'-dihexyl-6,6'-dibromoindigo (1) 

To a dispersion of NaH (60% in paraffin oil) (0.24 g, 6.0 mmol) in DMSO (60 mL) was added  

6,6'-dibromoindigo (1.0 g, 2.4 mmol) at 50 °C, and the mixture was stirred overnight at 50 °C for 12 h. 

1-Bromohexane (2.4 g, 14.4 mmol) was added to the mixture, and the mixture was stirred at 65 °C for 

48 h. After cooling to room temperature (rt), the reaction mixture was extracted with chloroform. The 

extract was washed with water and dried over MgSO4. Solvents were removed by evaporation, and the 

product was purified by column chromatography on silica (eluent: hexane/ethyl acetate = 5/1) and 

recrystallization using hexane to afford 1 (0.13 g, 9%) as orange crystals. 
1
H NMR (90 MHz, CDCl3): 
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δ = 7.46 (d, 2H, J = 7.9 Hz), 7.27 (dd, 2H, J = 7.9 and 1.4 Hz), 7.07 (d, 2H, J = 1.4 Hz), 3.70 (t, 4H,  

J = 7.1 Hz), 1.69 (m, 4H), 1.35 (br, 12H), 0.89 (br, 6H). IR (KBr pellet, cm
−1

): ν = 2954, 2928, 2858, 

1732, 1602, 1428, 1355, 1100, 1058, 906, 869, 787. 

3.4. Synthesis of PHexI 

To a mixture of Ni(cod)2 (0.18 g, 0.65 mmol), 2,2'-bipyridine (0.65 mmol) and DMF (50 mL) was 

added 1 (0.294 g, 0.50 mmol) at 60 °C, and the mixture was stirred at 60 °C for 48 h. After cooling, the 

reaction mixture was poured into an aqueous ammonium solution to give a precipitate. The precipitate 

was collected by filtration and washed with aqueous ammonia, diluted HClaq, aqueous ammonia 

containing EDTA (ethylenediaminetetraacetic acid), aqueous ammonia, and methanol in this order. 

The solid was dried under reduced pressure to afford PHexI (0.166 g, 77% yield) as a yellowish brown 

powder. 
1
H NMR (90 MHz, CDCl3): δ = 7.50–6.63 (6H), 3.67 (4H), 1.69 (4H), 1.33 (12H), 0.91 (6H). 

IR (KBr pellets, cm
−1

): ν = 3392, 2892, 1703, 1586, 1415, 1334, 1083. Light scattering analysis (in 

formic acid): Mw = 10,000. 

3.5. Synthesis of P(HexI-Py) 

A mixture of 2,5-dibromopyridine (0.118 g, 0.50 mmol) and 1 (0.294 g, 0.50 mmol) was added to a 

DMF (30 mL) suspension of Ni(cod)2 (0.36 g, 1.30 mmol), 2,2'-bipyridine (1.30 mmol) at 60 °C, and 

the mixture was stirred at 60 °C for 48 h. Work-up of the reaction mixture was carried out in a manner 

similar to that for PHexI. After work-up, 0.126 g of P(HexI-Py) was yielded as a green powder. 50% 

yield. 
1
H NMR (90 MHz, CF3COOD): δ = 9.83 (1H), 9.14 (1H), 8.81 (1H), 8.1–6.8 (6H), 3.94 (4H), 

1.92 (4H), 1.50 (12H), 0.94 (6H). IR (KBr pellet, cm
−1

): ν = 3392, 2928, 1712, 1604, 1442, 1334, 

1083, 813. Light scattering (in chloroform): Mw = 40,000. 

3.6. Synthesis of P(BOCI-Flu) 

A mixture of 2 (0.46 g, 0.74 mmol), 9,9-dioctylfluorene-2,7-diboronic acid bis(1,3-propanediol) 

ester (0.40 mg, 0.71 mmol), distilled water (25 mL), K2CO3 (1.5 g) and Pd(PPh3)4 (55 mg, 0.05 mmol) 

and THF (25 mL) was stirred at 60 °C for 24 h. The reaction mixture was cooled to rt, and the organic 

layer was poured into methanol to obtain a dark red solid, which was collected by filtration and 

dissolved in NMP. The NMP solution was poured into methanol. The dark red precipitate was 

separated by filtration, washed with methanol repeatedly, and dried under reduced pressure to yield a 

dark red solid of P(BOCI-Flu) (0.61 g, 98% yield). 
1
H NMR (400 MHz, THF-d8): δ = 8.49 (2H), 7.84 

(10H), 2.48 (18H), 1.62 (12H), 1.13 (16H), 0.80 (6H). IR (KBr pellet, cm
−1

): ν = 3500, 2924, 2848, 

1750, 1676, 1600, 1431, 1251, 1147, 1080, 1004, 817. GPC (eluent = NMP, vs. polystyrene standards): 

Mn = 3,000. Mw = 26,000. 

3.7. Boc-Deprotection of P(BOCI-Flu): Treatment with CF3COOH 

CF3COOH (ca. 2 mL) was added to a suspension of the P(BOCI-Flu) (20 mg) in dichloromethane 

(ca. 2 mL) at rt. The mixture was stirred for 30 min at 60 °C and poured into 10 mL of water. After the 

removal of dichloromethane by evaporation at 60 °C, K2CO3 was added to neutralize the solution. The 
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supernatant solution was decanted, and the precipitate was washed with methanol (20 mL). The 

powder was separated by centrifugation and dried under reduced pressure. P(I-Flu) (15 mg, 

quantitative yield. IR (KBr pellets, cm
−1

): ν = 3398, 2924, 2850, 1608, 1440, 1355, 1138. 

4. Conclusions and Scope 

Soluble P(HexI), P(HexI-Py), and P(BOCI-Flu) with the alkyl and BOC groups have been 

prepared by organometallic polycondensation, and P(BOCI-Flu) underwent a clean deprotection reaction. 

The obtained P(I-Flu) by the deprotection reaction is expected to give basic chemical information 

about polymers consisting of the non-substituted indigo unit in the polymer main chain. UV-Vis data 

of P(BOCI-Flu) suggested electronic interaction between the indigo and fluorene units, and the 

electronic interaction seems to give a new electronic state along the polymer chain. The DR spectrum 

of the deprotected P(I-Flu) shows a bathochromic shift from that of P(I-Flu) and suggests 

intermolecular electronic interaction between P(I-Flu) molecules in the solid state. Synthesis of 

various polymers using monomers 1 and 2 is expected to give a new class of polymers (as isomeric 

polymers of the isoindigo-based polymers) which show interesting chemical properties.  

Supplementary Information 

Contains additional data on 
1
H NMR spectra of PHexI, P(HexI-Py), and P(BOCI-Flu), TGA 

curves of P(BOCI-Flu) and P(I-Flu), UV-Vis spectra of P(HexI-Py) and P(HexI) in HCOOH, and 

P(BOCI-Flu) film, diffuse reflectance spectrum of monomer 2, and CV chart of P(HexI-Py) film. 
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