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Abstract: Nano- and micro- fibers of conjugated polymer semiconductors are particularly 

interesting both for applications and for fundamental research. They allow an investigation 

into how electronic properties are influenced by size confinement and chain orientation 

within microstructures that are not readily accessible within thin films. Moreover, they 

open the way to many applications in organic electronics, optoelectronics and sensing. 

Electro-spinning, the technique subject of this review, is a simple method to effectively 

form and control conjugated polymer fibers. We provide the basics of the technique and its 

recent advancements for the formation of highly conducting and high mobility polymer 

fibers towards their adoption in electronic applications.  

Keywords: electrospinning; organic semiconductors; conjugated polymers; conductive 

polymers; Organic Field Effect Transistors (OTFTs) 

 

1. Introduction 

Conjugated polymers offer the possibility to develop flexible and light-weight opto-electronic 

applications thanks to their solubility and low-temperature processing [1–3]. Both conductors [4–6] 

and semiconductors [7] are available, enabling in principle an all-organic electronics when combined 

with more traditional insulating plastics. This technology would be therefore substantially based on 

carbon, an earth-abundant element. While being characterized by limited performances with respect to 

OPEN ACCESS 



Materials 2014, 7 907 

 

other inorganic technologies, recent synthetic and processing advancements clearly make conjugated 

polymers even stronger candidates for future large-area, flexible electronics. Polymer conductors with 

conductivity values of a few 10
3
 S/cm have been demonstrated [8], and semiconductors with both  

p- and n-type carriers mobility exceeding 10 cm
2
/Vs, with improved ambient stability are now 

available [9,10].  

The development of suitable deposition techniques is crucial to fully exploit the potentiality of 

conjugated polymers. Besides the development of printing tools for the controlled patterning of 

polymer films, the possibility to deposit them in the form of micro- and nano-fibers is a very attracting 

and emerging option. Extended wires of polymers offer unique systems characterized by an improved 

mechanical strength, an increased surface-to-volume ratio, and quasi 1-D dimensionality in the case of 

nano-fibers, where studying charge transport in a confined system. Various electronic functionalities 

can be implemented into different fibers, enabling to fabricate different devices and components: these 

include light-emitting diodes, photovoltaics [11] and field-effect transistors, besides a broad series of 

sensors [12–15] and other photonic components such as optically pumped lasers, and waveguides. We 

address the interested reader to a recent review by Lee and co-workers [16] covering most of these 

applications. One of the possible tangible outcomes of functional fibers is the development of “smart 

textiles”, where fabrics are equipped with integrated electronic devices during their production, 

enabling a ubiquitous application of wearable electronics. While this perspective may still appear 

visionary, and without doubt several issues have to be solved, with this contribution we aim at 

providing a clear reference for the state of the art and at clarifying which approaches can be more 

promising for the development of this field. 

Here we specifically focus on electrospinning, which is one of the best known methods to produce 

polymer fibers and stands out among others due to its simplicity, which enables the continuous 

formation of fibers composed of a broad range of insulating, conducting and semiconducting 

polymers, or even multi-component fibers, with diameters ranging from a few hundreds of nanometers 

to several hundreds of micrometers. This simplicity has facilitated its adoption in research laboratories, 

conducting pioneering experiments on the formation of functional single- and multi-component  

fibers [17], and of corresponding opto-electronic devices. 

We describe the electrospinning technique, with recent interesting developments for the control of 

the fiber alignment in Section 2. With respect to other contributions in the literature [16], we then 

focus on the materials adopted to form conducting (Section 3) and semiconducting fibers (Section 4). 

We have selected the most notable examples in the literature that can indicate in different ways the full 

potentiality of this approach. In the case of semiconductors we have focused on fibers based  

field-effect transistors, seen both as a way to extract charge carriers mobility and as a building block 

for future logic functions in smart textiles (Section 4.3). In this context we pay particular attention in 

describing the advantages and limits of different methodologies followed in the literature to extract 

mobility and threshold voltage parameters (Section 4.1). The results of a survey of conductivities and 

carriers mobility achieved so far in polymer fibers have been reported in Tables 1 and 2. 
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2. Electrospinning 

Electrospinning is a simple, cheap and versatile technique to form polymer fibers with section in the 

micro- and nanoscale [18–22]. The technique exploits high electric potentials to overcome the surface 

tension of the fluid. Despite the fact that the first studies were patented about one century ago [23], 

electrospinning has gained growing industrial and academic interest since the 1990s [24].  

Electrospinning requires viscoelastic properties typical of polymeric materials: it has been mostly 

applied to polymer solutions. Nevertheless, processing from melt has been also performed, but more 

challenging conditions are required. Many natural and synthetic polymers have been successfully 

electrospun, including conjugated polymers since the pioneering work by MacDiarmid [25].  

2.1. Basic Aspects of the Technique 

The electrospinning technique consists in the application of a high positive voltage, typically  

10–30 kV, to a polymer fluid, usually contained in a syringe, with respect to a grounded collector 

(Figure 1). The applied voltage produces an accumulation of ions present in the fluid at the air-fluid 

interface, and when the electrostatic repulsion overcomes surface tension, a fluid jet erupts. The jet 

travels towards the region of lower potential experiencing an elongation with a strong diameter 

reduction during the flight [26]. The jet is characterized by different regions, namely: (i) a droplet at 

the tip of the syringe where the polymer solution is contained, which assumes a conical shape (Taylor 

cone) due to the balance between electrostatic repulsion and cohesion forces [27]; (ii) a stable straight 

region close to the syringe tip, with length in the order of 1 cm and (iii) a region of unstable whipping 

(or bending) motion, with the jet moving laterally and forming a series of coils, the envelope of which 

draws a cone opening towards the counter electrode [28], where fibers are collected as a nonwoven 

mat. The jet under the electric field is driven with acceleration of orders of magnitude larger than that 

provided by gravitation, thus gravitational forces do not play a significant role [29]. 

Figure 1. Sketch of a typical laboratory electrospinning setup; in the inset, frames from a 

video representing the evolution in time of the shape of a fluid drop with electrical 

potential. Adapted with permission from [26]. Copyright (2008) by Elsevier. 
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The viscoelastic properties of the polymer solution represent a key factor in the electrospinning 

process, since a critical amount of chain entanglements is needed for fiber formation. Below this 

critical value, which differs for each system composition, the voltage applied results in electrospraying 

or in the formation of beaded fibers due to a capillary wave breakup (Rayleigh instability) [30]. The 

more viscous the system, the less defective the fibers; however, too high viscosity turns into high 

cohesiveness of the solution and may cause flow instability (Figure 2). 

Figure 2. Evolution of the morphology of polymer fibers upon increase of solution 

viscosity. SEM images of poly(ethyleneoxide) fibers (each image shows a 20 µm wide 

area), together with viscosity value (in red). Left: polymer drops and fibers with spherical 

beads. From left to right, as the viscosity progressively increases, the average distance 

between beads on the fibers becomes larger and the shape of the beads changes from 

spherical to spindle-like, till reaching uniform fibers. Adapted with permission from [30]. 

Copyright (1999) by Elsevier. 

 

The uniformity of the fibers, the absence of defects, the average diameter and their distribution 

width are all characteristics which influence the final quality of the deposited fiber mat. Incidentally, 

the stability of the spinning process, which gives homogeneous fibers with narrow distribution of 

diameters, can be monitored during the process through the current flowing between the electrodes, 

which stops oscillating when the deposition becomes stable [31].  

2.2. Control of Fibers Formation 

The actual fibers formation and their morphology depend on many processing parameters, which 

are classified as setup parameters (i.e., applied voltage, volume feed rate, tip-to-collector distance, 

needle inner diameter, collector type), solution parameters (i.e., polymer concentration and molecular 

weight, solvent electrical conductivity and boiling point, solution viscosity, surface tension) and 

environmental conditions (i.e., temperature, pressure and relative humidity). They are usually highly 

interrelated, nevertheless, some have a prevailing effect with respect to others. 

As rheological properties give access to a stable spinning process, it is clear that solution 

parameters like polymer concentration and molecular weight, as well as polidispersity play a relevant 

role [32]. As a reference, solutions with a concentration of polymer of some % in weight are used in 

electrospinning. Tan et al. [33] demonstrated that these factors, together with the electrical 

conductivity of solvents, have a “primary effect” with respect to others (voltage and feed rate) which 

are classified as “secondary parameters”. A theoretical study has supported this conclusion [34]. 

However, as a general statement, empirical data still retain a fundamental role in determining the 

optimal conditions to gain high quality electrospun fibers [35,36]. 
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It is not trivial to predict the influence of the solvent on the resulting fiber morphology, since it 

depends on the combination of its boiling point, vapor pressure, viscosity, surface tension and 

conductivity; the situation is even more complex when solvent mixtures are used or the feed solution is 

loaded with additives, such as salts to increase the solution conductivity. 

All parameters in the spinning process have to be set within a suitable range of values: just to 

mention an example related to the feed rate, that is usually in the 0.01–10 mL/h range, low feed rates 

make the spin process discontinuous while at high feed rates the voltage is not sufficient to generate 

the jet from the continuously forming droplet [37]. Moreover, although too low bias does not allow an 

effective drop charging, too high values may cause multiple jets. Depending on the specific  

polymer-to-solvent system the applied voltage has also opposite effects, since it acts both on the mass 

of polymer fed out from the needle and on the jet elongation driven by the electric field [38]. Finally, 

ambient parameters have been found to affect the surface morphology, and relative humidity 

specifically plays a role in affording porous fibers. For a comprehensive overview on the effect of the 

different parameters on the fiber morphology, we address the interested reader to the work of Reneker 

and co-workers [26–30,34,39]. 

2.3. Alignment of Fibers 

The collection of fibers aligned along a preferential direction is a very relevant aspect to be 

considered for various applications: opto-electronic devices could benefit from an ordered deposition 

of conducting/semiconducting fibers as a mean to access and control anisotropic electronic properties, 

while for bio-related applications it has widely demonstrated that scaffolds with aligned fibers favor 

cells growth along a preferential direction [20]. Moreover, the access to samples with aligned fibers 

simplifies the investigation of the polymer chains orientation within them: indeed, the significant jet 

elongation during the electrospinning process can drive the orientation of the polymer backbones in the 

direction of the fiber axis [40–44]. Polarized spectroscopy techniques, such as infrared and Raman 

spectroscopy [42,45–47], UV-vis and photoluminescence [48], as well as birefringence in optical 

microscopy, can be conveniently used with this aim. Chain orientation does not usually correspond to 

an increased crystallinity, due to the fast solidification of the jet with respect to the crystal nucleation 

and growth processes [49]. 

Several strategies have been proposed to induce a preferential fibers alignment (Figure 3). The 

parallel electrode collector principle, where fibers lie in the gap to minimize the torque generated by 

the electrostatic forces, is the simplest technique to gain fibers orientation; as expected, fibers 

alignment is significantly improved while decreasing the gap width [50]. However, this method suffers 

for partial misalignment of the above fiber layers [51]. Mechanical methods based on rotating 

collectors [52], or grounded frames rapidly oscillating within the jet, or also the use of charged 

collectors, allow overcoming these issues. For mechanical methods, the relation between the linear 

speed of the dynamic collector surface and the jet deposition (which falls in the 2–200 m/s range) is of 

critical importance. The geometry of the system (i.e., “rotating jet method” using a hollow metallic 

cylinder) [40] as well as the tip-to-collector distance are also relevant [53] for an effective control over 

fibers alignment. The electrospun jet from polymer solutions containing magnetic nanoparticles can 
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also be directed by applying magnetic fields [54], or employing auxiliary electrodes, which modify the 

electostatic field [55] (i.e., an electrically earthed collector to gather the nanofibers is used) [51]. 

Figure 3. Examples of methods to induce fibers alignment: (a) parallel electrodes;  

(b) rotating collector; (c) rotating jet method and (d) near field electrospinning. Adapted 

with permission from [40]. Copyright (2011) by Elsevier. Adapted with permission  

from [56]. Copyright (2006) by American Chemical Society. 

 

A powerful strategy to deposit well aligned and controlled fibers is to collect them at a short 

distance from the syringe orifice, before the bending instability occurs; this method is named  

“near-field electrospinning” or “precision electrospinning” [56–58]. The distance between spinneret 

and collector, that ranges between a few millimeters and a few centimeters, depends on different 

parameters, e.g., the flow rate (Q); the surface charge (σ); the conductivity (k is the dimensionless 

conductivity of the solution); the applied electric field (E); the current passing through the jet (I); the 

liquid density (ρ); the needle radius (r0). In the simplest configuration, namely when auxiliary 

electrodes are not present, the following equation that relates all these parameters has been proposed to 

predict the length of the stable jet (L) [59]: 

  
    

 ρ   
  
  ρ 

 σ 
 
   

   
    (1) 
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Such length increases with higher evaporation rate solvents or more viscous solutions, making near 

field electrospinning particularly suitable for melt electrospinning [60]. Also, alternated current and 

higher applied voltage have a contribution in the same direction, while lower voltages allow a more 

precise control over the spinning direction thanks to a lower flux acceleration [28]. Near field 

electrospinning presents similarities with inkjet printing: a modified printing apparatus called  

“high-resolution electrohydrodynamic jet printing” [61] has been demonstrated also for the production 

of semiconducting nanowire arrays [62]. In case of precision electrospinning, the jet is continuous, 

while in case of printing lines are formed by the deposition of single droplets that coalesce onto the 

substrate. Although scanning collectors are usually employed, scanning tips have also been proposed 

to control the fiber deposition and alignment [63]. 

In recent years, the basic electrospinning setup has been modified to enhance process stability and 

fibers productivity or to produce fiber yarns, self-standing meshes or three-dimensional scaffolds. We 

refer to recent reviews for a comprehensive overview on the topic [22,51,64,65]. 

2.4. Electrospinning of Conjugated Polymers 

Within this broad scenario, electrospinning of conjugated polymers (in Figure 4 the most 

representative conjugated polymers processed by electrospinning are reported) provides additional 

requirements and challenges. Indeed, conjugated polymers are characterized by a limited solubility, by 

a relatively low average molecular weight and by a more rigid backbone: all these characteristics limit 

the number of entanglements that assist the fibers formation during electrospinning, preventing the jet 

breaking under the elongation strength. Moreover, though it has been shown that not-completely-good 

solvents may favor the spinnability [66], a good polymer solubility is required to reach the minimum 

solution viscosity for fiber formation [32].  

Regarding solubility and molecular weight, poly-p-phenylenes (PPVs) are an exception and they 

have been electrospun as pure materials giving defect-free fibers [67,68]. In most cases instead, a more 

spinnable compound, is added to the feed solution to assist the fibers formation (Figure 4). In this way 

multicomponent structures are obtained, where the conjugated polymer has the role to impart an 

optical or electrical functionality. Well soluble polymers with high molecular weight are preferred as 

supporting material: poly(ethyleneoxide) (PEO) [69,70], poly(methylmethacrylate) (PMMA) [71], 

polystyrene (PS), [72] poly(vinylpyrrolidone) (PVP) and [73] poly(ε-caprolactone) (PCL) have been 

extensively used with this regard [74]. A proper choice of the supporting polymer allows its selective 

rinsing aimed at obtaining fibers of the pure conjugated polymer [75–78]. 

Despite the reports that functional properties can be retained or even enhanced in a multicomponent 

fiber with respect to a polymer thin film [78], the intermixing of the two materials may prevent the 

continuity of one of the two phases negatively affecting the fiber electrical properties [69,74]. 

Interestingly, blend solutions have shown to afford concentric fibers under specific conditions, where 

the more viscous polymer spontaneously locates in the inner of the fiber. This effect, which has been 

widely investigated for traditional polymers [79], has been also obtained in case of conjugated 

polymers such as polyfluorene (PF) [50,80] or polyaniline [81]: in both cases, the conjugated moiety 

turns out to be located in the fiber core, mainly owing to its lower solubility. 
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Figure 4. Chemical structures of electrospun conjugated and insulating/supporting polymers. 

 

Two methods are available to reproducibly obtain two-component fibers with a concentric 

distribution of the two compounds. The first one makes use of coaxial capillary spinnerets. The core 

usually retains the peculiar electrical or optical properties while a polymer with proper viscoelastic 

characteristics is used to form the sheath. Coaxial spinning by means of concentric needles has been 

firstly introduced in 2003 [82]. A demanding balance of all the parameters is strictly required to 

obtained core-sheath structures and avoid formation of eccentric fibers or mixing of the two  

phases [83]. To gain continuous domains of the two components, immiscible systems are generally 

required; suitably acting on miscibility conditions, bicomponent fibers with different morphologies, 

such as fibers containing inclusions [84] or horizontal cylinder segments [85], can be accessed by 

means of two capillary spinnerets. To overcome the issue of miscibility of the two feed solutions, a 



Materials 2014, 7 914 

 

multifluidic approach with three concentric needles has been proposed, the middle fluid acting as 

spacer [86]. Core-sheath double spinneret setup has been also employed for gas-assisted 

electrospinning: here, single component fibers are obtained, while the external jacked is fluxed with a 

gas that protects, stretches and may also warm up the inner solution [87,88]. Solvent-assisted 

electrospinning, in which a solvent sheath protect and support the jet coming from the inner needle, is 

also possible [74]. 

The second method to afford concentric two-component fibers is based on template synthesis, 

where electrospun supporting fibers, typically composed of insulating materials, are subsequently 

coated (e.g., by thermal evaporation, in-situ polymerization, etc.) with a functional material as the 

shell. In case of concentric structures, selective rinsing of the supporting polymer may also afford 

hollow fibers: tubes of conjugated polymers have been developed with this method [89,90]. 

The three different methods above discussed, namely electrospinning of blends, surface deposition 

or coaxial spinning, present different constraints and advantages, which govern their suitability with 

respect to the properties of the compounds of interest. As a general guideline, direct spinning of 

polymer blends provides a clear advantage in terms of setup simplicity, and relax the requirement of 

having immiscible solutions for the core and the sheath. However, it poses different constraints, 

especially if a concentric structure is addressed. Indeed, for blend systems, kinetics more than 

thermodynamics was found to govern the formation of core-sheath phase separation, thus the polymer 

molecular mobility results to be the key parameter [79]. Template synthesis is more often used for 

conjugated polymers having low solubility, but that can be easily obtained by oxidative polymerization. 

Examples of polymerization onto fibers surface include template synthesis of polypyrrole (PPy) [91,92], 

poly(3,4-ethylenedioxythiophene) (PEDOT) [76,93,94] and polyaniline (PANI) [95]. 

3. Electrically Conductive Polymer Fibers 

In the following, we will analyze in detail the literature concerning fibers produced through direct 

spinning of the conjugated polymer (an essay is reported in Table 1). However, since a significant 

amount of literature deals with the post-deposition of conducting polymers onto preformed fibers, a 

paragraph is dedicated to this approach. The main application of conducting fibers is in the sensors 

field, where an extended surface area is a clear advantage [96,97]. We just mention that good electrical 

properties may also be afforded by calcination or carbonization of electrospun polymers by thermal 

treatments to give carbon nanofibers and nanotubules [98,99]. 

3.1. Measurement of the Conductivity of Polymer Fibers 

Electrodes pre-patterned onto the substrate or evaporated on the top of the electrospun material 

have been employed for the electrical characterization of single fibers and non-woven mats.  

Two-probe or four-probe measurements were alternatively carried out to extract conductivity values 

from I-V curves, differently accounting for the drop of potential occurring at the contact between the 

electrodes and the fiber, due to contact resistance effects; a two-probe measurement results in I-V 

characteristics in which the potential drop between the two probes only can be measured, which just in 

case of negligible contact resistance can be approximated to the drop of potential within the 

semiconductor. However, in case of highly conductive fibers, a contact limited behavior may be 
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observed, so that a four-probe method must be adopted: two outer contacts are employed for the 

application of an external voltage, producing an electrical current (I) flowing through the conductor; 

the resultant potential drop (V) is measured between two other high-impedance inner contacts. Another 

conductivity extraction method also employing four probes is the so called van der Pauw’s four-probe 

method, which is particularly useful in case of non-woven mats on a substrate which can be 

approximated with a bi-dimensional film with almost uniform thickness and almost simply connected 

surface [100,101]. Nevertheless, morphological and geometrical analysis are generally required to 

obtain the real thickness and porosity of the mat under investigation needed to properly extract 

conductivity values with any of the procedure here mentioned. 

In 2012, Zhang and Rutledge [102] observed that a fine electrical contact can be obtained by  

hot-pressure of the fibers onto the electrodes. They also estimated the contact resistance, by measuring 

the total resistance of fibers on interdigitated electrodes with variable finger spacing and by 

extrapolating the resistance value at zero spacing.  

3.2. Single Nozzle Spinning of Conducting Fibers: One Component Fibers 

PANI is by far the most employed conjugated polymer to develop conducting fibers. It has been 

both directly electrospun, with or without an insulating polymer which supports the fiber formation, or 

post-deposited onto electrospun fibers. A pioneering work dated 2000 [103] reported PANI fibers with 

high conductivity (150 S/cm), obtained by direct spinning of PANI solutions in dichloroacetic acid to a 

coagulation solvent; conductivity was further enhanced to 1950 S/cm after drawing of the electrospun 

mat. The same method provided PANI fibers from sulfuric acid, showing different conductivity values, 

respectively of 1 S/cm [104] and of 0.1 S/cm [105]. This large difference in the conductivity values 

can be ascribed to the difference in the fiber diameters: indeed, the highest conductivities refer to 

fibers with 220 µm diameter [103] and 100 µm diameter (up to 52.9 S/cm) [104]. In [106] a relation 

between the fiber diameter and the level of doping has been suggested, confirming an increase in 

conductivity for thicker fibers: a higher volume to surface ratio causes a relatively slower loss of solvent 

by evaporation and, consequently, the fiber is more partially doped and conductive. Conversely, data 

shown in [104] demonstrated higher conductivity for thinner fibers, likely due to an orientation of the 

polymer chains within the fiber. All these values refer to single fiber (or single bundle) measurements. 

Also, PPy has been electrospun without a supporting polymer matrix. For this polymer, electrical 

measurements have been carried out on nonwoven mats, and remarkably different values of 

conductivity have been reported in the literature, likely due to the characterization method employed: 

for example, an increase of nearly one order of magnitude was observed by compressing the mat 

before the measurement (10
−2

 S/cm [107] vs. 0.5 S/cm [100]).  

3.3. Single Nozzle Spinning of Conducting Fibers: Multi Component Fibers 

Blending the conjugated material with a polymer supporting the electrospinning process usually affords 

fibers of improved quality and morphology. However, the presence of an insulating matrix may affect 

the fibers conductivity, depending on the polymers intermixing and the continuity of the two phases. 

The literature is consistent in reporting higher conductivity values for higher conducting 

polymer/supporting polymer ratios. See for example the works of Chronakis et al. [107], Norris et al. [25] 
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or the systematic study of Zhang et al. [102] (Figure 5), where the effect of the nature of the 

supporting polymer on electrical performance is also highlighted. 

Figure 5. Electrical conductivity of as-electrospun polyaniline (PANI) fibers (nominally 

doped with an equimolar amount of D,L-camphorsulfonic acid, HCSA) as a function of the 

weight fraction of PANI in the blended fibers; the pure PANI fiber was obtained after 

dissolving the shell component (PMMA) of the core−shell fibers. Reprinted with 

permission from [102]. Copyright (2012) by American Chemical Society. 

 

Fiber diameter and polymer alignment within the fiber also play a relevant role: in [105] 

conductivity is found to increase of more than one order of magnitude when fiber diameter is increased 

from 419 to 1320 nm, despite the higher content of PEO within the blend (50% vs. 72% respectively); 

this has been explained with alignment of PANI in the sample with higher PEO content. Moreover, 

thinner fibers (below 100 nm [108] or few hundred nanometers [69]) have found to be insulating or 

highly resistive, despite a low supporting polymer content: the small diameter may allow enhanced  

de-doping by atmospheric gases, such as water vapor, or be smaller than phase separated grains of 

PANI and PEO. However, thinner fibers are most suitable for sensor applications, smaller-diameter 

wires having a faster response associated with the more rapid diffusion of gas molecules through the 

wire. In the work by Liu et al. [109], a relatively high conductance of 0.5 S/cm was measured, again 

ascribed to PANI alignment during the electrospinning process. 

Remarkably, the first work on blend-based fibers [25] reported one of the best performing results, 

namely PANI-PEO blend fibers with a conductivity of the mat of 0.1 S/cm, only slightly lower than 

the value measured on thin films, likely due to mat porosity. 
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3.4. Coaxial Electro-Spinning of Conducting Fibers 

The coaxial spinneret setup has been rarely used in case of conducting polymers. Yu et al. [110] 

reported the formation of core-shell PANI-PVA fibers; however no conductivity data were provided. 

Recently, Zhang et al. [102] reported a comprehensive work where PANI fibers produced with 

different approaches are deeply characterized. Specifically, core-sheath PANI-PMMA structures are 

compared with fibers obtained from blend solutions, the former showing the best electrical 

conductance: after PMMA removal, a conductivity of 50 ± 30 S/cm has been achieved for a single 

fiber, that has been placed on interdigitated electrodes after electrospinning deposition, and pressed to 

optimize the contact. Conductivity is further enhanced to 130 ± 40 S/cm with a drawing, confirming 

the behavior highlighted by Pomfret et al. [103] in 2000, about the effect of mechanical treatments for 

polymer alignment. Conversely, mat conductivity is one order of magnitude lower, likely due to 

different fibers orientation, mat porosity or inter-fiber contact. Conductivity values obtained by  

Zhang et al. [102] are the best so far reported for conducting polymer fibers with diameters in the 

hundreds of nanometers to few micrometers range. 

Table 1. Survey of conductivities achieved so far in polymer fibers. 

Material Deposition method 
Fiber 

diameter 

Tested 

sample 

Conductivity 

(S/cm) 
Year References 

PANI, doped with  

2-acrylamido-2-methyl- 

1-propanesulfonic acid 

Pure, from dichloroacetic acid, 

in coagulation solvent 
220 µm single fiber 

150 1900 upon 

drawing 
2000 [103] 

PANI, doped with D,L- 

camphorsulfonic 

acid(HCSA) 

Blend PEO, from chloroform 1.5 µm mat 0.1 2000 [25] 

PANI, doped with HCSA 

(a) pure, from sulfuric acid;  

water cathode 
(a) 139 nm 

single fiber 

(a) 0.1 

2001 [105] 
(b) blend PEO 50 wt%, 

chloroform 
(b) 419 nm (b) 0.1 

(c) blend PEO 72 wt%, 

chloroform 
(c) 1320 nm (c) 33 

PANI, doped with HCSA blend PEO 10 wt%, chloroform 
(a) 20 nm 

single fiber 
(a) 0.001 

2003 [108] 
(b) 70 nm (b) 0.01 

PANI, doped with HCSA blend PEO 20 wt%, chloroform 120–300 nm single fiber 0.01 2003 [69] 

PANI, doped with HCSA 
blend PEO 12.5 wt%, 

chloroform 
180 nm single fiber 0.5 2004 [109] 

PANI, acid doped 
pure, from formic acid, collected 

in acetone bath 

100–1000 

nm 
single fiber 0.001–100 2007 [106] 
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Table 1. Cont. 

Material Deposition method Fiber diameter 
Tested 

sample 

Conductivity 

(S/cm) 
Year References 

PANI, acid doped 
pure, from hot sulfuric acid 

in coagulation bath 

(a) 100 µm 
single 

fiber 

(a) 1 

2008 [104] (b) 370 nm  

in bundle 
(b) 52.9 

PANI, doped with HCSA 

(a) blend PEO 
(a) from 1.2 to 

2.7 µm 

mat 

(a) 8.1 

2012 [102] 
(b) blend PMMA 

(b) from 1.5 to 

1.9 µm 
(b) 0.01 

(c) coaxial, PMMA shell, 

rinsed with isopropyl 

alcohol 

(c) 620 nm 
(c) 50 130 upon 

drawing 

PPy, doped with 

dodecylbenzene sulfonic acid 

(a) pure, from chloroform (a) 3000 nm 

mat 

(a) 0.5 

2005 [100] (b) blend poly (vinyl 

cinnamate) 20 wt% 
(b) ~3000 nm (b) 0.3 

PPy, doped with  

di(2-ethyl)sulfosuccinate salt 

(a) pure PPy, in DMF (a) 70 nm 
mat 

(a) 0.03 
2006 [107] 

(b) blend PEO, in water (b) 100–300 nm (b) 0.0001 

3.5. Template Synthesis 

The method more often employed to process conducting polymers in fibrous morphologies is 

template synthesis: polymerization of aniline, EDOT and pyrrole onto fibers surface of different 

polymers (e.g., PMMA, Nylon) has been carried out. Although these systems do not always employ 

electrospinning, they are significant examples of development of conducting textiles. Template 

synthesis has been proposed for the deposition of conducting polymers onto yarns of fabrics, such as, 

cotton, wool, cellulose or silk [111–115]. In the case of polymerization onto electrospun fiber surface, 

suitable additives such as oxidizing salts or acids are required to promote the reaction and/or to get the 

external sheath doped. Such substances are added to the feed solution of the supporting polymer and 

critically affect the spinnability of the system, or can be dissolved in a reaction batch where the 

electrospun fibers are then dipped into. Following these approaches, conductivities up to 60 S/cm have 

been gained. This value refers to the vapor phase polymerization of EDOT on polyvinylpyrrolidone [76]. 

PS has also been used as the electrospun template for subsequent vapor phase polymerization of 

EDOT, affording a porous mat with a sheet electrical conductivity of around 1 S/cm [93]. EDOT 

polymerization in solution has been carried out on polyvinylchloride (PVC) mats, gaining a 

conductivity of 7.8 S/cm, together with significant mechanical and biocompatible properties [94]. 

Dong et al. [95] reported the in-situ polymerization of PANI onto preformed electrospun PMMA 

fibers, reaching a mat conductivity of 0.3 S/cm. As a general result, conductivity of PPy fibers 

obtained by template synthesis [89,92,116] is lower than the ones reported for PANI and PEDOT. The 

concurrent deposition of carbon nanotubes with PPy [117] led to an increase of conductivity, which 

however did not exceed 0.4 S/cm. 
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3.6. Functional Inorganic Fibers 

Both the blend approach and the template synthesis, which have been discussed in the case of 

conjugated polymers, may also be applied to inorganic conducting materials.  

Precursors added to the feed polymer solution and thus embedded in the resulting electrospun fibers 

can be converted by thermal activated reduction reactions in metallic materials. Conductivities as high 

as 104 S/cm have been obtained [118,119]. 

Metal coated nanofibers can be obtained by deposition of the conducting material onto an 

electrospun polymer template, which can be subsequently removed by thermal treatment or selective 

washing [120–122]. The method usually involves vacuum techniques (i.e., metallization, electroless plating 

or sputtering) or specific environment, which limit the large scale production of fiber based devices. 

Metallized electrospun fibers have been proposed for applications like electromagnetic  

shielding [123], or for the development of transparent electrodes. A remarkable result amongst the 

others concerns the deposition of both metals and transparent conductive oxides [124]: flexibility and 

possibility to transfer to different substrates have been demonstrated, together with a conductivity 

value as high as 2.2 × 10
5
 S/cm, comparable to bulk gold. 

Yang et al. [125] demonstrated the encapsulation of Galistan liquid metal by means of coaxial 

electrospinning, working as electrode in light-emitting coaxial nanofibers; the second electrode, made 

of ITO, is obtained through evaporation directly on the fiber surface. 

4. Semiconducting Polymer Fibers 

Polymeric semiconductors are recently experiencing extensive interest because of the increasing 

enhancement of their electrical properties (e.g., charge carriers mobility) and the wide range of 

scalable processes that allow their deposition from solutions [9,10,126–132]. Despite generally thought 

for thin-film-based electronics, their formation within the cylindrical shape of the electro-spun fiber 

introduces many appealing aspects: a reduced amount of material consumption along with the intrinsic 

confinement of the active area, an increased surface-to-volume ratio for better functional interfacing 

(which is essential for sensing application and/or whenever anchoring sites are employed to enhance a 

specific property), improved flexibility and the possibility to finely pattern the active area just through 

the definition of the number and the direction of the nano-/micro-fibers employed within a device 

geometry; moreover, from a fundamental point of view, electro-spun nano-fibers may represent model 

systems for mono-dimensional charge transport study. 

Driven by such motivations, many groups in the last decade have undertaken the challenge of the 

realization/implementation of electrospun semiconducting polymeric fibers, in general facing a lower 

solubility, and a lower molecular weight generally associated to highly conjugated molecular systems 

with respect to non-conjugated polymers. Nevertheless, efforts in the field have allowed not only to 

successfully overcome the above-mentioned processing issues, but also to explore the potential of 

electrospinning for investigating the relation between microstructure quality and anisotropy with 

charge transport properties. 
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In this section we aim at rationalizing the main steps which have conducted to the current level of 

advancement in this field, and to finally describe a possible scenario for further developments, with a 

special attention for the exploitation of such technology in logic circuits.  

4.1. Mobility Extraction, Devices and Models  

4.1.1. Fiber Field Effect Transistors 

One of the most common methods of investigation of the charge transport properties of 

semiconductors consists in their integration in Field Effect Transistor (FET) geometries; this enables 

the extraction of the “field effect mobility” (µ), which is a parameter describing charge transport 

characteristics in condition of high charge density. A FET (Figure 6) comprises two terminals (Source 

and Drain) in direct contact with the semiconductor and a third electrode (Gate) spaced from the 

semiconductor through a dielectric phase, representing a capacitive medium electrically isolating the 

Gate from the semiconductor [133]. When a potential difference between the Source and the Drain is 

applied (Vds ≠ 0) just a low density of intrinsic mobile charges can flow through the semiconductor  

(Ids ≈ 0) when no bias is applied to the Gate (Vg = 0); instead, when a positive (negative) Gate voltage 

is applied (Vg ≠ 0), a high density of negative (positive) mobile charges is induced at the 

dielectric/semiconductor interface, contributing to the semiconductor conductivity and producing an 

increase in the Ids current. This is the typical operating condition of a polymer FET and it is indicated 

as accumulation mode. Only a few molecular layers at the interface with the dielectric are involved in 

the gate-induced charges accumulation [134] and consequently in the charge transport; importantly, 

the “channel” extension, i.e., the extension of the area occupied by accumulated charges, and the 

charge density are only determined by the geometry of the capacitive coupling actually realized within 

the FET architecture, i.e., by the specific capacitance (Cdie) of the device. Once defined Cdie, the 

following expressions valid for gradual channel approximation in a MOSFET [135] can be used for the 

extraction of field effect mobility values from the FET Ids vs. Vg characteristic curves: 

  
       

        
          (2) 

  
    

     

    
          (3) 

where mlin is the slope of Ids vs. Vg plot, msat is the slope of Ids
1/2

 vs. Vg plot and L is the channel length 

of the FET. 
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Figure 6. (a) Scheme of a Fiber Field Effect Transistor structure; (b) SEM image of a 

typical electrospun nanofiber deposited on pre-patterned SiO2 /Si substrate and (c) Ids vs. 

Vds characteristics of a fiber-Field Effect Transistor, showing accumulation mode operation 

when different negative gate bias are applied. Reprinted with permission from [133]. 

Copyright (2012) by AIP Publishing LLC. 

 

4.1.2. Capacitive Models 

The most commonly used FET configuration for testing electruspun semiconducting  

fibers employs a planar geometry identical to that adopted for thin-films studies  

(Figure 6) [62,67,69,71,74,78,133,136–142]: fibers are transferred from the collector or directly 

deposited onto rigid substrates comprising highly doped silicon and silicon dioxide, which serve as 

(Bottom) Gate electrode and dielectric layer respectively. Gold electrodes either lithographically 

preformed onto the substrate or evaporated through a mask after the fiber deposition, serve as Source 

and Drain terminals. Considerable technological interest also lies in the realization of Top-Gate 

staggered fiber FETs, i.e., FET geometries with the dielectric phase (and the gate electrode) located on 

the top of the fiber and the Source and Drain electrodes located below the fiber. However, fibers with 

diameters of hundreds of nanometers (which are the diameters usually realized by electrospinning) 

make such task quite challenging with standard polymeric dielectric layers, owing to the difficulties in 

realizing homogeneous films on the top of the fibers and due to the electrical resistance represented by 

the thick fiber bulk upon charge injection. As a consequence, so far ion gel dielectric phases have been 

preferred and successfully employed in top-gate configuration, as illustrated in the dedicated  

Section 4.1.3. 
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One of the main issues related to the extraction of the mobility of a semiconducting fiber in a planar 

FET geometry arises from the non-trivial estimation of the capacitance (Cdie) and of the charge density 

as a consequence. Given a specific geometry, the exact capacitance can be obtained as a solution of the 

Laplace Equation ∇2
φ = 0 assuming a constant potential φ on the surface of the 

conductors/semiconductors. Well-established solutions are generally adopted as long as the ideal 

geometry is a good approximation of the actual geometry of the investigated device. While the simple 

case of parallel capacitors can be adopted for FETs based on thin film semiconductors [135], the 

capacitive model for a fiber on the top of a planar dielectric layer is not trivial: within the hypothesis of 

perfect cylindrical fibers, the contact between the fiber and the silicon dioxide dielectric plane is 

realized just through the tangential line between the fiber and the dielectric plane, out of which both 

the silicon dioxide and the air contribute in a complex way in defining the charge density profile along 

the fiber section. 

For parallel plate capacitors the following expression holds (Figure 7a): 

     ε ε  
 

 
 

(4) 

 where ε0 is the vacuum permittivity; εr the dielectric constant; A = W × L is the area of the overlap of 

the two plates and d is the distance between the plates. This has been rarely used for the extraction of 

electrospun fibers mobility, since it represents a satisfactory approximation just in the case of fiber 

radius much bigger than the dielectric layer thickness. When applied [67,78,136,138,139,141], the 

fiber was approximated to a thin film with channel width (W) equal to the fiber diameter and channel 

length (L) equal to the distance actually covered by the fiber between the Source and the Drain 

electrodes; in expression 4, the silicon dioxide thickness and dielectric constant values were used for d 

and εr respectively, actually neglecting any contribution on charge accumulation due to the presence of 

air between the silicon dioxide and the fiber.  

Figure 7. Capacitive models in use in fiber Field Effect Transistor (FET) mobility 

extraction procedures: (a) parallel plates capacitor; (b) wire-on-a-plane (r << d) capacitor 

and (c) cylinder-on-a-plane capacitor. 

 

Diversely, another well-known expression for Cdie is the following [69,71,74,133,137,140,142] 

(Figure 7b): 

     
  ε ε   

        
       (5) 
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This expression is obtained as a solution of the Laplace equation for a conducting wire with radius r 

at a distance d from a conductive plane much bigger than the wire radius (r << d). This condition, 

plausible in the case of nanotubes based devices where the formula is originally taken [143], is actually 

never satisfied in the cases of the electrospun fibers reported in literature, where generally both the 

fiber diameters and the dielectric layer thicknesses measure hundreds of nanometers. More in details, 

expression 4 assumes that the whole fiber exposed surface is involved in the capacitive effect; this is 

not true in the common case of r ≈ d and leads to a systematic overestimation of the capacitance, 

which in turns results in an underestimation of µ values. Moreover, to account for the combined 

contribution of silicon dioxide and air to the overall capacitive effect, in all the reported cases the 

dielectric constant was approximated to the common value of 2.5, which is again unsatisfactory since 

it arises from the unrealistic assumption of a dimensionless wire within two infinite emi-spaces with  

εr = 1 and εr ≈ 4 (the dielectric constants of the air and the approximated one of silicon  

dioxide, respectively). 

Alternatively, the exact expression for a cylinder-on-a-plane model has been recently used [62] 

(Figure 7c): 

     
  ε ε   

           
  

(6) 

Despite Equation (6) is representative of the actual geometry of a fiber of radius r distant d from a 

conductive plane irrespective of the radius of the cylinder, the evaluation of an equivalent dielectric 

constant (in the formula εr) properly accounting for the relative capacitive contribution of air and 

silicon dioxide keeps being an unsolved issue. In the case of electrospun fiber FETs, the formula has 

been conservatively applied using εr = 3.9, which corresponds to the case of a wire immersed in a 

silicon dioxide medium rather than simply lying on a silicon dioxide plane, thus leading again to an 

overestimation of the capacitance value and an underestimation of the mobility. 

4.1.3. Ion-electrolyte Gated Devices 

In order to induce a high charge carrier density in an electrospun semiconductor within a transistor 

geometry, the employment of ion-gels electrolytic dielectrics [144–147] has been proposed as a 

solution to better fit the geometry of the cylindrical wire (Figure 8) [62,148], thus benefiting of the 

whole fiber surface for the transport: upon biasing the electrolytic phase through a gate electrode, ions 

drift toward the semiconductor interface, leading to either the formation of an electrical double layer 

around the total interface, composed of ions on the electrolyte side and a high density of charges on the 

semiconductor side (field-effect regime), or to the occurring of electrochemical doping, in case of ions 

penetration through the semiconductor surface (electrochemical regime); in both cases the induced 

charge density is much higher than that induced by standard solid state dielectric layers. Within the 

ion-electrolyte gated configuration, an approach accounting for the Vg induced gate-displacement 

current [149] has been generally adopted for mobility extraction and, accordingly, the mobility values 

were obtained from the following Ohm’s law derived expression: 

   
 

 
  

  
   

   
(7) 
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where the charge density p is calculated as: 

  
 

  
 

         
   
  

  

 
(8) 

Idisp being the measured gate displacement current. In the ion-gel gating case the gate voltage Vg does 

not necessarily represent the electrochemical potential across the semiconductor-gel interface since at 

list the drop of potential at the gate/gel interface should be accounted for, in addition to drops of 

potential within the bulk of the electrolyte. The employment of a reference electrode inserted into the 

ion gel layer would actually allow for a more precise evaluation of the induced charge density, by 

measuring the potential difference between the reference electrode and the grounded Source electrode 

(Vref) and substituting it to Vg in Equation 8 [150]. 

Relatively high mobility values are often extracted from ion-gel based devices. Thanks to the 

induced high charge carrier density, electrolytic dielectrics can generally reveal improved transport in 

semi-crystalline polymeric semiconductors by filling the deep trap states otherwise strongly affecting 

the mobility [149]; however, the Coulombic interactions between the charges and the bulky ions of the 

electrolyte layer, possibly penetrated into the active phase [149], along with any other ion-induced 

phenomenon, do not allow a direct comparison between mobilities extracted from ion-gel gated and 

from standard ion-free dielectric gated devices.  

Figure 8. Example of device structure and optical microscopy of (a) an ion-gel fiber FET. 

In (b) and (c) the output and the transfer characteristic curves are reported,  

respectively Reprinted with permission from [148]. Copyright (2012) by American 

Chemical Society. 

 

4.2. p-Type and n-Type Fiber-FETs 

In Table 2 (placed at the end of Section 4.2) we systematically report the most relevant cases of 

polymeric electrospun semiconducting fiber, indicating the specific electrospinning strategy employed, 

and the FET performance observed, in terms of field effect mobility (µ) and threshold voltage (Vth). 
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The previous overview on the different fibers based FETs geometry and the employed methods for 

mobility extraction must alert the reader that substantially different levels of approximation are present 

in the literature; moreover, in light of the nature of the gating model applied, a general tendency to 

mobility underestimation should be considered. In order to provide an effective tool of interpretation 

and comparison of the different performances published so far, in Table 2, besides reporting fiber 

materials, formation techniques and field effect mobility values, we have indicated fiber/dielectric 

geometries and dimensions, along with the gating model employed for mobility extraction. 

It is clear from Table 2 that most of the investigations on p-type semiconductors processed by 

electrospinning and integrated in a FET have been carried out on regioregular poly(3-hexylthiophene) 

(rr-P3HT), a widely investigated semicrystalline polymer with well established charge transport 

properties [151–154]. The route that through the years has enabled reliable electrospinning of P3HT 

fibers with electrical characteristics comparable or even superior to those of P3HT thin  

films [62,71,74,133,137,144] is paradigmatic of the evolution of electrospinning techniques for 

polymeric semiconductors (as described in Section 2.4) and of their potential in terms of fine control 

of the polymer fibers microstructure, improved order, and distinct anisotropy. In the following, we 

separately account for the different electrospinning techniques and, where appropriate, the case of  

rr-P3HT is examined as an example to better define the relative advantages, constrains and limits of 

the various techniques. 

4.2.1. Single nozzle Electrospinning of Pure Semiconductors  

The first attempts to realize electrospun P3HT fibers were carried out in 2005 by Liu et al. [133] 

and in the same year by Gonzales et al. [137] (Figure 9). They both simply dissolved the polymer in 

chloroform and employed a single nozzle, standard setup resulting in jet instability, diameter 

inhomogeneity and formation of beads and droplets, mainly due to the early evaporation of the volatile 

chloroform and solidification of the polymer already at the nozzle level. However, mobility as high as 

3 × 10
−2

 cm
2
∙V

−1
∙s
−1

 was reported in Liu’s work, extracted from a single fiber FET with radius of  

90 nm, using a planar device configuration with bare silicon dioxide as the dielectric layer. This value 

is one order of magnitude inferior with respect to the best P3HT thin films of literature [154]; the 

authors claim that oxygen and water exposure during the process may have contaminated the fibers 

and induced deep trap states for the charge carriers. However, the use of bare silicon dioxide with no 

passivation layer may have influenced the transport properties, since this was generally shown to be 

strongly detrimental of P3HT thin films electrical performances resulting in a drastic drop of mobility, 

down to values generally inferior to 1 × 10
−2

 cm
2
∙V

−1
∙s
−1

 [154]. In this scenario, the observed mobility 

is already surprisingly good considering the substrate employed and the intrinsic underestimation due 

to the capacitive approximation adopted, as commented before. The solvent employed also deserves 

further comments: the early evaporation at the nozzle may not only have induced uncontrolled 

spinnability, but also a small control of the crystalline rate and orientation within the  

fiber morphology. 

On the basis of former experiences [68], in 2010 Deyu Tu et al. [67] applied single nozzle 

electrospinning to poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]) (MEHPPV) and 

firstly integrated the resulting fiber in a FET. MEHPPV is a light-emitting p-type polymeric 
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semiconductor with intermediate charges mobility, which unlike P3HT displays an amorphous 

microstructure (Figure 10) [155–158]. The polymer, again dissolved in chloroform, is shaped in 

defect-free fibers, uniform and smooth as revealed by SEM and AFM, with diameters down to  

~300 nm. Electrical performances comparable to the best thin films in literature were observed, with µ 

values of about 1 × 10
−3

 cm
2
∙V

−1
∙s
−1

; such a good mobility was associated to a strong molecular 

orientation in the fiber axis direction, as observed by Polarized transmission Fourier transform infrared 

(FTIR) spectroscopy, due to the elongational stress/strength induced by the high electric field during 

the electrospinning process. 

Figure 9. (a) Fluorescence image showing the morphology of droplets occasionally seen 

during single nozzle electrospinning of P3HT and (b) transfer characteristic curves for the 

same nanofiber FET operated at a constant drain bias of −50 V. Inset: curve fit of  

IDS
1/2

 vs. VG (channel length of 10 µm and fiber diameter of 180 nm). Adapted with 

permission from [133]. Copyright (2012) by AIP Publishing LLC. 

 

Figure 10. (a) Polarized photoluminescence (PL) spectroscopy of single MEH-PPV 

nanofiber showing clear molecular orientation along the fiber axis. PL spectra parallel to 

the fiber axis (PL//, dashed line) and perpendicular to the fiber axis (PL┴, continuous line) 

are reported. Insets: Corresponding fluorescence micrographs. Marker = 20 mm; (b) IDS 

(left vertical scale) and |IDS|
1/2

 (right scale) vs. VGS for VDS = 50 V of MEH-PPV nanofiber 

FET (channel length of 20 µm and fiber diameter of 500 nm). The dashed curve is a linear 

fit to data in the saturation region. Adapted with permission from [67]. Copyright (2010) 

by Royal Society of Chemistry. 
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4.2.2. Coaxial Electrospinning: Pure Semiconductor and Composite Core-Sheath Fiber 

In 2009, Lee et al. [74] largely improved P3HT fibers morphology by introducing a coaxial 

capillary spinneret as described in Section 2.5, here used to simultaneously feed pure solvent from the 

outer nozzle: the concentration of P3HT in the cone-jet at the inner nozzle tip is maintained low by 

providing chloroform from the outer nozzle, thereby preventing early solidification of P3HT. With this 

technique they obtained stable jets leading uniform and continuous P3HT fibers. However, on the 

corresponding single-fiber FETs on bare silicon dioxide they extracted a maximum field effect 

mobility of 1.7 × 10
−2

 cm
2
∙V

−1
∙s
−1

, which reflects the performances previously obtained with standard 

single-nozzle electrospinning setup [133,137]. Concordantly with such previous experiences, the lower 

mobility compared to state of the art P3HT thin film FETs was associated to air contamination during 

the process.  

In 2011, Chen and et al. [71] improved P3HT fiber carrier mobility thanks to a modified coaxial 

setup, where the external nozzle was employed to simultaneously spin a polymeric solution (PMMA), 

as previously experimented on other polymeric semiconductors (Figure 11) [110]. This resulted in a 

core-sheath fiber structure, with the semiconductor embedded in a PMMA shell. With this technique, 

besides preventing direct air exposure of the semiconductor, they could also use a higher boiling point 

solvent for P3HT, with a consequent longer evaporation time, yielding increased crystallinity. FET 

performances were at least comparable to that of the best P3HT thin films (~2 × 10
−1

 cm
2
∙V

−1
∙s
−1

), for 

a FET configuration in which this time silicon dioxide was treated with octadecyltrichlorosilane 

(ODTS) to obtain dielectric passivation, a method to isolate the active phase from the high trap-density 

silicon dioxide surface [154]. 

Figure 11. (a) Schematic representation of the coaxial electrospinning setup and process to 

fabricate the electrospun P3HT nanofiber based OFET; (b) schematic representation on the 

inner microstructure of single electrospun P3HT nanofiber. Adapted with permission  

from [71]. Copyright (2011) by American Chemical Society. 
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Further interest on the work of Chen et al. [71] lies in the deep investigation that they carried out on 

the morphology induced within the fiber by the electrospinning process. They used optical adsorption 

and Wide Angle X-Ray Diffraction (WAXRD) to check crystallinity and  –  interaction, and 

polarized photoluminescence to eventually detect a preferred molecular orientation, as it is expected by 

polymers when they undergo elongational stress. They observed two interesting phenomena: first, a 

totally peculiar morphology characterizes the fiber, in which crystalline domains are embedded in an 

amorphous matrix and are oriented with the  –  stacking parallel- and the molecules backbone 

perpendicular- to the fiber main axis. They also demonstrated to be able to control the degree of 

crystallinity and consequently the transport properties of the fiber just varying the shell flow rate of the 

PMMA solution; in fact, this results in a tunable shear stress applied to the semiconductor core during 

its solidification, which in turn affects the amount of crystalline aggregation. This again represents an 

impressive case of solid control of the functionality of a polymer through its morphology  

by electrospinning.  

Such a strong anisotropy of  –  stacking, likely favoring the charge transport along P3HT fiber 

length, was further observed by the same group in another electrospun polythiophene derivative, 

poly{[2′,5″-5,5″′-di(2-ethylhexyl)-3′;5′,2″;4″,2″′]quaterthiophene-alt-3,6-dithien-2-yl-2,5-di(2-ethylhexyl)- 

pyrrolo[3,4-c]pyrrole-1,4-dione-5′,5″-diyl]} (P4TDPP) [140], in this case providing mobility  

much superior to that of the analogue thin-film device [159]. These observations, in addition  

to the numerous markers of strong molecular orientation observed in other polymeric  

semiconductors [62,67,70,77,78,160–162], indicates that electrospinning can be exploited as a general 

method to access active phases with controlled microstructural anisotropy, in contrast with films 

deposited by spin-coating in which planar morphological isotropy is generally encountered.  

4.2.3. Electrospinning of Polymeric Blends 

Electrospinning of polymeric blends is a general tool for tuning different properties of the fibers, 

like electrical and optical ones by using electroluminescent materials (MEHPPV) blended with high 

mobility semiconductors (P3HT) [136], and more often viscoelastic and electrical ones, by combining 

a polymeric semiconductor with an a high viscosity insulating polymer, mostly aimed at assisting the 

jet stabilization and the fiber formation. However, the presence of the insulating polymer has often 

been associated with a reduction of transport properties in the semiconducting phase within the fiber. 

In the work of Pinto and coworkers of 2003, doped PANI was blended with high viscosity PEO to 

realize the first reported case of electrospun p-type single-fiber FET; a limited mobility of  

~1 × 10
−3

 cm
2
∙V

−1
∙s
−1

 was measured and associated to the presence of non conducting PEO between 

polyaniline chains [69]. In the work of Lee et al. [74] P3HT/PCL blend low performances  

(~1 × 10
−3

 cm
2
∙V

−1
∙s
−1

, even inferior when PCL ratio exceeding 30% is used) (Figure 12) are explained 

as an impeded formation of sufficiently big P3HT crystalline domains, but also impeded charge 

percolation due to defects within the semiconducting domains or traps at the interface between the 

semiconductor phase and the supporting polymer phase.  

The various investigations of the microstructure of blended P3HT reported in literature provide a 

non-uniform picture in which, depending on the blending ratio, elongational strength and other 

electrospinning parameters, a more or less pronounced core-sheath micro-structured morphology is 
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observed within the fibers, as a result of a more or less effective phase separation which is however 

rarely complete [62,70,74,77,136,160]. Interestingly, after the removal of the supporting polymer 

(PLC) with selective rinsing, Lee et al. [74] observed long and uniform nano-fibrils (diameter ~ 30 nm) 

touching each other, so that a continuous P3HT phase was formed and a uniform percolation path for 

the charge carrier guaranteed; this effect was claimed to depend on the different charges concentration 

under the effect of the electric field between the semiconductor and the supporting insulating material, 

leading to superior elongation of P3HT domains with respect to PEO during the field-induced process 

(Figure 12G). 

Figure 12. Output characteristics (IDS-VDS) at different gate voltages (VG) and transfer 

characteristics (IDS-VG) of (A,B) pure P3HT FET, and blend fiber FETs with (C,D) 20% 

PCL; (E,F) 50% PCL (channel length of 10 µm) and (G) schematic description of 

elongation of P3HT domains in highly concentrated PCL solutions under strong electric 

field and the formation of continuous P3HT fibrils in a PCL fiber. Adapted with 

permission from [74]. Copyright (2007) by Royal Society of Chemistry. 

 

In 2013, Chou et al. reported on the improvement of the performances of P3HT in blend with a 

semicrystalline polymeric insulating material (i.e., poly(stearylacrylates), PSA) [142]; interestingly, 

they showed that a core-sheath structure is induced in electrospun blends, in which P3HT is protected 

by PSA side-chain crystallites that block the diffusion of oxygen and moisture from ambient. This 

largely enhanced ambient stability of P3HT-based electrospun nanofiber FETs. However, mobilities 

still inferior to that of pure P3HT were measured (µmax = 3.2 × 10
−2

 cm
2
∙V

−1
∙s
−1

).  

In 2012, Canesi et al. [78] adopted the supporting polymer strategy to realize the first reported  

n-type polymeric electrospun fiber (Figure 13). They employed a single nozzle setup and blended the 

popular n-type semiconductor poly{[ N,N ′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)- 

2,6-diyl]-alt-5,5′-(2,2′-bithiophene)} (P(NDI2OD-T2)) [131,163,164] with the insulating PEO as the 
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supporting material. Smooth and regular fibers with a circular-shaped cross section were obtained and, 

interestingly, fiber continuity and consistency was preserved even after PEO removal by selective 

rinsing, and occasionally long and uniform pure P(NDI2OD-T2) nano-fibrils touching each other 

similarly to previously mentioned Lee’s work [74] were obtained, as illustrated in Figure 13d, 

evidencing the effective phase separation between the supporting polymer and the semiconductor 

occurred during fiber solidification. A preferential orientation of the molecule with respect to the fiber 

axis was observed by using polarized infrared spectroscopy as a further confirmation of the preserved 

order in P(NDI2OD-T2) despite the presence of the PEO. As to the electrical characteristics, 

P(NDI2OD-T2) fibers formed in this way showed mobility at least similar to that of the corresponding 

thin film in the same device configuration. This was observed both before and after the removal of 

PEO, demonstrating that, due to phase separation, the presence of the supporting material in blend did 

not affect or perturbed transport within P(NDI2OD-T2) microstructure. Another interesting point of 

this work is that for the first time they investigated the effect of the substrate treatment on the transport 

properties of a single fiber FET. In fact, as well as P3HT, P(NDI2OD-T2) thin films performances are 

negatively affected by the use of bare silicon dioxide, requiring silicon dioxide passivation treatments. 

However, they showed that unlike the thin films, fibers transport properties are optimal even on the top 

of bare silicon dioxide, either in virtue of the small contact area realized between the semiconductor 

and the dielectric, or in virtue of the fact that the spun jet of P(NDI2OD-T2) solidifies into a fiber 

before getting into contact with the dielectric surface, so that interaction during the solidification stage 

is avoided. 

Figure 13. SEM images of P(NDI2OD-T2)/PEO fibers: the relative content of the two 

polymers is equal to (a) 70:30 mass/mass (w/w); (b) 70:30 w/w, upon rinsing with 

acetonitrile; (c) 50:50 w/w; (d) 50:50 w/w, upon rinsing with acetonitrile and (e) transfer 

curves of single fiber (continuous lines) and thin film (dashed lines) P(NDI2OD-T2) FETs 

(channel length of 20 µm); the characteristics of devices on both bare SiO2 (black lines) 

and OTS treated dielectric layers (red lines) are reported; a drain voltage of 100 V was 

applied during all the measurements; in the plot, drain current values are normalized to the 

channel width, which in the case of the fiber was conservatively assumed to be equal to its 

diameter. Adapted with permission from [78]. Copyright (2012) by American  

Chemical Society. 
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Table 2. Survey of carriers mobility achieved so far in polymer fibers. 

Material 
Deposition  

method 

Fiber 

diameter 

(nm) 

Dielectric 

type and 

thickness 

Capacitive 

model 
µ (cm

2
·V

−1
·s
−1

) 
Vth 

(V) 
Year References 

PANI  

(p-type) 

single nozzle + 

supporting polymer 

(PEO) 

120 SiO2 200 nm (5) 1.4 × 10−4 82 2003 [69] 

P3HT  

(p-type) 
single nozzle 100 ÷ 500 

SiO2 + 

HMDS  

150 nm 

(5) 3.0 × 10−2 5.5 2005 [133] 

MEH-

PPV/PHT  

(p-type) 

coaxial with  

PVP solution 
150 ÷ 300 

SiO2  

300 nm 
(4) 0.05 ÷ 1 × 10−4* – 2005 [136] 

P3HT  

(p-type) 
single nozzle 670 

SiO2  

300 nm 
(5) 4.0 × 10−4 12 2005 [137] 

P3HT  

(p-type) 

coaxial with solvent 

(CHCl3) 
500 ÷ 350 

SiO2  

200 nm 
(5) 1.7 × 10−2 12 2009 [74] 

P3HT  

(p-type) 

coaxial with solvent 

(CHCl3) + 

supporting polymer 

(PCL) 

500 
SiO2  

200 nm 
(5) 1.2 × 10−3 16 2009 [74] 

P3HT  

(p-type) 

single nozzle + 

supporting polymer 

(PCL) 

400 ion-gel (8)  2.0 – 2009 [148] 

MEH-PPV  

(p-type) 
single nozzle 600 

SiO2 + 

HMDS  

100 nm + 300 

nm 

(4) 5.0 × 10−3 −22 2010 [67] 

Au-doped 

PAN–PANI 

(p-type) 

core: single nozzle 

(electrospun) 
200 

SiO2 1200 nm 

+ dry air 
(4) 11.6 24 2011 [141] 

shell: gas phase 

polymerization 

Au-doped  

PAN–PPy 

(p-type) 

core: single nozzle 

(electrospun) 
200 

SiO2 1200 nm 

+ dry air 
(4) 1.2 −8.5 2011 [141] 

shell: gas phase 

polymerization 

SPEAK/PANI 

core/shell 

Nanofibers  

(p-type) 

core: single nozzle 

(electrospun) 
220 

SiO2 200 nm 

+ dry air 
(4) 3.0 −6 2011 [138] 

shell: liquid phase 

polymerization 

MEH-PPV  

(p-type) 
single nozzle 500 

SiO2 + 

HMDS 600 

nm 

(4) 9.4 × 10−4 8 2011 [139] 

P3HT  

(p-type) 

coaxial with  

PMMA solution 
130 

SiO2 + ODTS  

200 nm 
(5) 1.9 × 10−1 0.8 2011 [71] 
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Table 2. Cont. 

Material 
Deposition  

method 

Fiber 

diameter 

(nm) 

Dielectric 

type and 

thickness 

Capacitive 

model 

µ 

(cm
2
·V

−1
·s
−1

) 

Vth 

(V) 
Year References 

P4TDPP  

(p-type) 

coaxial with  

PMMA solution 
194 

SiO2 + ODTS 

200 nm 
(5) 3.0 × 10−1 −1.25 2011 [140] 

P(NDI2OD-T2)  

(n-type) 

single nozzle + 

supporting polymer 

(PEO) 

1180 

SiO2/SiO2 + 

OTS 

230 nm 

(4) 9.0 × 10−2 −1 2012 [78] 

P3HT (p-type) 

single nozzle + 

supporting polymer 

(PSA/PnLA) 

181 
SiO2 + ODTS 

300 nm 
(5) 3.2 × 10−2 4.18 2013 [142] 

P3HT (p-type) 

single nozzle** + 

supporting polymer 

(PEO) 

780 SiO2 100 nm (6) 3.0 × 10−2 −1.5 2013 [62] 

P(NDI2OD-T2) 

(n-type) 

single nozzle** + 

supporting polymer 

(PEO) 

248 SiO2 100 nm (6) 1.2 × 10−2 – 2013 [62] 

P3HT 

(p-type) 

single nozzle** + 

supporting polymer 

(PEO) 

780  ion gel (8) 3.8 – 2013 [62] 

* Extracted from web. The effective field-effect mobility of holes in these blend nanofibers are 1 order of magnitude 

higher, if the fact that the web of nanofibers occupy only 10% of the FET channel area is taken into account; ** fibers 

fabricated using organic nano-wire printer. 

4.3. Logic Circuits and Other Applications 

We have so far emphasized the big effort done in demonstrating electrospun fibers with improved 

electrical characteristics for electronics application. Such interest has been lately accompanied by a 

realistic assessment of the necessary steps from lab-scale electrospinning process up to suitable 

scalable processes for possible industrialization [165]. Moreover, recently many works started 

focusing more on applications, with the aim of demonstrating for example that electrospun fibers can 

be effectively integrated in logic circuits with superior flexibility or, more ambitiously, embedded in 

fabrics or directly woven to form textile embedded logic elements— the so called “e-textile”.  

While FETs, as those illustrated so far, represent a clear proof of concept for e-textile, since the 

FET is actually the building block of digital circuits, real applications deserve obviously more 

attention for what concern dimensionality, durability, reliability, pattern control, placing and 

manufacturability. Moreover, a critical aspect is represented by electrical contacting, i.e., providing the 

fibers with suitable electrical connections compatible with a complex circuit routing. 

Already in 2007 and 2009, woven logic obtained using non-electrospun organic conducting and 

semiconducting fibers was demonstrated by Hamedi et al. [166,167]. In both works, the structural key 

of the illustrated tri-dimensional micro-electronics is the use of an electrolyte dielectric phase  

(Figure 14) [168], which releases the FET geometry from the planar layered architecture and, as stated 

above, emphasizes fibers transport properties through an optimized dielectric coupling and a superior 
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charge carrier density. In 2010, Lee et al. [144] gave a good demonstration of the advantages deriving 

from the employment of electrospun organic semiconductors, in terms of contact area with the 

dielectric layer, substrate compatibility, extreme flexibility, and easy scale-up (Figure 8). With the aid 

of ion gel electrolytic gate, they realized reliable arrays of electrospun P3HT OFETs, on flexible 

substrate (Polyethylene Terephthalate), working at operative voltage inferior to 2 V (which are values 

realistic for practical use) and with mobility values of ~2 cm
2
∙V

−1
∙s
−1

. Just recently, a solid 

demonstration of large-area flexible electronics was provided by the work of Sung-Yong Min et al. [62] 

(2013); they proposed a setup for fast nanolithography based on the combination of the electrospinning 

working principle with a printing technology (Figure 15). With this setup they were able to align and 

pattern semiconducting nanowires with high speed, high precision and high reliability, achieving in  

ion-gel gated devices mobility up to ~10 cm
2
∙V

−1
∙s
−1

 and demonstrating working complementary circuit 

arrays (inverters) based on the patterning of both n-type (P(NDI2OD-T2)) and p-type (P3HT) nanofibers. 

They also observed P3HT/PEO microstructure, as obtained with their Nano-Wire Printer setup, and, 

differently from standard electrospinning, a well-established core-shell structure along the wire axis 

was found by TEM and elemental analysis, as an effect of a more effective phase separation. 

Figure 14. Schematic and working principle of an organic wire electrochemical transistor, 

formed at a fiber junction connected through an ionic liquid electrolyte. Adapted with 

permission from [168]. Copyright (2007) by Nature Publishing Group. 
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Figure 15. (a) Schematic diagram of organic nanowire (ONW) printer and nanowire (NW) 

printing process; (b) optical micrograph of well-aligned NWs (inset, scale bar, 200 nm) 

and (c) field emission scanning electron microscope image showing cross section of  

well-aligned NW, which forms a perfect circle. Reprinted with permission from [62]. 

Copyright (2013) by Nature Publishing Group. 

 

We already mentioned in Section 3.5 a further possible application of electrospun fibers in the field 

of electronics, consisting in using them as template substrates for in-situ synthesis of conducting 

polymers. In this way, the electrospinning process is just used to realize the core-supporting phase 

obtaining the following advantages: decoupling the mechanical properties from the electrical 

properties, reduced morphological defectivity, improved molecular alignment along the fiber axis, easy 

core functionalization for electrical doping. This principle has been demonstrated to be successful in 

the realization of single-fiber FET based on doped PANI and PPy with unprecedented mobility, as high 

as ~11 cm
2
∙V

−1
∙s
−1

, which is a record value for standard planar ion-free dielectric layers [138,141]. The 

authors claim that such unrivaled electrical performances are mainly ascribable to two effects:  

(1) quasi-1D charge transport and reduced grain boundary effects and (2) Au nanoparticle on the top of 

PANI core [141] and highly doped PANI islands on the top of sulfonated poly(arylene ether ketone) 

(SPAEK) core [138] act as nano-electrodes, improving the transport by actually reducing the channel 

length of the FET.  

To close the picture with a further widening of the possible range of exploitation of electrospinning 

process, we like to stress that interesting and smart applications of electrospun semiconductor fibers 

beyond the logic have also been thought and developed. Among these, simple tactile sensors based on 

aligned electrospun P3HT nanofibers have been developed for detecting small pressure changes and 
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bending angles, as proposed by Qiang Gao et al. [169] in 2012 (Figure 16); single-fiber phototransistors 

and Light-Emitting Transistors (LIT) have been proposed by using electro-luminescent semiconducting 

materials [67,162]; finally, flexible and low-cost transistor memory devices based on hybrid  

P3HT: Au-nano-particles electrospun nanofibers have been recently published, exhibiting low 

operation voltages (± 5 V), large threshold voltage shifts (3.5–10.6 V), long retention ability (10
4
 s) 

and good stress endurance (100 cycles) [170]. 

Figure 16. Schematic of the arrangement of the electrodes on the P3HT nanofiber 

assembly in the tactile sensor and current changes from P3HT nanofiber assemblies as a 

function of applied pressure. Reprinted with permission from [169]. Copyright (2012) by 

American Chemical Society. 

 

5. Conclusions and Outlook 

Electrospinning of conjugated polymers represents a powerful yet simple technique to form 

functional micro- and nano- fibers at low temperature, enabling both fundamental studies of the 

electronic properties of semiconducting polymers in confined dimensionalities and interesting  

opto-electronic and sensing applications. While fibers composed of only a single material are possible, 

given the additional difficulties in spinning conjugated polymers with respect to insulating ones, it is 

very common to form multi-component fibers where an insulating polymer enables the tuning of 

rheological properties for stable spinning. Interestingly, this is not necessarily limiting the performance 

of the active phase, and pristine fibers can be obtained with a post-deposition rinsing of the insulating 

phase. A series of techniques has been proposed in order to form multi-component fibers: spinning of 

blends from a single spinneret, multi-axial spinning of different materials and functional coating of 

supporting fibers. 

In the case of conducting polymer fibers, interesting conductivities, in the range of 10–10
3
 S/cm 

have been achieved, especially thanks to the electro-spinning of PANI. The highest conductivity 

values can be achieved through a post-spinning mechanical drawing of the fibers. As far as 

semiconductors are concerned, we have focused here on charge transport properties. FETs are an ideal 

test structure for this purpose, besides being a necessary building block for logic applications. Both 

single fibers and multi-fibers/mats FETs have been demonstrated, and charge carriers mobility 

extracted with different models. Particular attention needs to be paid when extracting the carriers’ 

mobility owing to a non trivial estimation of the device geometry and of the specific dielectric 
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capacitance in FET devices, an aspect which is not rarely overlooked in the literature. In the literature, 

several p-type fibers have been demonstrated, where P3HT has been the most employed polymer. Only 

recently, due to the recent development of high-mobility and stable electron transporting materials,  

n-type fibers have been demonstrated, offering the complementary unit for logic applications [171]. 

Charge carrier mobilities were demonstrated to equal the ones obtainable in highly uniform films 

deposited by spin-coating, while being relatively less affected by the particular substrate adopted, 

because of the on-the-fly solidification of the fiber. It can be easily foreseen that, thanks to the recent 

development of high performing donor-acceptor ambipolar copolymers, ambipolar fibers will be 

developed as well in the near future. 

One of the great potentials of polymer fibers is their possibility to offer unconventional and new 

applications in the field of light detection, solar energy conversion, light emission and management, 

and electronic circuits. We have reviewed here in particular the application of fibers FET and 

interconnections in logic circuits, where the controlled patterning of quasi-1D structures could favor 

the development of high performance electronics. The integration of fibers within textiles could pave 

the way for large-area wearable electronics in an alternative and appealing way which would be 

followed by the integration of external plastic patches. In order to favor these applications, clear 

advancements are required in many aspects. The first one regards the controlled deposition and 

alignment of fibers with scalable processes. While electrospinning readily enables laboratory studies 

on processes parameters, materials and properties, in its most simple version it does not allow a simple 

method for patterning of circuital components. Clearly, this technique could gain a competitive edge 

with respect to inorganic wires and fibers, usually offering higher electronic performances, if transfer 

patterning or pick-and-place are avoided in favor of a single-step process where fibers are placed while 

formed. A series of options for advanced techniques have been proposed, comprising rotating jets and 

electrodes. One very promising method is represented by near-field deposition configurations, where 

the substrate is close enough to the jet to avoid the formation of a chaotic regime and to allow precise 

patterning. Complementary circuits based on fibers FET fabricated with this approach have indeed 

been demonstrated.  

Another clear issue to be faced for the full deployment of the potentiality of fibers based electronics 

is an effective way of contacting the active phases and to interconnect different devices, especially in 

the directions of smart textiles. In this context, lithographically pre-patterned electrodes, which serve 

simple demonstrators, have to be replaced. The topology of circuits directly employing fiber 

conductors for electrodes and interconnections is not trivial and effective designs have to be devised. 

In perspective, the possibility to fabricate multi-component fibers could help this required 

development by the introduction of advanced and non-conventional device architectures. It is indeed 

worth noting that in multi-component fibers’ different functionalities may be integrated: the  

non-conjugated polymer, traditionally helping the stabilization of the jet, could also play an active role 

in providing, for example, a dielectric surrounding to a coaxially spun conjugated phase, which could 

be gated through it; electrodes could also be coaxial-formed [125,172], providing a possible solution 

for one of the most difficult tasks to be realized in the context of fibers based electronics. Circuit 

topology may be simplified by the use of electrolytes, which also serve as optimal gate media for the 

peculiar fiber aspect ratio. 
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It has to be kept in mind that polymer fibers share the same limits of organic electronics in terms of 

stability and reliability: the achievement of the necessary advancements in plastic electronics will also 

favor the actual application of organic fibers. One possible path to follow is represented by the 

integration of active polymer phases in synthetic fibers which are already in use for textiles, as 

demonstrated for example for liquid crystals incorporated in nylon fibers [17]. This approach may 

provide a certain level of protection at least to prevent degradation during processing and could 

envision the weaving of smart textiles if suitable layout strategies are developed. 
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