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Abstract: The electronic properties of zincblende ZnSe/Si core-shell nanowires (NWs) 

with a diameter of 1.1–2.8 nm are calculated by means of the first principle calculation. 

Band gaps of both ZnSe-core/Si-shell and Si-core/ZnSe-shell NWs are much smaller than 

those of pure ZnSe or Si NWs. Band alignment analysis reveals that the small band gaps of 

ZnSe/Si core-shell NWs are caused by the interface state. Fixing the ZnSe core size and 

enlarging the Si shell would turn the NWs from intrinsic to p-type, then to metallic. 

However, Fixing the Si core and enlarging the ZnSe shell would not change the band gap 

significantly. The partial charge distribution diagram shows that the conduction band 

maximum (CBM) is confined in Si, while the valence band maximum (VBM) is mainly 

distributed around the interface. Our findings also show that the band gap and conductivity 

type of ZnSe/Si core-shell NWs can be tuned by the concentration and diameter of the 

core-shell material, respectively. 
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1. Introduction 

Semiconductor nanowires (NWs) have received extensive attention for their unique one-dimensional 

structure and the progress in the preparation method [1]. The past decade has witnessed their 

application in various electronic and photonic devices, such as diodes [2], lasers [3], field effect 

transistors [4], biological sensors [5] and integrated logical calculators [6,7]. Among all kinds of NWs, 

core-shell NWs are prominent for their variation of composition in the radial direction [8]. Since NWs 

are well known for their ability to form heterostructures with large lattice mismatch, while avoiding 

creating dislocations, core-shell NWs are hoped to be the carrier of heterostructures that cannot be 

grown epitaxially in planar form [9]. 

Silicon (Si) is the basic material in the semiconductor industry, and mature methods have been 

established to fabricate Si-based electronics. Zinc selenide (ZnSe) is widely used in photocatalytic 

activities [10] and short-wavelength optoelectronics [11,12] for its large bandgap (Eg = 2.67 eV at 300 K) 

and excitonic binding energy [13]. ZnSe NWs have been prepared by the vapor-liquid-solid  

method [14,15] and the solution-based method [16,17]. It is well known that the shape and diameter 

are two features for tuning the electronic properties of one-dimensional nanostructures. However, if the 

composition varies along the radial direction, namely the core and shell parts of NWs are composed of 

different materials, new phenomena would occur, due to the band alignment and strain caused by 

lattice mismatch on the interface. To see their effects on the electronic properties of NWs, some 

attempts have been made: for example, coaxial ZnSe/Si nanocables with high tunability of the shell 

conductivity have been synthesized by varying the boron concentration in the shell [18], and  

silica-sheathed ZnSe nanostructures are found to have improved stability and to not have their optical 

properties influenced [19]. 

Previous theoretical calculations focused on ZnSe/Si coaxial NWs [20] or pure Si NWs [21–23], 

while few talked about ZnSe/Si core-shell NWs. Therefore, in this paper, we present the electronic 

properties of ZnSe NWs, nanotubes (NTs) and ZnSe/Si core-shell NWs by means of the first principles 

calculation based on density functional theory (DFT) [24,25]. The results show that ZnSe NTs have 

larger band gaps than those of ZnSe NWs of the same diameter, due to their stronger quantum 

confinement effect. Both ZnSe NWs and Si NWs have larger band gaps than their bulk counterparts. 

However, both ZnSe-core/Si-shell and Si-core/ZnSe-shell NWs have much smaller band gaps than 

those of ZnSe and Si NWs with the same diameter. Further analysis of the partial charge densities 

reveals that ZnSe/Si core-shell NWs have type I band alignment and interface states caused by the 

large lattice mismatch between ZnSe and Si.  

2. Theoretical Method  

The DFT calculations are performed with Vienna Ab initio Simulation Package (VASP) code [26], 

using the generalized gradient approximation (GGA) suggested by Perdew, Burke and Ernzerhof 

(PBE) [27]. The wave functions are expanded on a plane wave basis with kinetic energy cutoff set to 
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360 eV. A Monkhorst–Pack scheme [28] k point mesh of 1 × 1 × 6 is used for the first Brillouin zone 

integration. All of the structures are fully optimized until the allowed error in the total energy is less 

than 10−4 eV and the error in the forces is smaller than 2 × 10−2 eV/Å. To eliminate the interactions 

between neighboring NWs, a supercell of a 10~15 Å separation distance is applied to the structures. 

During the optimization, no symmetry constraints are used. 

The details about the construction of the model of ZnSe-core/Si-shell NWs are described in our 

former works [29]. In short, only zincblende ZnSe is considered, and the direction is along [110] for 

the experimental findings [30]. ZnSe-core/Si-shell NWs with diameter ranges of 1.1–2.8 nm are 

considered, and they have hexagonal shapes, with the surface atoms saturated by hydrogen atoms.  

Si-core/ZnSe-shell NWs are the same, apart from the inner ZnSe being replaced by Si, and the surface 

Zn and Se atoms are saturated by pseudo hydrogen atoms with a fractional charge of 1.5 e and 0.5 e, 

respectively. Then, atoms in the unit cell can be classified into the core and shell part; thus, we define 

the total number of atoms per unit cell as N = Ncore + Nshell, where hydrogen atoms are not considered. 

In this way, an NW can be identified uniquely by ZnSe-core (R, x) or Si-core (R, x), where R is the 

diameter and x = Ncore/(Ncore + Nshell). Representative schemes of ZnSe-core/Si-shell and  

Si-core/ZnSe-shell NWs are shown in Figure 1. ZnSe NTs are built from ZnSe NWs by removing the 

inner Zn and Se atoms and identified as ZnSe-NT (R, x), where x is the ratio of missing atoms. All of 

the considered NTs have at least two Zn-Se bilayers, and all of the surface atoms have been saturated 

by pseudo hydrogen atoms. Figure 2 shows the top view of the ZnSe NWs and NTs considered. 

Figure 1. Top view of a typical (a) Si-core/ZnSe-shell and (b) ZnSe-core/Si-shell NWs 

along the [110] direction. The blue, grey and green spheres represent Si, Zn and Se atoms, 

respectively. The outer black spheres are pseudo hydrogen atoms. 
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Figure 2. Top view of ZnSe nanowires (W1–W3) and nanotubes (N0–N2). The grey and 

green spheres represent Zn and Se atoms, while the outer and inner black spheres are 

pseudo hydrogen atoms. 

 

3. Results and Discussion 

Firstly, the electronic properties of ZnSe NWs and NTs are analyzed. The band structures of 

representative ZnSe NWs (W3) and NTs (N2) are displayed in Figure 3a,b. The band gap of bulk ZnSe 

is 1.356 eV, which is smaller than the experimental value (2.70 eV) [31]. This can be anticipated, since 

DFT calculations underestimate the value of band gaps. However, the trend of the band gaps calculated 

under the same accuracy is valid. Figure 4 gives the variation trend of the band gaps of NWs and NTs. 

All of the calculated NWs have direct band gaps, and the band gap decreases as the diameter of the 

NW increases and, finally, approaches the bulk value. For example, the band gap of ZnSe NWs with a 

diameter of 2 nm is 1.89 eV and decreases to 1.67 eV when the diameter is 2.84 nm. This is caused by 

the quantum confinement effect [32]. While for ZnSe NTs, the inner loop offers another degree of size 

tuning. When the diameter of the outer loop is unchanged, the band gap of NTs increases with 

increasing of the diameter of inner loop, such as the variation from N1 to N2. Since the cross-section 

area of NTs is smaller than that of NWs with the same diameter, the band gap of NTs would be larger 

than that of NWs at a given diameter, due to the enhanced quantum confinement effect, as confirmed by, 

for example, W3 and N2. A similar trend has also been observed in Si NWs and NTs. 
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Figure 3. Band structure of ZnSe (a) NWs W3; (b) NTs N2 and (c) ZnSe-core (2.5, 0.56) NW; 

(d) Si-core (2.5, 0.56) NW. The red horizontal dashed line is the Fermi energy, which is  

set to zero. 

 

Figure 4. Variation of the band gaps of ZnSe NWs and NTs with the diameter; terms in the 

figure correspond to the structures shown in Figure 2. 

 

Figure 5 shows the partial charge density distribution of the valence band maximum (VBM) and 

conduction band minimum (CBM) of typical ZnSe NWs (W3) and NTs (N2). The VBM of W3 mainly 

comes from the 4p orbital of the inner Se atoms, while the CBM primarily originates from the 4s 

orbital of the inner Se atoms and the sp3 orbital, consisting of the Zn 4s and Se 4p orbitals. For NT2, 
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the CBM also originates from the 4s orbital of the Se atoms and the sp3 orbital. However, the VBM 

mainly comes from the 4p orbital of the Se atoms that lie on the (111) and (211) facets. This can be 

explained by the fact that the VBM of N2 is degenerate, while the VBM of W3 is not, which can be 

seen in Figure 3. 

Figure 5. Partial charge density of the valence band maximum (VBM) and conduction 

band minimum (CBM) of ZnSe NWs (W3) and NTs (N2) at the G point. (a) W3-VBM;  

(b) W3-CBM; (c) N2-VBM; (d) N2-CBM. 

 

The variation of the band gaps of the ZnSe-core/Si-shell NWs and Si-core/ZnSe-shell NWs with the 

diameter and ratio of the core atoms is displayed in Figure 6. It can be seen that when radial 

heterostructures are formed, the band gap would be smaller than that of the Si and ZnSe NWs of the 

same diameter, as indicated by the solid line in both Figure 6a,b. This is contrary to the derivational 

band alignment of the bulk phases of ZnSe and Si, where they would form the type I heterostructure, 

namely Si has a higher VBM and a lower CBM simultaneously, and the band gap of the ZnSe/Si  

core-shell NWs would be close to that of Si. We can eliminate the influence of surface dangling bonds, 

which have been saturated by pseudo hydrogen atoms. Besides, some structures of the ZnSe-core/Si-shell 
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NWs, for example the ZnSe-core (2.5, 0.06~0.6), show p-type characteristics, namely the VBM 

crosses the Fermi energy level, as indicated in Figure 3c. Moreover, the Si-core (2.5, 0.56) NW 

becomes metallic, as shown in Figure 3d. We further increase the diameter and find that the NWs 

would become metallic for both the ZnSe-core and Si-core NWs. This may be the reason why it is 

hard to get p-type NWS in the experiment. In addition, this means that by varying the concentration 

of core atoms and the radius of NWs, the type of conductivity can be tuned from intrinsic to p-type 

and to metallic. 

Figure 6. Variation of the band gaps of (a) ZnSe-core/Si-shell and (b) Si-core/ZnSe-shell 

NWs with the ratio of core atoms. 

 

Figure 7 depicts the typical charge densities of the CBM and VBM states of the ZnSe-core/Si-shell 

and Si-core/ZnSe-shell NWs. For Si-core/ZnSe-shell NWs, the CBM is mainly located at the inner  

Si-core, while the atoms near the interface contribute most of the VBM. As for ZnSe-core/Si-shell 

NWs, the contribution to the CBM mainly stems from the outer Si shell and ZnSe atoms on the 

interface. However, the VBM also comes from atoms near the interface. This result indicates that 

electrons would be confined in the Si part for both core-shell NWs due to the band alignment, while 

holes are restricted in the interface. According to the type I heterostructure theory, both CBM and 

VBM would be confined in the Si part. The contradiction in the VBM leads us to believe that the 

VBM in the ZnSe-core/Si-shell and Si-core/ZnSe-shell NWs is formed by surface states caused by 

lattice mismatch.  

Figure 8 illustrates the band structures of ZnSe-core, Si-shell and ZnSe-core/Si-shell NWs. It can be 

seen that there is no resemblance of VBM between Si-shell and ZnSe-core/Si-shell NWs, indicating 

that the VBM of ZnSe-core/Si-shell NWs is dominated by interface states. To further illustrate this we 

depict the schematic of the band alignment of ZnSe-core/Si-shell NWs, where the band edge diagrams 

before forming the heterostructure are taken from ZnSe NWs and Si NTs. 
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Figure 7. Partial charge density distribution of the CBM and VBM states of  

(a) Si-core/ZnSe-shell and (b) ZnSe-core/Si-shell NWs. 

 

Figure 8. The band structures of ZnSe NWs W1, NTs N2 and ZnSe-core (2.5, 0.25) NWs, 

which can be considered to be composed of W1 and N2. 
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Figure 9a shows the band edge alignment of typical ZnSe-core/Si-shell NWs before forming 

heterostructures. The ZnSe-core is calculated from ZnSe NWs with a smaller diameter, while the  

Si-shell part is calculated from Si NTs. Figure 9b is the energy-band profile at equilibrium when a 

junction is formed, if no interface states exist. Due to the large quantum size effects, the band gaps of 

both the ZnSe-core and Si-shell part have enlarged. In this example, the Fermi level of the Si-shell is 

located above that of the ZnSe-core, and they form a type I heterojunction. As can be seen in Figure 9b, 

the CBM of the Si-shell has a relatively lower energy, and most electrons would be confined in the Si 

shell. The VBM of the Si-shell is higher than that of the ZnSe-core; however, the valence band 

alignment is much smaller than the conduction band alignment, ΔEV < ΔEC, and thus, the holes tend not 

to be confined in the Si-shell. As the lattice mismatch between ZnSe and Si is 5.2% and the interface area 

is large compared to the cell volume, the density of the interface state can be very high; thus, the 

interface states would be introduced in the band gap. These newly introduced interface states would be 

bent in the reciprocal space and form a new VBM, and the band gap is reduced correspondingly. This 

result is consistent with what is shown in Figure 6 and the partial charge density distribution of CBM and 

VBM states. By using the band edge alignment, we can also explain why the conductivity type of  

ZnSe-core/Si-shell NWs can be tuned by shell thickness, but that of Si-core/ZnSe-shell NWs cannot. As 

presented in Figure 10, both ZnSe-core/Si-shell and Si-core/ZnSe-shell NWs have fixed core diameters 

and varying shell thicknesses; thus, the amount of surface states can be deemed as the same, and the 

shape of the VBM remains unchanged when the shell swells. However, for ZnSe-core/Si-shell NWs, a 

thicker Si shell would reduce the band gap of NWs because a thicker Si shell would have smaller band 

gaps. This is what is shown in Figure 10a,b. A further increase of the shell thickness would make the 

NWs metallic (the result is not shown here). For Si-core/ZnSe-shell NWs, a thicker ZnSe shell would 

not affect the band gap and conductivity type of NWs, since the band gap of the Si core is still smaller 

than that of the ZnSe shell, and the band structure is mainly determined by Si and the interface states, 

as is exactly seen in Figure 10c,d. 

Figure 9. The band alignment of ZnSe-core/Si-shell NWs (a) before and (b) after the 

formation of heterostructures; (c) the band alignment of NWs with interface states. 
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Figure 10. Variation of the band structures of ZnSe-core/Si-shell NWs (a,b) and  

Si-core/ZnSe-shell NWs (c,d). (a) ZnSe-core (2.0, 0.44); (b) ZnSe-core (2.8, 0.25);  

(c) Si-core (2.0, 0.44) and (d) Si-core (2.8, 0.25). 

 

4. Conclusions 

In conclusion, we have investigated the electronic properties of ZnSe/Si core-shell NWs along  

the [110] direction by employing first principle calculation. To understand the role of the core and 

shell part, we built ZnSe NT structures and find that NTs have larger band gaps than NWs of the 

same diameter, due to the smaller cross-section areas that they have. Additionally, the band gap 

decreases with the increasing of the thickness of the NT. The VBMs of ZnSe NT are degenerate, 

while those of ZnSe NWs are not. The VBM states of both NTs and NWs come from the 4p state of 

Se atoms, and the CBM state is a joint contribution of the s orbital of Se and the sp3 orbital, 

consisting of the Se 4p and Zn 4s orbitals. The band gaps of both ZnSe-core/Si-shell NWs and  

Si-core/ZnSe-shell NWs are smaller than those of pure ZnSe or Si NWs, and ZnSe-core/Si-shell 

NWs would turn from intrinsic to p-type, then to metallic characteristics when the shell thickness is 

enlarged. However, Si-core/ZnSe-shell NWs would remain intrinsic by varying the shell thickness. 

The partial charge distribution diagram shows that CBM would be confined in the Si part , while 

VBM is mainly distributed in atoms on the interface. By using the band edge alignment at equilibrium 

of the heterostructures, we conclude that the small band gap is the result of the introduction of 

interface states into the band gap. 



Materials 2014, 7 7286 

 

 

Acknowledgments 

The authors would like to acknowledge the financial support from the National Natural Science 

Foundation of China under Grant No. 61376102 and 11174048 and the computational support from 

Shanghai Supercomputer Center. 

Author Contributions 

Huaizhong Xing and Xiaoshuang Chen designed the experiment; Yijie Zeng and Yanbian Fang 

carried out the calculations and wrote the paper; Yan Huang and Aijiang Lu helped analyzing the results. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Agarwal, R.; Lieber, C.M. Semiconductor nanowires: Optics and optoelectronics. Appl. Phys. A 

2006, 85, 209–215. 

2. Lieber, C.M. Nanoscale science and technology: Building a big future from small things.  

MRS Bull. 2003, 28, 486–491. 

3. Duan, X.F.; Huang, Y.; Agarwal, R.; Lieber, C.M. Single-nanowire electrically driven lasers. 

Nature 2003, 421, 241–245. 

4. Xiang, J.; Lu, W.; Hu, Y.; Wu, Y.; Yan, H.; Lieber, C.M. Ge/Si nanowire heterostructures as 

high-performance field-effect transistors. Nature 2006, 441, 489–493. 

5. Xu, L.; Jiang, Z.; Qing, Q.; Mai, L.; Zhang, Q.; Lieber, C.M. Design and synthesis of diverse 

functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 2013, 13, 746–751. 

6. Huang, Y.; Duan, X.; Cui, Y.; Lauhon, L.J.; Kim, K.H.; Lieber, C.M. Logic gates and 

computation from assembled nanowire building blocks. Science 2001, 294, 1313–1317. 

7. Yan, H.; Choe, H.S.; Nam, S.; Hu, Y.; Das, S.; Klemic, J.F.; Ellenbogen, J.C.; Lieber, C.M. 

Programmable nanowire circuits for nanoprocessors. Nature 2011, 470, 240–244. 

8. Qian, F.; Gradecak, S.; Li, Y.; Wen, C.Y.; Lieber, C.M. Core/multishell nanowire heterostructures 

as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287–2291. 

9. Lu, W.; Xiang, J.; Timko, B.P.; Wu, Y.; Lieber, C.M. One-dimensional hole gas in 

germanium/silicon nanowire heterostructures. Proc. Natl. Acad. Sci. USA 2005, 102, 10046–10051. 

10. Chen, L.; Zhang, W.; Feng, C.; Yang, Z.; Yang, Y. Replacement/etching route to ZnSe nanotube 

arrays and their enhanced photocatalytic activities. Ind. Eng. Chem. Res. 2012, 51, 4208–4214. 

11. Fang, X.; Xiong, S.; Zhai, T.; Bando, Y.; Liao, M.; Gautam, U.K.; Koide, Y.; Zhang, X.; Qian, Y.; 

Golberg, D. High-performance blue/ultraviolet-light-sensitive znse-nanobelt photodetectors.  

Adv. Mater. 2009, 21, 5016–5021. 

12. Zhang, X.; Zhang, X.; Wang, L.; Wu, Y.; Wang, Y.; Gao, P.; Han, Y.; Jie, J. ZnSe nanowire/Si  

p-n heterojunctions: Device construction and optoelectronic applications. Nanotechnology 2013, 

24, doi:10.1088/0957-4484/24/39/395201. 



Materials 2014, 7 7287 

 

 

13. Sun, J.; Wang, L.-W.; Buhro, W.E. Synthesis of Cadmium telluride quantum wires and the 

similarity of their effective band gaps to those of equidiameter cadmium telluride quantum dots.  

J. Am. Chem. Soc. 2008, 130, 7997–8005. 

14. Cai, Y.; Chan, S.K.; Sou, I.K.; Chan, Y.F.; Su, D.S.; Wang, N. The size-dependent growth 

direction of ZnSe nanowires. Adv. Mater. 2006, 18, 109–114. 

15. Philipose, U.; Xu, T.; Yang, S.; Sun, P.; Ruda, H.E.; Wang, Y.Q.; Kavanagh, K.L. Enhancement 

of band edge luminescence in ZnSe nanowires. J. Appl. Phys. 2006, 100, doi:10.1063/1.2362930. 

16. Petchsang, N.; Shapoval, L.; Vietmeyer, F.; Yu, Y.; Hodak, J.H.; Tang, I.M.; Kosel, T.H.;  

Kuno, M. Low temperature solution-phase growth of ZnSe and ZnSe/CdSe core/shell nanowires. 

Nanoscale 2011, 3, 3145–3151. 

17. Wei, H.; Su, Y.; Chen, S.; Liu, Y.; Lin, Y.; Zhang, Y. One-pot synthesis of ultranarrow single 

crystal ZnSe nanowires. Mater. Lett. 2012, 67, 269–272. 

18. Wang, L.; Jie, J.; Wu, C.; Wang, Z.; Yu, Y.; Peng, Q.; Zhang, X.; Hu, Z.; Wu, D.; Guo, H.; Jiang, Y. 

Coaxial ZnSe/Si nanocables with controlled p-type shell doping. Nanotechnology 2010, 21, 

doi:10.1088/0957-4484/21/28/285206. 

19. Wei, D.P.; Ma, Y.; Pan, H.Y.; Chen, Q. A versatile chemical vapor deposition method to synthesize 

one-dimensional silica-sheathed nanostructures. J. Phys. Chem. C 2008, 112, 8594–8599. 

20. Xing, H.; Zhang, H.; Huang, Y.; Zhang, L.; Xu, X.; Wang, C.; Chen, X. The dependence of 

structural stability and tunable gap on the Si components of ZnSe/Si Bi-coaxial nanowire 

heterostructures. J. Nanosci. Nanotechnol. 2012, 12, 2567–2572. 

21. Zhang, R.Q.; Hou, C.; Gao, N.; Wen, Z.; Jiang, Q. Multi-field effect on the electronic properties 

of silicon nanowires. Chemphyschem 2011, 12, 1302–1309. 

22. Nduwimana, A.; Wang, X.-Q. Core and shell states of silicon nanowires under strain. J. Phys. 

Chem. C 2010, 114, 9702–9705. 

23. Nduwimana, A.; Wang, X.-Q. Tunable electronic properties of silicon nanowires under strain and 

electric bias. AIP Adv. 2014, 4, doi:10.1063/1.4890674. 

24. Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects.  

Phys. Rev. 1965, 140, A1133–A1138. 

25. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871. 

26. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using 

a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. 

27. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple.  

Phys. Rev. Lett. 1996, 77, 3865–3868. 

28. Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 

5188–5192. 

29. Zeng, Y.; Zhou, B.; Huang, Y.; Fang, Y.; Lu, A.; Wang, C.; Wu, B.; Xu, X.; Xing, H.  

Structural and stable properties of ZnSe/Si core-shell nanowire heterostructures: The first 

principles calculation. In Proceedings of the Eighth International Conference on Thin Film 

Physics and Applications, Shanghai, China, 16 December 2013. 

30. Panda, A.B.; Acharya, S.; Efrima, S. Ultranarrow ZnSe nanorods and nanowires: Structure, 

spectroscopy, and one-dimensional properties. Adv. Mater. 2005, 17, 2471–2474. 



Materials 2014, 7 7288 

 

 

31. Xiang, B.; Zhang, H.Z.; Li, G.H.; Yang, F.H.; Su, F.H.; Wang, R.M.; Xu, J.; Lu, G.W.; Sun, X.C.; 

Zhao, Q.; et al. Green-light-emitting ZnSe nanowires fabricated via vapor phase growth.  

Appl. Phys. Lett. 2003, 82, doi:10.1063/1.1573334. 

32. Nduwimana, A.; Musin, R.N.; Smith, A.M.; Wang, X.-Q. Spatial carrier confinement in 

core−shell and multishell nanowire heterostructures. Nano Lett. 2008, 8, 3341–3344. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


