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Abstract: Brittle materials such as rock and ceramic usually exhibit apparent increases of 

strength and toughness when subjected to dynamic loading. The reasons for this 

phenomenon are not yet well understood, although a number of hypotheses have been 

proposed. Based on dynamic fracture mechanics, the present work offers an alternate 

insight into the dynamic behaviors of brittle materials. Firstly, a single crack subjected to 

stress wave excitations is investigated to obtain the dynamic crack-tip stress field and the 

dynamic stress intensity factor. Second, based on the analysis of dynamic stress intensity 

factor, the fracture initiation sizes and crack size distribution under different loading rates 

are obtained, and the power law with the exponent of −2/3 is derived to describe the 

fracture initiation size. Third, with the help of the energy balance concept, the dynamic 

increase of material strength is directly derived based on the proposed multiple crack 

evolving criterion. Finally, the model prediction is compared with the dynamic impact 

experiments, and the model results agree well with the experimentally measured dynamic 

increasing factor (DIF). 

Keywords: brittle materials; dynamic fracture; fragmentation; mechanical properties; 

strain rate effect; dynamic damage evolution 
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1. Introduction 

Dynamic fracture of brittle materials is of special interest in the physics and materials community [1–4]. 

Under rapid loading, brittle materials tend to break into pieces. The higher the loading rate is, the 

smaller the sizes of fragments are [5–8]. Much work has been done to investigate the physical 

mechanism of this phenomenon, including the dynamic fracture experiments [9–13], numerical 

simulations [14–16] and theoretical developments [17–21]. 

So far, the physical explanation of rate sensitivity of brittle materials is still an open field with many 

issues remain ambiguous. Mott [16] was the first to study the dynamic fragmentation in an analytical 

way. In Mott’s model, the concept of material randomness and stress relief were introduced. The 

fragmentation of brittle materials was formed by the competition between the dynamic stress loading 

and stress relief. This idea was further extended by Hild and his co-workers to develop an alternative 

probabilistic damage model [22]. In their model, local cracks are randomly nucleated as a time 

dependent process. Then each nucleated crack propagates at a certain velocity and relieves a 

neighboring region whereas further fracture in the region is prohibited. Although this statistical model 

considers the physical mechanism of crack propagation, it ignores the dynamics of fracture initiation. 

On the other hand, the question of stress wave propagation in an elastic solid with a single isolated 

crack has been well discussed by Sih and Loeber [23]. In the work of Chen [24], the dynamic response 

of crack to various types of Heaviside loadings has been developed. Based on this method, Kipp and 

his co-workers [25] explained the dynamic strength increase of oil shale under high strain rate. While 

these dynamic fracture based methods reveal some important features of crack initiation, further 

investigations on crack initiation size and diffusion of cracking under dynamic impact from the view 

point of material physics are lacking, and a proper physically based model is needed to explain and 

describe these phenomena. 

In the present work, based on the methods proposed by Sih and Kipp [23,25], an analytical relation 

between minimum crack initiation size and loading rate is proposed by studying crack tip stress wave 

propagation. Furthermore, the phenomenon of multiple crack propagation under dynamic loading is well 

explained and described. The equation to describe the dynamic increase of material strength is  

then developed. 

The paper is organized as follows. In Section 2, the dynamic response of a single crack embedded 

in an infinite homogeneous elastic body under stress wave loading is investigated to obtain the fracture 

initiation sizes and the crack size distribution under different loading rates. Based on this knowledge, 

and combined with the concept of energy balance in facture, a multiple crack propagation dynamic 

fracture model is proposed, and the dynamic increasing factor for brittle materials can be derived 

easily. In Section 3, comparison between model prediction and experimental results is provided, and 

numerical results show that the present model is capable of describing the phenomenon of multiple 

fragmentations and strain rate effect physically, and a few conclusions are drawn in the last section. 
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2. Mechanical Modeling 

2.1. Fracture Initiation and Multiple Cracking 

For the sake of simplicity, the brittle material is idealized as a homogenized elastic body with a single 

embedded crack. The same treatment can be also found in many work including Sih and Loeber [23]. So, 

consider here an infinite isotropic elastic body containing a through plane crack with the length of 2a 

subjected to impact tensile loading normal to the crack surfaces. The transient response of the crack-tip 

will be obtained by using the solution of the Heaviside normal traction applying on the upper and 

lower crack surfaces (Figure 1). 

Figure 1. Crack geometry and loading. 

 

As shown in Sih and Loeber [23], the Laplace transform is introduced to solve the wave equation. 

The specific response at the crack tip of the dynamic stress intensity factor may then be formulated in 

terms of a standard Fredholm integral equation of the second kind. In Figure 2, the dynamic stress 

intensity factor, normalized with respect to the corresponding static value of stress intensity factor K0 

is plotted as a function of c2t/a (the blue line), where c2 is shear wave speed. For brittle materials like 

oil shale, the shear wave speed is about 1773.6 m/s and the ratio of shear wave speed to dilatational 

wave speed is about 0.612. It is noted that the dynamic intensity factor reaches its maximum rapidly 

and then decreases in amplitude oscillating about the static intensity factor (Figure 2). 

Before the Rayleigh waves interact to each other the transient response of crack tip dynamic stress 

intensity factor could be approximated by the semi-infinite crack solution [24], which is characterized 

by the square root of the time: 

(1) ݐ√~ሻݐሺ୍ܭ

Specifically, for the mode I fracture, the dynamic stress intensity factor could be derived in the form: 
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The Heaviside loading response could then be readily employed as Green’s function for the general 

dynamic loading [18]. Specifically, for the constant strain rate loading, the corresponding dynamic 

stress intensity factor at crack tip (red dash line in Figure 2) could be written as: 
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where, denotes the geometry coefficient obtained from the early portion of the inversion numerical 

curves in Figure 2. 

Before we go further to the dynamic fracture, we should analyze the dynamic time history of stress 

field distribution around the crack-tip. When the Heaviside normal traction loading is applied to the 

crack surfaces, both of the crack-tips generate two outgoing cylindrical waves, e.g., the dilatational 

wave and the shear wave. At the same time, a surface wave that travels along the crack surfaces is also 

formed. Here, c1, c2 and cR denote the dilatational wave speed, shear wave speed and the Rayleigh 

surface wave speed, respectively. The dynamic stress wave propagation pattern is shown in Figure 3. 

However, it should be noted that the analytical solution of the dynamic stress intensity factor shown in 

Equation (3) is identical to the solution of the semi-infinite crack under impact before the dilatational 

wave reaches the other tip of the crack [20,23,25]. Upon the arrival of the dilatational wave front the 

dynamic stress intensity factor tends to divert slightly from the semi-infinite solution, because of the 

wave interaction. Then an intersection between the numerical solution and the analytical solution could 

be observed in Figure 2. We denote the normalized dynamic stress intensity factor at the intersection as 

intK and also denote the corresponding dimensionless time as 2 int /c t a . According to the conclusions 

drew by Freund [20], the dynamic stress intensity factor decreases when the Rayleigh wave reaches the 
other tip of the crack. Thus we define the maximum dynamic stress intensity factor as maxK  while the 

corresponding dimensionless time could be well approximated by /R cc t a  [20]. The maximum value of 
dynamic stress intensity factor 

maxK  is critical because it is required by the fracture criterion under dynamic 

loading. However, it is hardly possible to solve it analytically. Thus, in the present paper, we approximate 

maxK  by calculating the analytical expression of Equation (3) at the dimensionless time point /R cc t a . As 

can be observed from Figure 2, our approximation agrees not too bad with the numerically solved maxK . 

Similar treatment can be found in the work of Kipp and coworkers [25]. 

Figure 2. Dynamic stress intensity factor. 
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Figure 3. Wave fronts emanating from crack tip. 

 

It is observed that the dynamic stress intensity factor calculated by Equation (3) may be large 
enough and exceed the critical stress intensity factor ICK , while the crack growth initiates. So, the 

critical time st  at which I ( )K t  reaches ICK can be expressed as: 
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By using the linear elastic stress-strain relation, the dynamic strength is obtained as: 
1
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where, 0E  is the Yong’s modulus, and 0 is the loading rate. In order to investigate the influence of 

crack geometry on the dynamic strength, a sensitivity analysis of Equation (5) has been performed. For 

common brittle materials, it is revealed that the dynamic strength is insensitive to geometry coefficient 

for different crack shapes, and this is in agreement with Kipp [25]. One could also see that, for a given 

strain rate, the dynamic strength is independent of the initial crack size. 

In order to determine the minimum critical size of the crack evolving at a given loading rate, the 

critical time expressed in Equation (4) should be reexamined. One must note that, Equation (1) only 
holds when the time period is shorter than the period of time ct . According to the aforementioned 

analysis, the dynamic stress intensity factor ( )IK t  reaches its maximum at ct . Thus, we conclude that 

the ( )IK t  of the evolving crack should reach ICK  before the critical time ct . We have: 
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So, for a given loading rate 0 0 0E   , the minimum critical crack size is obtained as follows: 

2
23

IC 2 3
0

0

3 K
0.5

4c

c
a k

E





 

   
 
   (7)

It is noted that, the minimum critical crack size commits to the power law with the exponent 

parameter to be −2/3. The same exponent parameter is also obtained from the experiment results of 

Gilvarry and Bergstrom [26], Hayakawa’s numerical simulation [27], and Grady’s theoretical 
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conclusion [7], in which the power law distribution was employed by experience to describe the 

fragmentation size or mass. 

Figure 4 shows the relation between the minimum critical crack size and the strain rate in the range 

103 s−1~104 s−1 for concrete and oil shale. The material parameters are taken from Kipp [25] and 

Meyers [8]. It is seen from the curves that the minimum critical size decreases as the loading rate 

increases. This means that the relatively small preexisting cracks may participate to growth under 

higher loading rate. 

Figure 4. Critical crack length vs. loading rates. 

 

The fracture stress vs. crack size curves are plotted in Figure 5 for several representative strain rates. 

The static stress-crack length relationship is also plotted in Figure 5 ( 0  = 0) for reference. It is 

observed that, as the strain rate increases, the points of departure between the dynamic and static 

solutions move toward smaller crack radii, and the higher fracture stress levels are achieved (higher 

dynamic strength). One can also see that, for each strain rate (except static loading), there is an 

intermediate crack length for which the fracture stress reaches the minimum, i.e., a preferential crack 

size. In other words, when a solid with an array of cracks is loaded statically, the largest crack will 

dominate the response of the solid, limiting the maximum load that can be applied. If a preferred 

orientation of the largest flaws exists, the material will also show orientation dependence to the 

fracture stress. In the dynamic case, however, the largest crack no longer dominates; rather, cracks 

with a wide range of sizes are clearly activated simultaneously. So, the failure occurs by fracturing the 

solid through multiple crack growth. Even with some preferred flaw orientations, the dynamic fracture 

stress tends to be orientation independent [25]. The material parameters used to calculate the curves in 
Figure 5 are: 0E  = 37.0 GPa, KIC = 0.67 MPa m , 2c  = 1773.6m/s, k  = 0.911. 
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Figure 5. Fracture stress vs. crack size at constant strain-rate loading. 

 

Research has indicated that the propagation pattern for cracks is fractal and the growth of such 

cracks is multifractal [28–32]. Xie [33] have showed that the density function of the distribution for 

crack length is fractal, and can be described by: 
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where, 0  and m are material parameters, 2a  is the largest crack length that is considered, and 2 ia  are 

the crack length of smaller cracks. Oddershede [34] have shown that, the m  of gypsum is around 1.2. 

Here in order to investigate the influence of parameter m  on the energy dissipation during the process 

of multiple cracking, m  is taken the same value as suggested by Oddershede. Thus we have m  equals 

to the values of 1.18, 1.20 and 1.23. The normalized specific energy dissipation is: 

4
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where,   is the free surface energy density of the material. Substituting Equations (7) and (8) into 

Equation (9), one can get the normalized specific energy dissipation of multiple cracking materials. 

The relation between the normalized specific energy dissipation for gypsum and loading rates for 

different m  are shown in Figure 6. 

Figure 6. Logarithmic normalized specific energy dissipation with loading rates. 
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It is found that, the higher the loading rate is, the more energy is dissipated by cracking. This is due 

to the fact that higher loading rate can activate smaller preexist crack so that more energy is dissipated. 

This in accordance with the physical fact that smaller fragments always account for a larger numbers 

of fractions in the material. 

Hogan et al. [35] carried out the dynamic fracture experiments for the natural polyphase ceramic to 

investigate the dynamic fracture character of brittle materials. In their experiments, specimens were 

subjected to high strain rate. It was observed that the higher the loading rate yields smaller fragments 

and smaller dominant length scale in their probability distributions. This means that many cracks with 

different sizes are propagating simultaneously and smaller per-existing crack are activated to propagate 

at higher loading velocity. Meanwhile, the measured total generated fracture surface area increases 

with the increase of loading rate, indicating that the energy required to create the new surface at higher 

loading rate is generally greater than that under lower loading rate. Thus, the energy dissipated in the 

fracture process is greater than that of static fracture. Similarly, a series of dynamic fracture 

experiments of PMMA (polymethylmethacrylate) carried out by Scheibert et al. [36] also indicated 

that fracture energy is increasing with the increase of loading rate. In addition, numerical simulations 

of dynamic fracture also reveal the same phenomena [37]. 

2.2. Multiple Dynamic Fracture model  

In Section 2.1, we have shown that many pre-existing cracks of different sizes tend to propagate 

simultaneously when subjected to dynamic loading. With this knowledge, similar to the classical 

Griffith static fracture theory for the plane stress problem, consider a system that contains an array of 

micro-cracks whose propagation pattern for cracks is fractal. Ignoring the interaction potential between 

neighboring cracks, the energy balance equation of solid with multiple-crack propagation under 

dynamic loading is: 
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 (10)

where, 2a  is the crack length of the largest crack, 2 ia  are the crack length of smaller cracks, U  is the 

potential strain energy of the system,   is the stress and is E  the Young’s modulus of the  

considered material. 

According, the surface energy per unit thickness of the crack system is written as: 
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As the propagation pattern for cracks is fractal as described by Equation (8), the follow relation 

must be committed: 

i

i

da da

a a
  (12)

Substituting Equation (12) into Equation (11), then, for a small increase of crack length, the 

increase of the surface energy is: 
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In particular, when there is only one crack, the energy balance equation takes the classical form: 

22dU a

da E

 
  (14)

Substituting Equations (12) and (14) into Equation (10), then, for the multiple dynamic cracking, 

the equilibrium for a unit growth of main crack can be written as: 
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where,   is the equivalent surface energy density of the material and U  is the potential strain energy. 

Recalling Equation (8), and with the assumption that, the crack size is a continuous variable, the 

equivalent surface energy density can be written as: 
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where, /ix a a  is the normalized variable, and /c cx a a ; According to static fracture mechanics, 

the relationship between the largest crack length a  and the material strength is: 
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where, s
t  is the static fracture strength of material. 

So, the dynamic strength increase of material reads: 
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where, d
t  is the dynamic fracture strength of material. 

3. Numerical Implementation and Results 

As we all know, the compression failure of brittle materials is due to the shear failure of materials. By 

replacing the mode I fracture (tensile fracture) with mode III fracture (shear fracture), the dynamic shear 

fracture can obtained. The experimental observed dynamic increasing factors (DIF) for compression and 

tension are collected to validate the proposed model. Figure 7a shows the model results DIF in dynamic 

compression and Figure 7b shows the model results DIF in dynamic tension. The used material 

parameters of compression and tension considered in the present study is listed in Table 1 [38]. 
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Table 1. Material parameters of concrete under dynamic compression and tension. 

E(GPa)    (Kg/m3)
ICK (MPa m ) 2c (km/s) 

30.0 0.2 2500 0.63 1.74 

k  0t  tm  0c  cm  

0.911 4500 22.0 3000 4.3 

where, 0t  and 0c  denote the 0  in tension and compression, tm  and cm  denote the m  in tension and 

compression respectively. 

Figure 7. (a) Dynamic increasing factors (DIFs) under compression; and (b) DIFs under 

tension [39–43]. 

(a) (b) 

4. Conclusions 

In the framework of dynamic fracture mechanics, by studying the response of a single crack under 

stress wave impact, the phenomenon of multiple cracking of brittle materials under dynamic loading is 

modeled. Experimental validation of the proposed model is also given. It is observed that the model 

results agree well with experimental data, thus demonstrating the following capabilities: (1) The 

minimum fracture initiation size and its distribution under different loading rates are obtained by 

analyzing the pattern of crack tip wave propagation; (2) The power law distribution of the fracture 

initiation size is derived with the exponent to be −2/3, which is a well accepted result for the dynamic 

fragmentation distribution; (3) The conclusion that, under high loading rate, cracks of different sizes in 

brittle materials tend to propagate simultaneously can be obtained, based on which, the physical 

phenomenon of multiple fragmentation for brittle materials under high loading rate can be well 

explained; (4) By introducing the fractal distribution of crack length and energy equilibrium of the 

dynamic fracture system, the dynamic increase of stress intensity factor and material strength is derived. 

The calculated dynamic increasing factor represents the salient tendencies of the experimental data. 
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