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Abstract: Microstructure curvature, or buckling, is observed in the micromachining of 

silicon sensors because of the doping of impurities for realizing certain electrical and 

mechanical processes. This behavior can be a key source of error in inertial sensors. 

Therefore, identifying the factors that influence the buckling value is important in 

designing MEMS devices. In this study, the curvature in the proof mass of an 

accelerometer is modeled as a multilayered solid model. Modeling is performed according 

to the characteristics of the solid diffusion mechanism in the bulk-dissolved wafer process 

(BDWP) based on the self-stopped etch technique. Moreover, the proposed multilayered 

solid model is established as an equivalent composite structure formed by a group of thin 

layers that are glued together. Each layer has a different Young’s modulus value and each 

undergoes different volume shrinkage strain owing to boron doping in silicon. Observations 

of five groups of proof mass blocks of accelerometers suggest that the theoretical model is 

effective in determining the buckling value of a fabricated structure. 
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1. Introduction 

Microstructure curvature was first observed in the surface machining of silicon that was doped with 

boron for realizing certain electrical and mechanical processes. Therefore, previous studies on 

buckling generally focused on structures with thin boron-doped silicon layers, such as diaphragms [1,2], 

thin films [3,4] and membranes [5]. However, with the increasing demand for microdevices with high 

sensitivity and high performance, bulk micromachining has been developed to create microstructures 

with thick layers similar to those achieved by the bulk silicon-dissolved wafer process, based on the 

self-stopped etch technique of heavy boron-doped silicon [6]. This fabrication technology is widely 

used to make microaccelerometers [7,8], microgyroscopes [9,10], microswitches [11,12], and 

microgears [13]. This technology also exhibits curvature behavior because its boron-doping 

mechanism is the same as that used in surface micromachining [5]. However, a difference exists. In the 

former, boron diffusion requires a longer time to realize a thick structure after self-stopped etching in 

EDP (Ethylene Diamine Pyrocatechol) [3]; accordingly, it is considered that the main contribution to 

buckling is the internal stress induced by volume shrinking caused by boron doping [5] rather than the 

thermal stress, which tends to show a uniform profile after annealing in the drive-in process. In this 

study, an analytical method based on a multilayer model is proposed to quantitatively determine the 

buckling of a bulk silicon structure that has a boron profile following a Gaussian function through the 

thickness [14]. This method is validated through experiments using five groups of sensors. 

The bulk-dissolved wafer process (BDWP) is first introduced to show the formation of the  

boron-doped silicon structure. The material distribution characteristics are determined and considered 

as the main sources of curvature. Accordingly, a multilayer model is proposed to model this composite 

material structure in Section 2. Section 3 investigates groups of accelerometers fabricated through 

BDWP to verify the multilayer model with simple supports. The obtained results indicate that this 

approximate method is suitable for calculating the curvature of a BDWP structure. The conclusions 

and discussions are presented in Section 4. 

2. Process and Model 

Figure 1 shows the silicon self-stopped etching process. The substrate material for diffusion is a 

polished P-type (100) silicon wafer. Figure 1a shows the cross section of the wafer. The boron 

diffusion includes the predeposition process and the drive-in process. The former is carried out in a 

diffusion furnace in an N2 atmosphere at a temperature of 1050 °C. The latter is carried out on the 

diffused wafer after predeposition in an O2 atmosphere at a temperature of 1180 °C. Boron diffusion 

occurs on both sides of the wafer, as shown in Figure 1b, and the diffusion depth depends on both the 

predeposition and the drive-in processes. Only one side of the boron-doped wafer is used for structure 

fabrication in MEMS, thus a thinning process is first applied; Figure 1c shows the thinned wafer. The 

curvature behavior is produced after wafer thinning, which is generally realized by either milling or 

etching, according to the practical requirements. The level of thinning determines the curvature level, 

which physically depends on the boron distribution in the silicon wafer. 
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Figure 1. Process of boron diffusion in silicon. (a) Silicon wafer. (b) Double-sided boron 

doping. (c) Boron profile of thinned wafer. 

 

The boron doping concentration in silicon is assumed to be a Gaussian function of the depth 

according to the solid diffusion mechanism, which depends on factors such as the solid solubility, 

diffusion temperature, and diffusion time [14]. The total thickness of silicon after self-stopped etching 

is determined by the etchant type and boron concentration; therefore, the etching characteristics can be 

used to identify the profile of boron atoms in the silicon. As shown in Figure 1c, the coordinate’s axis 

denotes only the depth; the boron concentration at point O (surface) is unknown after the drive-in 

process, but that the depth can be determined by two separate, self-stopped, etching processes using 

different etchants [15]. One etchant is ψ (HF:HNO3:CH3COOH = 1:3:8), the stop condition of which is 

at a boron atom concentration of 1 × 1017 cm−3 (point B). The other etchant is 30%–40% KOH, the 

stop condition of which is at a boron atom concentration of 5 × 1019 cm−3 (point A). Therefore, the 

Gaussian functions (f(z)) of the boron profile with the boundary conditions for points A and B are given 

as f (zs) = 5 × 1019 cm−3 and f (zb) = 1 × 1017 cm−3. 

For simplification, the relative concentration is defined as the ratio of boron atoms to silicon atoms 

per unit volume. The boron profile in silicon can be expressed as: 

   
 

 
225 10Si

f z f z
C z

f z
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
 (1)

with the boundary conditions C (zs) = 1 × 10−3 and C (zb) = 2 × 10−6. 

Compared with undoped silicon, heavily boron-doped silicon has a 0.8% higher thermal expansion 

coefficient [16] and a 20%–30% higher Young’s modulus [17]. Moreover, Pauling’s covalent radius of 

boron is approximately 25% smaller than that of silicon [5]; thus, the volume of the doped parts tends 

to shrink relative to that of the undoped parts, and the shrinking rate varies with the doping 

concentration. Therefore, boron-doped silicon can be modeled as a composite material solid structure 

having a Young’s modulus that follows a Gaussian function through the thickness. Buckling occurs 

when the structure is subjected to a nonuniform strain through the thickness. Generally, the 

nonuniform strain is caused by the residual stresses, crystalline defects, and volume shrinkage induced 

by doping gradients. The proposed buckling model only considers the shrinkage strain because the 
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influence of the thermal stress and crystalline defects are neglected owing to the slight difference 

between the thermal expansion coefficients and the annealing process [5]. 

Consider a rectangular plate made of boron-doped silicon with the cross section shown in Figure 1c. 

Young’s modulus and volume shrinkage strain of the plate can be assumed as: 

   

   

max

max

max
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Si
Si

s

E E
E z E C z

C

z C z
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 (2)

where Cmax (= 8 × 10−3) is the maximum relative concentration determined by the solid solubility of 

boron in silicon, Emax (= 210–220 GPa) and εmax (= −2.5 × 10−4) are Young’s modulus and shrinkage 

strain to Cmax, respectively, and ESi (= 169 GPa) is Young’s modulus of silicon. The values of E(z)  

and εs(z) can be calculated under the condition that the Young’s modulus and the shrinkage strain of 

boron-doped silicon are both proportional to the boron concentration. 

The nonuniformity induced by doping along the depth can be approximated by a multilayer model 

based on the finite element method because the infinite thin layer, which is vertical to the depth 

direction z, has uniform properties in the plane. The boron-doped silicon structure can therefore be 

modeled as a compound, formed by a group of thin layers glued together, as shown in Figure 2. The 

solid on the left is divided into an n-layer structure and shown on the right. Each layer has a uniform 

property that differs from that of other layers. Figure 3a shows the cross section of the multilayer 

model, where w is the width and Ei and ti are Young’s modulus and thickness of layer i, respectively. 

The buckling of the structure produces a neutral plane that undergoes bending deformation but not 

extended deformation. The position of the plane can be determined by an equivalent transformation of 

the resistance to bending, as shown in Figure 3b. Except for the first layer, all layers are replaced with 

a material with the same Young’s modulus as the first layer. Under the condition of equivalent 

resistance to bending, it can be assumed that the thickness ti of all the layers is not changed. 

Consequently, the width of layer i can be expressed as: 

1

i
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Therefore, the central principal axis of the cross section can be expressed as: 
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 (4)

According to the derivation in earlier studies [18–21] and the material mechanics theory, the strain 

along the depth of the model can be expressed as: 
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  
   (5)

where ε is the total strain; ε0, the uniform strain; z, the coordinate along the depth; and r, the radius of 

curvature of the neutral plane. Therefore, the stress in the layers can be expressed as: 

 i iE     (6)

where Ei is Young’s modulus and εi, the shrinkage strain induced by the doping of layer i. 

Figure 2. The solid structure is divided into a multilayer model. 

 

Figure 3. Multilayer model with nonuniform Young’s modulus is equivalently substituted 

by one with uniform modulus E1 with changed widths: (a) Multilayer model and  

(b) Equivalent model. 

 
According to the relationship in static mechanics, the resultant force and moment of each layer can 

be expressed as: 
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where zi is the coordinate point located at the interface of two adjacent layers, as shown in Figure 3a. 

Under a free state, such as free-standing and with simple supports, the resultant force and moment 

in the total cross section is equal to zero: 
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Substituting Equations (5) and (6) into (8) gives 
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Assuming that Poisson’s ratio is constant, the radius of the curvature induced by the nonuniform 

shrinkage strain can be expressed as: 

   

  

3 3 2 2
1 1

1

2 2
0 1

1

2 3

3

n

i i i c i i
i

n

i i i i
i

E z z z z z
r

E z z 

 





    


 




 (10)

The radius of curvature is determined by Young’s modulus and shrinkage strain of each layer, and it 

is not affected by the dimensions of the structure when the boundary condition of the model satisfies  

F = 0 and M = 0. 

3. Experimental Verification 

The curvature of inertial sensors induced by boron doping was first observed by optical 

interferometry in [5]; however, this study did not report the cause of the curvature. Based on the above 

derivation, the radius of curvature is independent on the in-plane dimensions of the fabricated 

structures and is dependent on the boron-doping level and thickness. Therefore, in the experimental 

verification, we aim to investigate the effects of the dimensions and thickness on the sensor curvature.  

The experiment was performed using accelerometer sensors, fabricated through the bulk  

silicon- dissolved wafer process. The out-of-plane mismatch of fixed and movable fingers of the proof 

mass was observed through calibrated microscopy, as shown in Figure 4. Two groups of fingers were 

not in the same focal plane. The height differences among the mismatched fingers were investigated by 

surface profilometry. The differences were recognized as the buckling values of the proof mass block 

at the observed area because the fixed fingers were attached to the substrate and the movable fingers 

were attached to the proof mass, which was symmetrically supported by four U-type beams. The 

boundary condition of the mass plane can be set as a simple support that satisfies F = 0 and M = 0 

when buckling occurs, and the buckling values along the X-axis in Figure 4 can be expressed as: 

2 2

2 2

2 2buckling

L L
z r X r          

   
 (11)

where zbuckling is the buckling value at coordinate X and L, the length of a mass block. 

Five groups of sensors were fabricated by using the dissolved wafer process and measured through 

microscopy and surface profilometry. The main dimensions are listed in Table 1. w represents the 

width of U-type beams and L, the length of the mass block along the X-axis shown in Figure 4. The 

measurements of Groups 1 and 2 aim to derive the buckling curve and its dependence on the 

supporting beams. Therefore, the height differences among the comb fingers on the mass block along 

the X-axis are observed and their definitions are shown in Figure 5. The results shown in Figure 6 and 

the relative errors shown in Figure 7 indicate that the buckling value of the mass block is only slightly 
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influenced by the width of the U-type beams because the resistance created by the beams against the 

deformation of the block is slightly related to the shrinkage strength induced by the covalent bond. 

Based on this conclusion, the dependence of the buckling value on the length of the mass block is 

studied by comparing Group 2 with Group 5. The results are shown in Figure 8. The curves of the 

measurement data from the two groups have the same radius of curvature. This coincides with the 

result obtained from the theoretical model, which is equal to 2.33 × 105 μm. The coincidence of the 

results is produced by the uniform concentration of boron diffusion in the bulk silicon on the plane 

parallel to the silicon surface as well as the equal shrinkage strain in the structures with the same thickness. 

Figure 4. Observed buckling phenomenon under microscopy. 

 

Table 1. Geometrical parameters of sensors. 

Group 
Thickness Sensor dimensions 

ds, µm db, µm L, µm w, µm 

1 42 83 1720 5 

2 42 83 1720 8 

3 42 97 1720 8 

4 31 83 1720 8 

5 42 83 1920 8 

Figure 5. Section k – k of mass block shown in Figure 4. 
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Figure 6. The height difference of comb fingers along the X-axis with different U-type beams. 

 

Figure 7. The relative errors of buckling values from experiments and models. 

 

Figure 8. The buckling value with different lengths of mass block. 

 

The final experiment focuses on the influence of diffusion conditions on the buckling values. As 

described previously, the diffusion process consists of predeposition and drive-in processes, both of 

which determine the thickness of boron-doped silicon and the sensor structure, and are influenced by 

diffusion conditions including the temperature, time, and gas environment. The sensors in Groups 2–4 
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have the same layout but are fabricated under different process conditions. The thicknesses ds and db 

are measured by spreading the resistance instrument based on the self-stop etching mechanism 

described in Section 2. The largest height difference that occurs at the middle finger of each group is 

shown in Table 2. The results from both the model and the experiment indicate that the height 

difference, or buckling value of sensors with the same structure thickness, decreases with the increase 

in boron-doping depth because the Gaussian curve of the higher depth is flatter than that of the lower 

depth. Furthermore, the buckling of thin sensors under the same boron-doping depth has a smaller 

value because the curve of the Gaussian function near the peak value is flat. Consequently, a small 

concentration gradient is obtained. 

Table 2. The largest buckling value with different diffusion depths. 

Group 
Thickness Buckling value, µm 

ds, µm db, µm Experiment Model 

2 42 83 1.55 1.59 

3 42 97 1.31 1.42 

4 31 83 0.90 1.03 

4. Conclusions 

The curvature of the sensor in the accelerometer created through the BDWP is investigated. The 

multilayer model and corresponding analytical results are established to identify the buckling value of 

the proof mass block, which has a larger boron-doping thickness than that of the diaphragm or 

membrane studied in surface micromachining. Owing to the extended time required for the 

predeposition and drive-in processes of a thick boron-doped structure, the defects and thermal stress in 

the doped parts are less than those in the surface-machined structure. Therefore, the proposed model 

only aims to investigate the effects of volume shrinkage and Young’s modulus variation on the 

buckling of the bulk silicon structure. The results indicate that the model is effective in predicting the 

buckling value of the boron-doped structure, as verified through a series of experiments carried out by 

microscopy and using a spreading resistance instrument according to the diffusion mechanism of boron 

in silicon. 

The buckling value of the sensor is determined not only by the thickness of boron-doped silicon in 

the predeposition process, but also by the conditions employed in the drive-in process. According to 

the results, only a smaller buckling value can be acquired through suitable predeposition and drive-in 

times. When the boron-doped depth is invariable, the buckling value of the thin sensor structure is 

smaller than that of the thick structure. When the sensor structures have equal values, a greater doping 

depth leads to a smaller buckling value. The buckling is determined by the boron concentration in 

silicon and is slightly influenced by the supporting beams, the stiffness of which is relatively low. 

Moreover, the radius of curvature of buckling is determined by the boron concentration in silicon and 

not by the geometrical parameters of the plane. Therefore, the buckling value can be ignored when the 

plane dimensions are relatively small. 
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