# Time-Dependent Damage Investigation of Rock Mass in an In Situ Experimental Tunnel

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Information Regarding the Experimental Tunnel and Testing Method

#### 2.1. Experimental Position

**Figure 1.**Jinping II experimental tunnel: (

**a**) position of experimental tunnel; (

**b**) general state of the experimental tunnel.

**Figure 2.**Laboratory experiment of intact marble specimen under uniaxial compression test: (

**a**) strain-stress curves; (

**b**) typical failure format and cracks of marble specimen.

#### 2.2. Testing Instruments and Methods

## 3. Analysis of Time-Dependent Damage

#### 3.1. Basic Characters of Measured Ultrasonic Wave

#### 3.2. Time-Dependent Damage Evolution of Rock Mass

**Figure 5.**Time-dependent damage factor in Section 1 of experimental tunnel.

Position (m) | Format | Residual |
---|---|---|

0.6 | Logarithm | 0.2155 |

Power | 0.4467 | |

Exponential | 0.3148 | |

2.0 | Logarithm | 0.0595 |

Power | 0.0695 | |

Exponential | 0.0644 |

#### 3.3. Time-Dependent Damage Mechanism

## 4. Numerical Descriptions

**Figure 10.**Simulated time-dependent damage of test tunnel by damage viscoelastic-plastic model (DVEP).

**Figure 11.**Comparison of the simulated numerical damage factor and the tested damage factor of rock mass along the borehole after 30 days.

## 5. Damage Rehabilitation of Rock Mass

## 6. Conclusions

## Acknowledgements

## References

- Grady, D.E.; Kipp, M.E. Dynamic Rock Fragmentation; Academic Press: London, UK, 1987; pp. 429–475. [Google Scholar]
- Blair, S.C.; Cook, N. Analysis of compressive fracture in rock using statistical techniques: Part II. Effect of microscale heterogeneity on macroscopic deformation. Int. J. Rock Mech. Mining Sci.
**1998**, 35, 849–861. [Google Scholar] [CrossRef] - Xu, X.H.; Ma, S.P.; Xia, M.F.; Ke, F.J.; Bai, Y.L. Damage evaluation and damage localization of rock. Theor. Appl. Fract. Mech.
**2004**, 42, 131–138. [Google Scholar] [CrossRef] - Zhou, X.; Qian, Q.; Zhang, Y. The constitutive relation of crack-weakened rock masses under axial-dimensional unloading. Acta Mech. Solida Sinica
**2008**, 21, 221–231. [Google Scholar] [CrossRef] - Martino, J.B.; Chandler, N.A. Excavation-induced damage studies at the underground research laboratory. Int. J. Rock Mech. Mining Sci.
**2004**, 41, 1413–1426. [Google Scholar] [CrossRef] - Maejima, T.; Morioka, H.; Mori, T.; Aoki, K. Evaluation of loosened zones on excavation of a large underground rock cavern and application of observational construction techniques. Tunn. Undergr. Space Technol.
**2003**, 18, 223–232. [Google Scholar] [CrossRef] - Xu, W.Y.; Nie, W.P.; Zhou, X.Q.; Shi, C.; Wang, W.; Feng, S.R. Long-term stability analysis of large-scale underground plant of Xiangjiaba hydro-power station. J. Cent. South Univ. Technol.
**2011**, 18, 511–520. [Google Scholar] [CrossRef] - Martin, C.D.; Read, R.S.; Martino, J.B. Observations of brittle failure around a circular test tunnel. Int. J. Rock Mech. Mining Sci.
**1997**, 34, 1065–1073. [Google Scholar] [CrossRef] - Fairhurst, C.; Damjanac, B. The excavation damaged zone—An international perspective. In Proceedings of the Excavation Disturbed Zone Workshop-Designing the Excavation Disturbed Zone for a Nuclear Waste Repository in Hard Rock; Canadian Nuclear Society: Manitoba, Canada, 1996; pp. 4–14. [Google Scholar]
- Jiang, Q.; Feng, X.T.; Xiang, T.B.; Su, G.S. Rockburst characteristics and numerical simulation based on a new energy index: A case study of a tunnel at 2500 m depth. Bull. Eng. Geol. Environ.
**2010**, 69, 381–388. [Google Scholar] [CrossRef] - Cai, M.; Kaiser, P.K.; Martin, C.D. Quantification of rock mass damage in underground excavations from microseismic event monitoring. Int. J. Rock Mech. Mining Sci.
**2001**, 38, 1135–1145. [Google Scholar] [CrossRef] - Tang, C.A.; Lin, P.; Wong, R.H.C.; Chau, K.T. Analysis of crack coalescence in rock-like materials containing three flaws—Part II: Numerical approach. Int. J. Rock Mech. Mining Sci.
**2001**, 38, 925–939. [Google Scholar] [CrossRef] - Wong, R.; Lin, P.; Tang, C.A.; Chau, K.T. Creeping damage around an opening in rock-like material containing non-persistent joints. Eng. Fract. Mech.
**2002**, 69, 2015–2027. [Google Scholar] [CrossRef] - Fabre, G.; Pellet, F. Creep and time-dependent damage in argillaceous rocks. Int. J. Rock Mech. Mining Sci.
**2006**, 43, 950–960. [Google Scholar] [CrossRef] - Shao, J.F.; Chau, K.T.; Feng, X.T. Modeling of anisotropic damage and creep deformation in brittle rocks. Int. J. Rock Mech. Mining Sci.
**2006**, 43, 582–592. [Google Scholar] [CrossRef] - Fu, Z.; Guo, H.; Gao, Y. Creep damage characteristics of soft rock under disturbance loads. J. China Univ. Geosci.
**2008**, 19, 292–297. [Google Scholar] [CrossRef] - Rist, M.A.; Plumbridge, W.J.; Cooper, S. Creep-constitutive behavior of Sn-3.8Ag-0.7Cu solder using an internal stress approach. J. Electron. Mater.
**2006**, 35, 1050–1058. [Google Scholar] [CrossRef] - Amitrano, D.; Helmstetter, A. Brittle creep, damage, and time to failure in rocks. J. Geophys. Res. B Solid Earth
**2006**, 111, B11201:1–B11201:17. [Google Scholar] [CrossRef] - Plumbridge, W.J. New avenues for failure analysis. Eng. Fail. Anal.
**2009**, 16, 1347–1354. [Google Scholar] [CrossRef] - Chan, K.S.; Bodner, S.R.; Fossum, A.F.; Munson, D.E. A damage mechanics treatment of creep failure in rock salt. Int. J. Damage Mech.
**1997**, 6, 121–152. [Google Scholar] [CrossRef] - Zhang, N.; Hou, C.; Yang, M.; He, Y. Law of rock strength weakening around roadway and its application. J. China Univ. Min. Technol.
**1999**, 28, 133–135. [Google Scholar] - Naoi, M.; Ogasawara, H.; Takeuchi, J.; Yamamoto, A.; Shimoda, N.; Morishita, K.; Ishii, H.; Nakao, S.; van Aswegen, G.; Mendecki, A.J.; Lenegan, P.; Ebrahim-Trollope, R.; Loi, Y. Small slow-strain steps and their forerunners observed in gold mine in South Africa. Geophys. Res. Lett.
**2006**, 33, L12304:1–L12304:6. [Google Scholar] [CrossRef] - Kontogianni, V.; Papantonopoulos, C.; Stiros, S. Delayed failure at the Messochora tunnel, Greece. Tunn. Undergr. Space Technol.
**2008**, 23, 232–240. [Google Scholar] [CrossRef] - Sato, T.; Kikuchi, T.; Sugihara, K. In situ experiments on an excavation disturbed zone induced by mechanical excavation in Neogene sedimentary rock at Tono mine, central Japan. Dev. Geotech. Eng.
**2000**, 56, 97–108. [Google Scholar] - Meglis, I.L.; Chow, T.; Martin, C.D.; Young, R.P. Assessing in situ microcrack damage using ultrasonic velocity tomography. Int. J. Rock Mech. Mining Sci.
**2005**, 42, 25–34. [Google Scholar] [CrossRef] - Malmgren, L.; Saiang, D.; Toyra, J.; Bodare, A. The excavation disturbed zone (EDZ) at Kiirunavaara mine, Sweden—By seismic measurements. J. Appl. Geophys.
**2007**, 61, 1–15. [Google Scholar] [CrossRef] - Kachanov, L.M. Time of the rupture process under creep conditions. Izv. Akad. Nauk. SSSR, Otd. Tech. Nauk.
**1958**, 8, 26–31. [Google Scholar] - Broberg, H. A new criterion for brittle creep rupture. J. Appl. Mech.
**1974**, 41, 809–811. [Google Scholar] [CrossRef] - Kowalewski, Z.L.; Hayhurst, D.R.; Dyson, B.F. Mechanisms-based creep constitutive equations for an aluminium alloy. J. Strain Anal.
**1994**, 29, 309–316. [Google Scholar] [CrossRef] - Schulze, O.; Popp, T.; Kern, H. Development of damage and permeability in deforming rock salt. Eng. Geol.
**2001**, 61, 163–180. [Google Scholar] [CrossRef] - Becker, A.A.; Hyde, T.H.; Sun, W.; Andersson, P. Benchmarks for finite element analysis of creep continuum damage mechanics. Comput. Mater. Sci.
**2002**, 25, 34–41. [Google Scholar] [CrossRef] - Barton, N.; Lien, R.; Lunde, J. Engineering classification of rock masses for the design of tunnel support. Rock Mech. Rock Eng.
**1974**, 6, 189–236. [Google Scholar] [CrossRef] - Bieniawski, Z.T. Determining rock mass deformability: Experience from case histories. Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
**1978**, 15, 237–247. [Google Scholar] [CrossRef] - Nie, D. The study on rock mass deforming parameters and relaxing thickness of rock high slope. Adv. Earth Sci.
**2004**, 19, 472–477. [Google Scholar] - Vairavamurthy, M.A.; Manowitz, B.; Maletic, D.; Wolfe, H.; Baud, P.; Meredith, P.G. Damage accumulation during triaxial creep of darley dale sandstone from pore volumometry and acoustic emission. Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
**1997**, 34, 371–371. [Google Scholar] [CrossRef] - Randy, J.G.; Francis, A.C. The strain-controlled creep damage law and its application to the rupture analysis of thick-walled tubes. Int. J. Non-Linear Mech.
**1988**, 23, 147–165. [Google Scholar] [CrossRef] - Qi, Y.; Jiang, Q.; Wang, Z.; Zhou, C. 3D creep constitutive equation of modified Nishihara model and its parameters identification. Chin. J. Rock Mech. Eng.
**2012**, 31, 347–355. [Google Scholar] - Zienkiewicz, O.; Humpheson, C.; Lewis, R. Associated and non-associated visco-plasticity and plasticity in soil mechanics. Geotechnique
**1975**, 25, 671–689. [Google Scholar] [CrossRef]

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Jiang, Q.; Cui, J.; Chen, J.
Time-Dependent Damage Investigation of Rock Mass in an *In** **Situ* Experimental Tunnel. *Materials* **2012**, *5*, 1389-1403.
https://doi.org/10.3390/ma5081389

**AMA Style**

Jiang Q, Cui J, Chen J.
Time-Dependent Damage Investigation of Rock Mass in an *In** **Situ* Experimental Tunnel. *Materials*. 2012; 5(8):1389-1403.
https://doi.org/10.3390/ma5081389

**Chicago/Turabian Style**

Jiang, Quan, Jie Cui, and Jing Chen.
2012. "Time-Dependent Damage Investigation of Rock Mass in an *In** **Situ* Experimental Tunnel" *Materials* 5, no. 8: 1389-1403.
https://doi.org/10.3390/ma5081389