Ultimate Scaling of High-κ Gate Dielectrics: Higher-κ or Interfacial Layer Scavenging?
Abstract
:1. Introduction
2. Higher-κ Materials
Materials | k-value | EOT (nm) | EWF with TiN electrode |
---|---|---|---|
La-silicate IL/(HfO2) [19,20] | - | 0.58–0.62 | ~Si CBM |
SrO IL/HfO2 [20,21] | - | 0.50–0.60 | ~Si CBM |
Y doped HfO2 [10] | 27 | - | - |
Si doped HfO2 [11] | 27 | - | - |
La-Lu-O [13] | 23 | 0.58 | ~Si CBM |
Y-La-Si-O [14] | - | 0.77 | ~Si CBM |
La2O3 [16] | - | 0.62 | ~Si CBM |
La-Al-O [15,16] | 23–25 | 0.31–0.74 | Si CBM~Si mid-gap |
3. Interfacial Layer Scavenging Approach
3.1. Materials and Process Considerations
3.1.1. IL Growth Condition
Scavenging element | High-κ materials | Max temperature (°C) | EOT (nm) |
---|---|---|---|
Ti [29] | HfO2 or ZrO2 | 300 | 1.70 |
Ti [31] | HfO2 | 500 | 0.69 |
Hf [31] | HfO2 | 500 | 0.60 |
Hf [32] | HfO2 | 1020 | 0.59 |
TiN [36] | HfO2 | 1035 | 0.60 |
TiN [36] | HfO2/La-cap | 1035 | 0.46 |
Doped TiN [19] | HfO2 | 1000 | 0.54 |
Doped TiN [19] | HfO2/La-cap | 1000 | 0.42 |
Doped TiN [37] | HfO2 | 600 | 0.49 |
3.1.2. Choice of Scavenging Element
3.1.3. Location of Scavenging Element
3.1.4. Choice of High-κ Material
3.1.5. Maximum Process Temperature
3.2. EOT Scaling and Gate Leakage Current
3.3. Effective Work Function Control
3.4. Implications for Reliability and Carrier Mobility
3.5. EOT Scaling Strategy
4. Conclusions
Acknowledgments
References
- Dennard, R.H.; Gaensslen, F.H.; Yu, H.-N.; Rideout, V.L.; Bassou, E.; LeBlanc, A.R. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits 1974, 9, 256–268. [Google Scholar] [CrossRef]
- Buchanan, D.A. Scaling the gate dielectric: Materials, integration, and reliability. IBM J. Res. Develop. 1999, 43, 245–264. [Google Scholar] [CrossRef]
- Wilk, G.D.; Wallace, R.M.; Anthony, J.M. High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 2001, 89, 5243–5275. [Google Scholar] [CrossRef]
- Mistry, K.; Allen, C.; Auth, C.; Beattie, B.; Bergstrom, D.; Bost, M.; Buehler, M.; Cappelani, A.; Chau, R.; Choi, C.H.; et al. A 45 nm logic technology with High-κ + metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. In Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 247–250.
- Greene, B.; Liang, Q.; Amarnath, K.; Wang, Y.; Schaeffer, J.; Cai, M.; Liang, Y.; Saroop, S.; Cheng, J.; Rotondaro, A.; et al. High performance 32 nm SOI CMOS with high-κ/metal gate and 0.149 μm² SRAM and ultra low-κ back end with eleven levels of copper. In Proceedings of VLSI Technology Symposium, Kyoto, Japan, 15–18 June 2009; pp. 140–141.
- Kirsch, P.D.; Quevedo-Lopez, M.A.; Krishnan, S.A.; Lee, B.H.; Pant, G.; Kim, M.J.; Wallace, R.M.; Gnade, B.E. Mobility and charge trapping comparison for crystalline and amorphous HfON and HfSiON gate dielectrics. Appl. Phys. Lett. 2006, 89, 242909:1–242909:3. [Google Scholar] [CrossRef]
- Ando, T.; Hirano, T.; Tai, K.; Yamaguchi, S.; Yoshida, S.; Iwamoto, H.; Kadomura, S.; Watanabe, H. Low threshold voltage and high mobility nMOSFET Using Hf-Si/HfO2 gate stack fabricated by gate-last process. Jpn. J. Appl. Phys. 2010, 49, 016502:1–016502:6. [Google Scholar]
- Robertson, J. Maximizing performance for higher K gate dielectrics. J. Appl. Phys. 2008, 104, 124111–124117. [Google Scholar] [CrossRef]
- Hegde, R.I.; Triyoso, D.H.; Tobin, P.J.; Kalpat, S.; Ramon, M.E.; Tseng, H.H.; Schaeffer, J.K.; Luckowski, E.; Taylor, W.J.; Capasso, C.C.; et al. Microstructure modified HfO2 using Zr addition with TaxCy gate for improved device performance and reliability. In Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 4–7 December 2005; pp. 35–38.
- Kita, K.; Kyuno, K.; Toriumi, A. Permittivity increase of yttrium-doped HfO2 through structural phase transformation. Appl. Phys. Lett. 2005, 86, 102906:1–102906:3. [Google Scholar] [CrossRef]
- Tomida, K.; Kita, K.; Toriumi, A. Dielectric constant enhancement due to Si incorporation into HfO2. Appl. Phys. Lett. 2006, 89, 142902:1–142902:3. [Google Scholar]
- Schlom, D.G.; Haenni, J.H. A thermodynamic approach to selecting alternative gate dielectrics. MRS Bull. 2002, 27, 198–204. [Google Scholar] [CrossRef]
- Edge, L.F.; Vo, T.; Paruchuri, V.K.; Iijima, R.; Bruley, J.; Jordan-Sweet, J.; Linder, B.P.; Kellock, A.J.; Tsunoda, T.; Shinde, S.R. Materials and electrical characterization of physical vapor deposited LaxLu1−xO3 thin films on 300 mm silicon. Appl. Phys. Lett. 2011, 98, 122905:1–122905:3. [Google Scholar] [CrossRef]
- Dubourdieu, C.; Cartier, E.; Bruley, J.; Hopstaken, M.; Frank, M.M.; Narayanan, V. High temperature (1,000 °C) compatible Y-La-Si-O silicate gate dielectric in direct contact with Si with 7.7 Å equivalent oxide thickness. Appl. Phys. Lett. 2011, 98, 252901:1–252901:3. [Google Scholar] [CrossRef]
- Suzuki, M.; Tomita, M.; Yamaguchi, T.; Fukushima, N. Ultra-thin (EOT = 3 Å) and low leakage dielectrics of La-alminate directly on Si substrate fabricated by high temperature deposition. In Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 5 December 2005; pp. 433–436.
- Arimura, H.; Brown, S.L.; Callegari, A.; Kellock, A.; Bruley, J.; Copel, M.; Watanabe, H.; Narayanan, V.; Ando, T. Maximized benefit of La-Al-O higher-k gate dielectrics by optimizing the La/Al atomic ratio. IEEE Electron Device Lett. 2011, 32, 288–290. [Google Scholar] [CrossRef]
- Narayanan, V.; Paruchuri, V.K.; Bojarczuk, N.A.; Linder, B.P.; Doris, B.; Kim, Y.H.; Zafar, S.; Stathis, J.; Brown, S.; Arnold, J.; et al. Band-edge high-performance high-κ/metal gate n-MOSFETs using cap layers containing group IIA and IIIB elements with gate-first processing for 45 nm and beyond. In Proceedings of VLSI Technology Symposium, Honololu, HA, USA, 13–17 June 2006; pp. 224–225.
- Copel, M.; Guha, S.; Bojarczuk, N.; Cartier, E.; Narayanan, V.; Paruchuri, V. Interaction of La2O3 capping layers with HfO2 gate dielectrics. Appl. Phys. Lett. 2009, 95, 212903:1–212903:3. [Google Scholar] [CrossRef]
- Ando, T.; Frank, M.M.; Choi, K.; Choi, C.; Bruley, J.; Hopstaken, M.; Copel, M.; Cartier, E.; Kerber, A.; Callegari, A.; Lacey, D.; Brown, S.; Yang, Q.; Narayanan, V. Understanding mobility mechanisms in extremely scaled HfO2 (EOT 0.42 nm) using remote interfacial layer scavenging technique and Vt-tuning dipoles with gate-first process. In Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 7–9 December 2009; pp. 423–426.
- Kawanago, T.; Lee, Y.; Kakushima, K.; Ahmet, P.; Tsutsui, K.; Nishiyama, A.; Sugii, N.; Natori, K.; Hattori, T.; Iwai, H. EOT of 0.62 nm and high electron mobility in La-silicate/Si structure based nMOSFETs achieved by utilizing metal-inserted poly-Si stacks and annealing at high temperature. IEEE Trans. Electron Devices 2012, 59, 269–276. [Google Scholar] [CrossRef]
- Marchiori, C.; Frank, M.M.; Bruley, J.; Narayanan, V.; Fompeyrine, J. Epitaxial SrO interfacial layers for HfO2–Si gate stack scaling. Appl. Phys. Lett. 2011, 98, 052908-1–052908-3. [Google Scholar] [CrossRef]
- Frank, M.M.; Marchiori, C.; Bruley, J.; Fompeyrine, J.; Narayanan, V. Epitaxial strontium oxide layers on silicon for gate-first and gate-last TiN/HfO2 gate stack scaling. Microelectron. Eng. 2011, 88, 1312–1316. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Kita, K.; Kyuno, K.; Toriumi, A. Study of La-induced flat band voltage shift in metal/HfLaOx/SiO2/Si capacitors. Jpn. J. Appl. Phys. 2007, 46, 7251–7255. [Google Scholar] [CrossRef]
- Iwamoto, K.; Kamimuta, Y.; Ogawa, A.; Watanabe, Y.; Migata, S.; Nabatame, T.; Toriumi, A. Experimental evidence for the flatband voltage shift of high-κ metal-oxide-semiconductor devices due to the dipole formation at the high-k/SiO2 interface. Appl. Phys. Lett. 2008, 92, 132907:1–132907:3. [Google Scholar] [CrossRef]
- Jagannathan, H.; Narayanan, V.; Brown, S. Engineering high dielectric constant materials for band-edge CMOS applications. ECS Trans. 2008, 16, 19–26. [Google Scholar]
- Suzuki, M.; Koyama, M.; Kinoshita, A. Effect of composition in ternary La-Al-O films on flat-band voltage for application to dual high-k Gate dielectric technology. Jpn. J. Appl. Phys. 2009, 48, 05DA03:1–05DA03:4. [Google Scholar]
- Arimura, H.; Haight, R.; Brown, S.L.; Kellock, A.; Callegari, A.; Copel, M.; Watanabe, H.; Narayanan, V.; Ando, T. Temperature-dependent La- and Al-induced dipole behavior monitored by femtosecond pump/probe photoelectron spectroscopy. Appl. Phys. Lett. 2010, 96, 132902:1–132902:3. [Google Scholar] [CrossRef]
- Rozen, J.; Ando, T.; Brown, S.L.; Bruley, J.; Cartier, E.; Kellock, A.J.; Narayanan, V. Work function control and equivalent oxide thickness scaling below 9 Å in a LaAlO-silicate interfacial layer/HfO2 stack compatible with gate last processing. In Presented at the 2011 IEEE Semiconductor Interface Specialists Conference, Arlington, VA, USA, 6–8 December 2011.
- Kim, H.; McIntyre, P.C.; Chui, C.O.; Saraswat, K.C.; Stemmer, S. Engineering chemically abrupt high-k metal oxide/silicon interfaces using an oxygen-gettering metal overlayer. J. Appl. Phys. 2004, 96, 3467–3472. [Google Scholar] [CrossRef]
- Choi, C.; Kang, C.Y.; Rhee, S.J.; Abkar, M.S.; Krishna, S.A.; Zhang, M.; Kim, H.; Lee, T.; Zhu, F.; Ok, I.; Koveshnikov, S.; Lee, J.C. Fabrication of TaN-gated ultra-thin MOSFETs(EOT < 1.0 nm) with HfO2 using a novel oxygen scavenging process for sub 65 nm application. In Proceedings of VLSI Technology Symposium, Kyoto, Japan, 14–18 June 2005; pp. 208–209.
- Choi, C.; Lee, J.C. Scaling equivalent oxide thickness with flat band voltage (VFB) modulation using in situ Ti and Hf interposed in a metal/high-k gate stack. J. Appl. Phys. 2010, 108, 064107:1–064107:4. [Google Scholar]
- Huang, J.; Heh, D.; Sivasubramani, P.; Kirsch, P.D.; Bersuker, G.; Gilmer, D.C.; Quevedo-Lopez, M.A.; Hussain, M.M.; Majhi, P.; Lysaght, P.; et al. Gate first high-k/metal gate stacks with zero SiOx interface achieving EOT = 0.59 nm for 16 nm application. In Proceedings of VLSI Technology Symposium, Kyoto, Japan, 15–18 June 2009; pp. 34–35.
- Choi, K.; Jagannathan, H.; Choi, C.; Edge, L.; Ando, T.; Frank, M.; Jamison, P.; Wang, M.; Cartier, E.; Zafar, S.; et al. Extremely scaled gate-first high-k/metal gate stack with EOT of 0.55 nm using novel interfacial layer scavenging techniques for 22 nm technology node and beyond. In Proceedings of VLSI Technology Symposium, Kyoto, Japan, 15–18 June 2009; pp. 138–139.
- Ando, T.; Copel, M.; Bruley, J.; Frank, M.M.; Watanabe, H.; Narayanan, V. Physical origins of mobility degradation in extremely scaled SiO2/HfO2 gate stacks with la and al induced dipoles. Appl. Phys. Lett. 2010, 96, 132904:1–132904:3. [Google Scholar]
- Ragnarsson, L.Å.; Li, Z.; Tseng, J.; Schram, T.; Rohr, E.; Cho, M.J.; Kauerauf, T.; Conard, T.; Okuno, Y.; Parvais, B.; et al. Ultra low-EOT (5 Å) gate-first and gate-last high performance CMOS achieved by gate-electrode optimization. In Proceedings of IEEE International Electron Devices Meeting, Baltimore, MA, USA, 7–9 December 2009; pp. 663–666.
- Ragnarsson, L.Å.; Chiarella, T.; Togo, M.; Schram, T.; Absil, P; Hoffmann, T. Ultrathin EOT high-κ/metal gate devices for future technologies: Challenges, achievements and perspectives. Microelectron. Eng. 2011, 88, 1317–1322. [Google Scholar] [CrossRef]
- Ando, T.; Cartier, E.; Bruley, J.; Choi, K.; Narayanan, V. Origin of effective work function roll-off behavior for replacement gate process studied by low-temperature interfacial layer scavenging technique. In Presented at the 2011 IEEE Semiconductor Interface Specialists Conference, Arlington, VA, USA, 6–8 December 2011.
- Takahashi, M.; Ogawa, A.; Hirano, A.; Kamimuta, Y.; Watanabe, Y.; Iwamoto, K.; Migita, S.; Yasuda, N.; Ota, H.; Nabatame, T.; Toriumi, A. Gate-first processed FUSI/HfO2/HfSiOX/Si MOSFETs with EOT = 0.5 nm—Interfacial layer formation by cycle-by-cycle deposition and annealing. In Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 523–526.
- Migita, S.; Morita, Y.; Mizubayashi, W.; Ota, H. Preparation of epitaxial HfO2 film (EOT = 0.5 nm) on Si substrate using atomic-layer deposition of amorphous film and rapid thermal crystallization (RTC) in an abrupt temperature gradient. In Proceedings of IEEE International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 269–272.
- Jung, H.S.; Lee, J.H.; Han, S.K.; Kim, Y.S.; Lim, H.J.; Kim, M.J.; Doh, S.J.; Yu, M.Y.; Lee, N.I.; Lee, H.L.; et al. A highly manufacturable mips (metal inserted poly-Si stack) technology with novel threshold voltage control. In Proceedings of VLSI Technology Symposium, Kyoto, Japan, 14–18 June 2005; pp. 232–233.
- Hubbard, K.J.; Schlom, D.G. Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res. 1996, 11, 2757–2776. [Google Scholar] [CrossRef]
- Gusev, E.P.; Buchanan, D.A.; Cartier, E.; Kumar, A.; DiMaria, D.; Guha, S.; Callegari, A.; Zafar, S.; Jamison, P.C.; Neumayer, D.A.; et al. Ultrathin high-K gate stacks for advanced CMOS devices. In Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 3–5 December 2001; pp. 451–454.
- Narayanan, V.; Maitra, K.; Linder, B.P.; Paruchuri, V.K.; Gusev, E.P.; Jamison, P.; Frank, M.M.; Steen, M.L.; La Tulipe, D.; Arnold, J.; et al. Process optimization for high electron mobility in nMOSFETs with aggressively scaled HfO2/metal stacks. IEEE Electron Device Lett. 2006, 27, 591–594. [Google Scholar] [CrossRef]
- Guha, S.; Narayanan, V. Oxygen vacancies in high dielectric constant oxide-semiconductor films. Phys. Rev. Lett. 2007, 98, 196101:1–196101:4. [Google Scholar] [CrossRef]
- Kerber, A.; Cartier, E.A. Reliability challenges for CMOS technology qualifications with hafnium oxide/titanium nitride gate stacks. IEEE Trans. Device Mater. Rel. 2009, 9, 147–161. [Google Scholar] [CrossRef]
- Ando, T.; Sathaye, N.D.; Murali, K.V.R.M.; Cartier, E.A. On the electron and hole tunneling in a HfO2 gate stack with extreme interfacial-layer scaling. IEEE Electron Device Lett. 2011, 32, 865–867. [Google Scholar] [CrossRef]
- Kirsch, P.D.; Sivasubramani, P.; Huang, J.; Young, C.D.; Quevedo-Lopez, M.A.; Wen, H.C.; Alshareef, H.; Choi, K.; Park, C.S.; Freeman, K.; et al. Dipole model explaining high-k/metal gate field effect transistor threshold voltage tuning. Appl. Phys. Lett. 2008, 92, 092901:1–092901:3. [Google Scholar] [CrossRef]
- Kita, K.; Toriumi, A. Origin of electric dipoles formed at high-k/SiO2 interface. Appl. Phys. Lett. 2009, 94, 132902:1–132902:3. [Google Scholar]
- Jagannathan, H.; Watanabe, K.; Sunamura, H.; Ariyoshi, K.; Allegret-Maret, S.; Paruchuri, V.K. Impact of extreme scaling on cap layer induced dipoles in high-k metal gate stacks. In Presented at the 2011 IEEE Semiconductor Interface Specialists Conference, Arlington, VA, USA, 6–8 December 2011.
- Miyata, N.; Yasuda, T.; Abe, Y. Kelvin probe study on formation of electric dipole at direct-contact HfO2/Si interfaces. J. Appl. Phys. 2011, 110, 074115:1–074115:8. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Tai, K.; Hirano, T.; Ando, T.; Hiyama, S.; Wang, J.; Hagimoto, Y.; Nagahama, Y.; Kato, T.; Nagano, K.; et al. High Performance Dual Metal Gate CMOS with High Mobility and Low Threshold Voltage Applicable to Bulk CMOS Technology. In Proceedings of VLSI Technology Symposium, Honololu, HA, USA, 13–17 June 2006; pp. 152–153.
- Hyun, S.; Han, J.H.; Park, H.B.; Na, H.J.; Son, H.J.; Lee, H.Y.; Hong, H.S.; Lee, H.L.; Song, J.; Kim, J.J.; et al. Aggressively scaled high-k last metal gate stack with low variability for 20 nm logic high performance and low power applications. In Proceedings of VLSI Technology Symposium, Kyoto, Japan, 13–17 June 2011; pp. 32–33.
- Veloso, A.; Ragnarsson, L.Å.; Cho, M.J.; Devriendt, K.; Kellens, K.; Sebaai, F.; Suhard, S.; Brus, S.; Crabbe, Y.; Schram, T.; et al. Gate-last vs. gate-first technology for aggressively scaled EOT Logic/RF CMOS. In Proceedings of VLSI Technology Symposium, Kyoto, Japan, 13–17 June 2011; pp. 34–35.
- Akiyama, K.; Wang, W.; Mizubayashi, W.; Ikeda, M.; Ota, H.; Nabatame, T.; Toriumi, A. VFB roll-off in HfO2 gate stack after high temperature annealing process—A crucial role of out-diffused oxygen from HfO2 to Si. In Proceedings of VLSI Technology Symposium, Kyoto, Japan, 12–16 June 2007; pp. 72–73.
- Bersuker, G.; Park, C.S.; Wen, H.C.; Choi, K.; Price, J.; Lysaght, P.; Tseng, H.H.; Sharia, O.; Demkov, A.; Ryan, J.T.; Lenahan, P. Origin of the flatband-voltage roll-off phenomenon in metal/high-κ gate stacks. IEEE Trans. Electron Devices 2010, 57, 2047–2056. [Google Scholar] [CrossRef]
- Pandey, R.K.; Murali, K.V.R.M.; Furkay, S.S.; Oldiges, P.J.; Nowak, E.J. Crystallographic-orientation-dependent gate-induced drain leakage in nanoscale MOSFETs. IEEE Trans. Electron Devices 2010, 57, 2098–2105. [Google Scholar] [CrossRef]
- Yang, H.; Niimi, H.; Keister, J.W.; Lucovsky, G.; Rowe, J.E. The effects of interfacial sub-oxide transition regions and monolayer level nitridation on tunneling currents in silicon devices. IEEE Electron Device Lett. 2000, 21, 76–78. [Google Scholar] [CrossRef]
- Akasaka, Y.; Nakamura, G.; Shiraishi, K.; Umezawa, N.; Yamabe, K.; Ogawa, O.; Lee, M.; Amiaka, T.; Kasuya, T.; Watanabe, H.; et al. Modified oxygen vacancy induced fermi level pinning model extendable to P-metal pinning. Jpn. J. Appl. Phys. 2006, 45, L1289–L1292. [Google Scholar] [CrossRef]
- Kerber, A.; Pantisano, L.; Veloso, A.; Groeseneken, G.; Kerber, M. Reliability screening of high-κ dielectrics based on voltage ramp stress. Microelectron. Reliab. 2007, 47, 513–517. [Google Scholar] [CrossRef]
- Kerber, A.; Krishnan, S.A.; Cartier, E.A. Voltage ramp stress for bias temperature instability testing of metal-gate/high-κ stacks. IEEE Electron Device Lett. 2009, 30, 1347–1349. [Google Scholar] [CrossRef]
- Cartier, E.; Kerber, A.; Ando, T.; Frank, M.M.; Choi, K.; Krishnan, S.; Linder, B.; Zhao, K.; Monsieur, F.; Stathis, J.; Narayanan, V. Fundamental aspects of HfO2-based high-κ metal gate stack reliability and implications on tinv-scaling. In Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 18.4.1–18.4.4.
- Fischetti, M.V.; Neumayer, D.A.; Cartier, E.A. Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-κ insulator: The role of remote phonon scattering. J. Appl. Phys. 2001, 90, 4587–4608. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Iijima, R.; Ino, T.; Nishiyama, A.; Satake, H.; Fukushima, N. Additional scattering effects for mobility degradation in Hf-silicate gate MISFETs. In Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 8–10 December 2002; pp. 621–624.
- Saito, S.; Hisamoto, D.; Kimura, S.; Hiratani, M. Unified mobility model for high-κ gate stacks. In Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 8–10 December 2003; pp. 797–800.
- Ando, T.; Shimura, T.; Watanabe, H.; Hirano, T.; Yoshida, S.; Tai, K.; Yamaguchi, S.; Iwamoto, H.; Kadomura, S.; Toyoda, S.; et al. Mechanism of carrier mobility degradation induced by crystallization of HfO2 gate dielectrics. Appl. Phys. Express 2009, 2, 071402:1–071402:3. [Google Scholar] [CrossRef]
- Ota, H.; Hirano, A.; Watanabe, Y.; Yasuda, N.; Iwamoto, K.; Akiyama, K.; Okada, K.; Migita, S.; Nabatame, T.; Toriumi, A. Intrinsic origin of electron mobility reduction in high-κ MOSFETs from remote phonon to bottom interface dipole scattering. In Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 65–68.
- Takagi, S.; Toriumi, A.; Iwase, M.; Tango, H. On the universality of inversion layer mobility in Si MOSFET’s: Part I—Effects of substrate impurity concentration. IEEE Trans. Electron Devices 1994, 41, 2257–2362. [Google Scholar]
- Copel, M.; Cartier, E.; Ross, F.M. Formation of a stratified lanthanum silicate dielectric by reaction with Si(001). Appl. Phys. Lett. 2001, 78, 1607–1609. [Google Scholar] [CrossRef]
- Li, J.; Ma, T.P. Scattering of silicon inversion layer electrons by metal/oxide interface roughness. J. Appl. Phys. 1987, 62, 4212–4215. [Google Scholar] [CrossRef]
- Takagi, S.; Irisawa, T.; Tezuka, T.; Numata, T.; Nakaharai, S.; Hirashita, N.; Moriyama, Y.; Usuda, K.; Toyoda, E.; Dissanayake, S.; et al. Carrier-transport-enhanced channel CMOS for improved power consumption and performance. IEEE Trans. Electron Devices 2008, 55, 21–39. [Google Scholar] [CrossRef]
- Saitoh, M.; Uchida, K. Universal relationship between low-field mobility and high-field carrier velocity in high-κ and SiO2 gate dielectric MOSFETs. In Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 11–13 December 2006; pp. 261–264.
- Natori, K. Ballistic metal-oxide-semiconductor field effect transistor. J. Appl. Phys. 1994, 76, 4879–4890. [Google Scholar] [CrossRef][Green Version]
- Lochtefeld, A.; Antoniadis, D.A. On experimental determination of carrier velocity in deeply scaled NMOS: How close to the thermal limit? IEEE Electron Device Lett. 2001, 22, 95–97. [Google Scholar] [CrossRef]
- Lundstrom, M.S. On the mobility versus drain current relation for a nanoscale MOSFET. IEEE Electron Device Lett. 2001, 22, 293–295. [Google Scholar] [CrossRef]
- Tatsumura, K.; Goto, M.; Kawanaka, S.; Kinoshita, A. Correlation between low-field mobility and high-field carrier velocity in quasi-ballistic-transport MISFETs scaled down to Lg = 30 nm. In Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 7–9 December 2007; pp. 1–4.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ando, T. Ultimate Scaling of High-κ Gate Dielectrics: Higher-κ or Interfacial Layer Scavenging? Materials 2012, 5, 478-500. https://doi.org/10.3390/ma5030478
Ando T. Ultimate Scaling of High-κ Gate Dielectrics: Higher-κ or Interfacial Layer Scavenging? Materials. 2012; 5(3):478-500. https://doi.org/10.3390/ma5030478
Chicago/Turabian StyleAndo, Takashi. 2012. "Ultimate Scaling of High-κ Gate Dielectrics: Higher-κ or Interfacial Layer Scavenging?" Materials 5, no. 3: 478-500. https://doi.org/10.3390/ma5030478