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Abstract: A series of polyaniline (PANI) salts were synthesized with the presence of a 

small amount of water varying from 0 to 1 mL at the beginning of solid-state 

polymerization. The structure and morphology of the samples were characterized by 

fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-Vis) absorption spectra, 

X-ray diffraction (XRD) and transmission electron microscopy (TEM). The electrochemical 

performances of the products were investigated by galvanostatic charge-discharge, cyclic 

voltammetry, cycling stability and electrochemical impedance spectroscopy (EIS). The 

results showed that the amounts of water can affect the oxidation degree, conjugate level 

and crystallinity of PANI salts. All PANI salts showed spherical morphology with the 

diameter of about 60 nm as shown by TEM. The electrochemical tests showed the highest 

specific capacitance value 593.3 F.g−1 in 1 M H2SO4 for PANI prepared with the addition 

of 0.5 mL of water at the beginning of solid-state polymerization. 

Keywords: conducting polymers; solid-state polymerization; structure-property  

relations; polyaniline 
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1. Introduction 

Conducting polyaniline (PANI), composed of benzenoid and quinonoid units with the delocalized 

conjugated structures, has several redox states, which has become the research focus in the field of 

conducting polymers [1–9]. The conductivity and processability of PANI can be adjusted through the 

selection of a suitable dopant and the varying of the oxidation states [10,11]. Generally, the organic 

sulfonic acids are widely used as doping agents, which can improve the solubility and electrochemical 

performances of PANI [12,13]. PANI can be synthesized electrochemically or chemically by oxidative 

polymerization of aniline [14,15]. With the electrochemical method, it is easy to control the 

morphology and electrical properties of PANI, but its disadvantage lies in mass production [16]. On 

the contrary, the chemical method is considered to be more effective for commercial mass production. 
Recently, the solid-state synthesis has aroused researchers’ attention because a small amount of 

solvent or no solvent is used in the reaction system, and the reactants are brought into intimate contact 

by grinding or through the ball-milling process. Due to low costs, reduced pollution, and simplicity in 

process and handling, the solid-state synthesis can be used for a large scale production [17]. Now, 

solid-state synthesis is widely applied to prepare the PANI-type conducting polymers [18–23]. In the 

solid-state synthesis method, the reaction chiefly occurs on the surface of a solid-sate reactant and the  

inter-diffusion rate of the reactants is much slower than that of a traditional solution method [18]. This 

means that by carefully controlling the experimental conditions to adjust the nucleation and growth of 

the polymer, the solid-state polymerization method could be used to fabricate the nanostructured  

polymer [19–23]. Huang et al. report a solvent-free mechanochemical route to PANI in which the 

reaction is induced by ball-milling the solvent-free anilinium salt and oxidant under ambient  

conditions [18]. Our group has successfully synthesized PANI and its derivatives doped with different 

acids with the solid-state polymerization method, in which the small amount of water is added at the 

beginning of the reactions of aniline and doping acid to form the anilinium salt, and the residual 

moisture in the reaction system can be gradually evaporated after the adding of the oxidant and the 

reaction process [19,24,25]. Moreover, we have found that the presence of a small amount of water at 

the beginning of the reactions can take on the role of catalyst, which can accelerate the reaction rate 

and increase the doping degree of the acids. However, until now there has been no systematic 

information concerning the effect of a small amount water on the structure and properties of the PANI.  
Herein, we report the preparation of polyaniline doped by p-TSA with the presence of a small 

amount of water varying from zero to one mL in the beginning of the solid-state reaction. The 

influence of the small amount of water on the structure and electrochemical properties of PANI was 

deeply discussed based on the results from fourier transform infrared (FTIR) spectra, ultraviolet-visible 

(UV-Vis) absorption spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM),, 

galvanostatic charge-discharge, cyclic voltammetry, cycling stability and electrochemical impedance 

spectroscopy (EIS). 
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2. Results and Discussion 

2.1. Fourier Transform Infrared (FT-IR) Spectra  

Figure 1 shows the FTIR spectra of PANI salts synthesized by the solid-state synthesis method. The 

main characteristic peak positions of all PANI salts are almost same, the broad band at  

~3205 cm−1–3321 cm−1 is attributable to the N–H stretching vibration due to the protonation of  

nitrogen [10,11], ~3050–3109 cm−1 is assigned to stretching vibration of the aromatic C-H bond and 

the characteristic band at ~2835–2949 cm−1can be due to the stretching vibration of the methyl group  

(-CH3). The two bands appearing at ~1565–1578 cm−1 and ~1487–1497 cm−1 correspond to the 

stretching vibration of quinoid and benzenoid ring, respectively. The peak at ~1375cm−1 is attributed to 

the C–N= stretching vibration between benzenoid and quinoid units [26]. The band at ~1297–1311 cm−1 

can be assigned to the π-electron delocalization induced in the polymer through protonation or C-N-C 

stretching vibration, while the peak at ~1246 cm−1 is due to the C-N+ stretching vibration in the polaron 

structure [19,24]. The band at 1145–1161cm−1 is assigned to the plane bending vibration of C–H 

(modes of N=Q=N, Q=NH+–B and B–NH+–B, Q represents the quinoid ring and B represents the 

benzenoid ring), which is formed during protonation [27]. It is described as the “electronic-like band” 

and considered to be a measure of the degree of delocalization of electrons of PANI [14]. The peak at 

~1105 cm−1 is attributed to the aromatic C-H bending in the plane for the 1,4-disubstituted aromatic 

ring [28] and the band appearing at ~830 cm−1 is attributed to an aromatic C-H out-of-plane bending 

vibration [29]. The peaks at ~1050 cm−1 and ~690 cm−1 are relative to the S=O and S–O stretching 

vibration of the sulphonate groups attached to the aromatic rings, which also indicates that the 

prepared PANI nanostructures were in the doping state [30] The presence of characteristic bands 

confirms that all PANI salts contain the conducting emeraldine salt phase [18,30]. The differences of 

intensities from 1350–1000 cm−1 between PANI salts may be due to the differences in the protonation 

level and oxidation level or to the change in stability of the conjugated system [31]. 

Figure 1. Fourier transform infrared (FTIR) spectra of Conducting polyaniline (PANI) 

with different amounts of water. 
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The oxidation degree of the PANI can be determined by the relative intensities ratio of peak 

corresponding to the quinoid to benzenoid ring modes [25,32]. Calculating the relative intensity ratio 

(I~1565–1570/I~1487–1497) of all PANI salts, the specific values are 0.96, 1.10, 0.97, 1.18, 0.86 in the order 

of PANI-0, PANI-0.25, PANI-0.5, PANI-0.75, PANI-1, respectively. These results above indicate that 

the oxidation state can be affected by a small amount of water; this may be related to the amount of H+ 

and the oxidant in the reaction medium [33]. As for PANI-0, there is no water in the reaction system. 

However, the liquid aniline can react with p-TSA. After adding APS, the contact probability of the 

oxidant is much less due to no water, thus facilitating the formation of the reduction state of polymer. 

When adding 0.25 mL of H2O, the too little amount of H+ and the raised contact probability between 

APS and aniline salt facilitates the formation of the oxidation state [33]. However, the amount of H+ is 

increased by adding 0.5 mL of H2O, and more H+ is inclined to the formation of the reduction state 

even thoughthe oxidant facilitates to form the oxidation state. Considering the two impacts, the ratio 

(I~1565–1570/I~1487–1497) of PANI-0.5 is 0.97, which is close to 1. It bears a dark green color at the end of 

the experiment, indicating further that the formation of polyaniline is in its doped emeraldine oxidation 

state [32]. For PANI-0.75, on the other hand, the amount of H+ and the contact probability of the 

oxidant are both higher, so more oxidant tends to initiate aniline to produce the oxidation state. When 

adding 1 mL of H2O, the amount of H+ will be increased by increasing the soluble amount of p-TSA 

with the presence of more water. This will cause the separation of the oxidant from the monomer, 

which, in turn, facilitates the formation of the reduction state of polymer during the oxidative 

polymerization. This means the oxidation degree of PANI-1 should be lower. It is well known that the 

reactants are brought into intimate contact through the grinding process, and inter-diffusion of the 

reactants is necessary for the solid-state synthesis. It should be noted that this solid-state synthesis in 

the beginning involves solid and liquid phases, i.e., the solid monomer salt and a small amount of 

water (liquid aniline and p-TSA were partly grinded to form solid aniline salt). Because the oxidative 

polymerization is exothermic, after adding APS oxidant, the reaction only happens in a solid state. 

With the presence of more water, the reaction medium will be more acidic, because the the amount of 

H+ will be increased by increasing the soluble amount of p-TSA with more water. The small portion of 

aniline salts in the liquid phase will increase the inter-diffusion rate of the reactants and probability of 

reaction. Therefore, the more water added in the reaction, the more yield of the corresponding product 

there will be, as can been seen in Table 1.  

Table 1. The mass of reactants and the yield of obtained PANI salts. 

Sample Aniline (mL) p-TSA (g) APS (g) H2O (mL) Yield (%)

PANI-0 1 1.9 2.2 0 5.0 

PANI-0.25 1 1.9 2.2 0.25 7.8 
PANI-0.5 1 1.9 2.2 0.5 23.7 

PANI-0.75 1 1.9 2.2 0.75 55.0 
PANI-1 1 1.9 2.2 1 73.2 
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2.2 Ultraviolet-Visible(UV-Vis) Spectra 

Figure 2 represents the UV–Vis absorption spectra of PANI salts in m-cresol solution. As is 

clarifiedin Figure 2, all PANI salts show two characteristic absorption peaks at ~315–342 nm and 

~405–442 nm. The absorption peak at ~315–342 nm can be ascribed to π-π* transition of the benzenoid 

rings, while the peak at 405–442 nm can be attributed to polaron-π* transition [18,25]. The peak at 

~315–342 nm can also be attributed to the leucoemeraldine (fully reduced form) of PANI, while the 

peak at ~405–442 nm is due to the protonated form of PANI [18]. However, when an intense free 

carrier tail commencing at about 1000 nm appears, the appearance of the intense free carrier tail in the 

near infrared region is taken as an indication for the delocalization of electrons in the polaron band of the 

“expanded coil,” which is originated from the “compact coil” through the secondary-doping-induced 

conformational transition by m-cresol [34,35]. The reason is that m-cresol not only serves as a solvent, 

but also acts as an efficient secondary dopant [36]. Comparing the peaks position at ~315–342 nm and 

~405–442 nm, one can see that the corresponding peak of PANI-0.25 and PANI-0.75 slightly shifts to 

a higher wavelength, meaning that the conjugate degree of them is larger and have more quinoid ring 

modes than others. The FTIR studies show that both of them have a higher oxidation degree, and the 

UV–Vis results are consistent with FTIR.  

Figure 2. Ultraviolet-Visible (UV-Vis) spectra of PANI with different amounts of water in m-cresol. 
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2.3. X-ray Diffraction (XRD) Analysis 

X-ray diffraction tests can provide a great deal of information on structural aspects. The XRD 

patterns for the PANI salts are shown in Figure 3. It is noted that the details of the crystal structure 

depend upon the counterion used. From the XRD, the Bragg diffraction shoulders of 2θ = ~15°,  

2θ = ~19.4° and 25° can be found in obtained PANI salts. These peaks manifest emeraldine salt form of 

PANI [20,37], indacting that PANI salts have some crystallinity. The crystallinity of PANI can be 

ascribed to the repetition of benzenoid and quinoid rings in PANI chains [38]. The peak centered at  

2θ = ~19.4° may be ascribed to a periodicity parallel to the polymer chain, and the peak at 2θ = ~25° 

may be caused by the periodicity perpendicular to the polymer chain [39–41]. The peak at 2θ = ~20° 

also represents the characteristic distance between the ring planes of benzene rings in adjacent chains 

or the close-contact inter-chain distance [42]. However, the crystallization property of PANI salts is 
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affected by different amounts of deionized water in solid-state polymerization. As for PANI-0.25 and 

PANI-0.75, their crystallinity are lower. 

Figure 3. X-Ray Diffraction (XRD) spectra of PANI with different amounts of water. 
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2.4. Morphology 

Figure 4 represents the TEM images of PANI salts. It is well known that the morphology of PANI 

depends on the polymerization method and temperature. It is apparent from these images that different 

amounts of deionized water effectively control the dispersion and the morphology of particles. As can 

be seen from the TEM, when adding more water, the morphology of the obtained polyaniline salt is 

spherical and shows good dispersion. The diameter of all PANI salts is about 60 nm and these particles 

are at the nanoscale. However, as for PANI-0, PANI-0.25 and PANI-0.5, the particles are irregularly 

shaped and aggregated. With the addition of water in the beginning of this solid-state synthesis, the 

obtained PANI salts have better dispersion, as illustrated by PANI-0.75 and PANI-1 in Figure 4 (d) 

and Figure 4 (e), respectively. 

Figure 4. Transmission electron microscopy (TEM) image of PANI with different amounts 

of water: (a) PANI-0; (b) PANI-0.25; (c) PANI-0.5; (d) PANI-0.75; (e) PANI-1. 

 



Materials 2012, 5            

 

 

1817

2.5. Electrochemical Properties  

To investigate the application of PANI as electrode materials in a supercapacitor, Figure 5 shows 

the galvanostatic charge-discharge curves of PANI salts at 3 mA.cm−2 in 1 M H2SO4. The specific 

capacitance (SC) of the electrode material is calculated by means of SC = (I × Δt)/(ΔV × m) [43], 

where I is charge-discharge current, Δt is the discharge time, ΔV is the electrochemical window(1 V), 

and m is the mass of active materials within the electrode(3 mg). The SC of PANI salts calculated from 

Figure 5 are as follows: PANI-0: 324 F.g−1, PANI-0.25: 474 F.g−1, PANI-0.5: 483 F.g−1, PANI-0.75: 

438 F.g−1, PANI-1: 381 F.g−1, respectively. It can be seen that all the charge-discharge curves are not 

ideal straight lines, indicating the process of a faradic reaction, and the SC comes from 

pseudocapacitance resulting from the fast reversible oxidation and reduction processes [44]. 

Comparing these values, the PANI-0.5 shows a higher SC, while PANI-0 and PANI-1 are 324 and  

381 F.g−1, respectively, indicating that the amount of deionized water affects heavily the specific 

capacitance (SC) of PANI salts in the solid-state reaction. Moreover, PANI-0.5 has the highest specific 

capacitance value of 483 F.g−1, which may be related to the formation of polyaniline in its doped half-

oxidized emeraldine state. 

Figure 5. Charge-discharge of PANI salts at the same current density of 3 mA.cm−2 in 1 M 

H2SO4 electrolyte.  
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Due to the higher SC, the possibility of PANI-0.5 as the potential application of capacitor is higher 

than others. The following work is a detailed study of the electrochemical properties  

about PANI-0.5. 

Figure 6 shows the galvanostatic charge-discharge curves of PANI-0.5 at different current densities 

in 1 M H2SO4 electrolyte. The SC calculated from Figure 6 are 483, 533.3, 564, 545.5, 510.6,  

497.5 F.g−1 at the current density of 3, 5, 10, 15, 20 and 25 mA.cm−2, respectively. The variations in the 

capacity retention as a function of the current density are plotted in the inserted image. The  

charge-discharge curves exhibit mirror-like images, indicating a reversible oxidation process and better 

electrochemical capacitance performance. From the illustration in Figure 6, when the current density is 

10 mA.cm−2, the SC reaches the maximum value of 564 F.g−1. The corresponding capacitance retention 

ratio still reaches circa 90% with growth of current densities from 3 to 25 mA.cm−2, indicating PANI-

0.5 as electrode material can be maintained under very high power operations. However, the SC 
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increases with increasing of charge–discharge current densities from 3 mA cm−2 to 10 mA cm−2, this is 

similar to the earlier report [45], in which the PANI nanowire arrayed electrodes was synthesized by 

means of anodic deposition technique. According to the previous report, this increase of the SC may be 

attributed to the existence of various forms of pores and pore diameters in the electrode that resulted 

from the different nanosized structure, and it seems that some pores with small diameter can be 

invaded by ions from the electrolyte with high charging current [46]. As it is noted in Figure 6, the SC 

gradually decreases after the increase of current density from 10 mA cm−2 to 25 mA cm−2, and it is in 

accordance with the common belief that the SC decreases with the increasing of current density [47]. 

The reason for this is that the electrolyte ion cannot penetrate well into the inner of active materials 

due to slow diffusion at large current density.  

Figure 6. Charge-discharge curves of PANI-0.5 at different current densities in 1 M H2SO4 

electrolyte: (a) 3 mA.cm−2; (b) 5 mA.cm−2; (c) 10 mA.cm−2; (d) 15 mA.cm−2;  

(e) 20 mA.cm−2; (f) 25 mA.cm−2. The inset shows the capacity retention as a function of 

current density. 
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Figure 7 gives the CV curves of PANI-0.5 as electrode materials measured from −0.2 to 0.8 V at 

different scan rates in 1 M H2SO4 electrolyte. As shown in Figure 7, the peak currents rapidly increase 

and the redox peaks become broader with the increase of the scan rate from 3 to 50 mV.s−1. The 

oxidation peaks shift positively and the reduction peaks shift negatively with the increase of the scan 

rate. The gradual increase of the current as a function of the scan rate means a good rate capability of 

PANI-0.5, and the shifts of the redox peaks are due to the resistance of the electrode. Previous studies 

show that the SC of the electrode can also be estimated from the CV curves, and the formula is  
2

1
2 1( ) / 2 ( )

E

E
C i E dE vm E E   [48], where C is the specific capacitance (SC) of the individual sample. E1, E2 are 

the cutoff potentials in cyclic voltammetry. i(E) is the instantaneous current. 
2

1
( )

E

E
i E dE  is the total 

voltammetric charge obtained by the integration of a positive and negative sweep in cyclic 

voltammograms. (E2 − E1) is the potential window width, and m is the mass of the individual sample. 



Materials 2012, 5            

 

 

1819

The SC calculated from Figure 7 are 583.3, 593.3, 560, 471, 476, 424.6 F.g−1 at the scan rate of 3, 5, 10, 20, 

30 and 50 mV.s−1, respectively. However, it should be noted that the SC calculated from CV are 

different from those derived from galvanostatic charge–discharge test, which is mainly due to the 

different testing systems applied. The variation in the SC of the electrodes as a function of the scan rate 

is also plotted in the inserted image, and the capacitance retention ratio can still reach about 72% even at 

the scan rate of 50 mV.s−1. 

Figure 7. Cyclic voltammetry curves of PANI-0.5 at different scan rates: (a) 3 mV.s−1;  

(b) 5mV.s−1; (c) 10 mV.s−1; (d) 20 mV.s−1; (e) 30 mV.s−1; (f) 50 mV.s−1. The electrolyte is 1 M 

H2SO4; the inset shows the capacity retention as a function of scan rate. 

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

b

e

d
c

a

f

0 10 20 30 40 50
50

60

70

80

90

100

 

 

 

scan rate(mVs-1)

C
ap

ac
it

y 
re

te
nt

io
n(

%
)

Potential/V(vs.SCE)

 

 
C

ur
re

nt
/A

 

It is well known that long-term cycle stability is one of the most important factors to consider for 

conducting polymers in supercapacitor applications. Figure 8 (a) shows the CVs for the 1st, 100th and 

500th cycle at 50 mV.s−1 for PANI-0.5 electrode from our stability studies. The variation of specific 

capacitance with cycle number is presented in Figure 8 (b) and indicates that the specific capacitance 

of the PANI-0.5 as supercapacitor decays at a relatively slow rate. After 500 cycles, the capacitance 

retention ratio still reaches about 42%, indicating high cycling stability of the nanostructured 

polyaniline electrode. Any observed net loss in CV areas from Figure 8a could be attributed to loss of 

active material through partial dissolution of the materials. Conductive polymer-supercapacitor 

electrodes often suffer from cycle degradation issues caused by mechanical problems, such as swelling 

and shrinking, during the doping–dedoping process [3]. 
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Figure 8. (a) CV curves for the PANI-0.5 electrode for the 1st, 100th and 500th cycle from 

stability studies using 1 M H2SO4 electrolyte solution at 50 mV.s−1; (b) Variation in the 

specific capacitance as a function of the number of cycles.  
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Figure 9. Electrochemical impedance spectroscopy of PANI-0.5 at open-circuit potential 

with ac-voltage amplitude of 5 mV over the frequency range of 10−2–105 Hz in  
1 M H2SO4 electrolyte；the inset shows the enlargement of a part of Electrochemical 

impedance spectroscopy. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

1

2

3

4

0.50 0.75 1.00 1.25 1.50 1.75
0.00

0.25

0.50

0.75

1.00

 

 

-z
''/

oh
m

z'/ohm  
 

 

 
-z

''/
oh

m

z'/ohm  

Electrochemical impedance spectroscopy (EIS) has been widely used to study the redox processes 

of electrically conducting polymers. It can be seen from Figure 9 that the EIS plot contains two  

well-separated patterns. To see clearly the cross point of a semicircle with the real axis and the radius 

of the semicircular, the enlargement of a part of Electrochemical impedance spectroscopy (EIS) is 

shown in the inset of Figure 9. First, the high frequency intercept of the semicircle with the real axis 

can be used to evaluate the value of internal resistance, which includes the resistance of the electrolyte 

solution, the intrinsic resistance of the active material and the contact resistance at the interface active 

material/current collector. Its value is approximately 0.57 Ω, while the radius of the semicircular is 

0.22 Ω. Second, the imaginary impedance at low frequency reveals a slightly tilted vertical line of a 
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limiting diffusion process, which is a characteristic feature of pure capacitive behavior [49]. These 

results also further illustrate that PANI-0.5 can be used as electrode material for supercapacitors. 

3. Experimental Section  

3.1. Materials 

Aniline (99.5%) and ammonium peroxydisulfate ((NH4)2S2O8, APS) of analytical-reagent grade 

were purchased from Xi’an Chemical Reagent Company (China), p-toluenesulphonic acid (p-TSA) 

was obtained from Acros Organics (Shanghai Aladdin Reagent Company, China). Aniline was purified 

by double distillation under reduced pressure prior to use and stored in the refrigerator; all  

other chemicals and solvents were used as received without further purification. Deionized water was 

used throughout. 

3.2. Synthesis of Polyaniline Salts 

A typical solid-state synthesis of polyaniline doped with p-toluenesulphonic acid (p-TSA) was as 

follows: 1 mL of aniline and 1.9 g p-TSA were grinded to mix each other in the mortar, and then  

0.5 mL of deionized water was added. After grinding, the mixture became a white paste and 2.2 g of 

APS was added by further grinding for 30 min. Finally, the color of the powder changed to dark green. 

The dark green powder was washed with ethylether, ethanol and deionized water repeatedly until the 

filtrate was colorless, then the powder was dried under vacuum at 50 °C for 48 hr. The sample is 

designated as PANI-0.5. Using the same method, the other samples were synthesized just by changing 

the amount of deionized water from 0 to 1 mL. The specific reactants mass, the amount of adding 

water and the yield of obtained PANI salts were listed in Table 1. 

3.3. Structure Characterization 

The FTIR spectra of the samples were measured on a BRUKERQEUINOX-55 fourier transform 

infrared spectrometer (Billerica, MA, USA) at a resolution of 4 cm−1 using the KBr technique. UV-Vis 

spectra of the samples were recorded on a UV-Visible spectrophotometer (UV4802, Unico, USA). 

XRD patterns have been obtained by using a Bruker AXS D8 diffractometer and the scan range (2θ) 

was 5°–70°, with monochromatic Cu-Ka radiation source (λ = 0.15418 nm). Transmission electron 

microscopy (TEM) experiments were performed on a Hitachi 2600 electron microscope. The samples 

for TEM measurements were prepared by placing a few drops of products ethanol suspension on 

copper supports. 

3.4. Electrochemical Tests 

The working electrode was prepared by mixing 85 wt.% active materials (3 mg), 10 wt.% carbon 

black and 5 wt.% polytetrafluoroethylene (PTFE) to form slurry. The slurry was coated onto a graphite 

current collector (area: 1 cm2), then dried at 60 °C for 24 hr under vacuum. The electrochemical 

measurements, including galvanostatic charge-discharge, cyclic voltammetry (CV), cycle life and 

electrochemical impedance spectroscopy (EIS) techniques were carried out in a three-electrode glass 
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cell: a standard calomel reference electrode (SCE), a platinum counter electrode, and the working 

electrode. Galvanostatic charge–discharge tests, cyclic voltammetry and cycle life were performed in 

the potential window ranging from −0.2 V to 0.8 V and conducted at different scan rates and different 

current densities using CHI660C electrochemical working station. EIS measurements were performed 

at open-circuit potential by using Zennium 40084. Data were collected in the frequency range of  

10−2 Hz to 105 Hz. The electrolytes were 1 M H2SO4 solution in all the electrochemical tests. 

4. Conclusions  

In this work, a series of PANI doped with p-TSA were synthesized by solid-state polymerization. 

The results showed that different amounts of deionized water had a great influence on the structure of 

PANI, such as the oxidation degree, conjugate level, crystallinity, yield as well as morphology. 

Comparison results showed that the small amount of water can affect the amount of H+ in the reaction 

system, and this would in turn bring different oxidation degree, conjugate level and crystallinity of PANI. 

With the presence of more water, the reaction medium would be more acidic, and the inter-diffusion rate 

of the reactants can be accelerated. The more acidic condition could bring the reduced PANI, while the 

higher inter-diffusion rate of the reactants could be a benefit for the formation of oxidized PANI. As 

the results of the two opposite effects, the more reduced PANI occurred in the case of 0 mL and 1 mL 

of water, while the more oxidized PANI occurred in the case of 0.25 mL and 0.75 mL of water. 

Therefore, the half-oxidized emeraldine phase of PANI occurred only in the case of 0.5 mL of water, 

and, consequently, the PANI displayed better electrochemical performances than others. 
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