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Abstract: The chemical modification of oligomers such as DNA, PNA, MORF, LNA to 

attach radionuclides for nuclear imaging and radiotherapy applications has become a field 

rich in innovation as older methods are improved and new methods are introduced. This 

review intends to provide a brief overview of several chelators currently in use for the 

labeling of oligomers with metallic radionuclides such as 
99m

Tc, 
111

In and 
188

Re. While 

DNA and its analogs have been radiolabeled with important radionuclides of nonmetals 

such as 
32

P, 
35

S, 
14

C, 
18

F and 
125

I, the labeling methods for these isotopes involve covalent 

chemistry that is quite distinct from the coordinate-covalent chelation chemistry described 

herein. In this review, we provide a summary of the several chelators that have been 

covalently conjugated to oligomers for the purpose of radiolabeling with metallic 

radionuclides by chelation and including details on the conjugation, the choice of 

radionuclides and labeling methods. 
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1. Introduction  

Advances in nuclear imaging require adequate methods for labeling biologicals such as DNA and 

its analogs (referred to herein as oligomers) with a variety of radionuclides, those that emit gamma 

rays for noninvasive imaging and those emit betas, alphas, Auger electrons, etc. for radiotherapy. 
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Compared to other imaging modalities such as MRI, CT, ultrasound and optical, nuclear imaging 

offers extremely high sensitivity capable of detecting contrast agents at pM concentrations or lower [1]. 

Compared to external beam or brachytherapy, radiation therapy with internally administered 

radionuclides can offer superb dose distribution [2]. Oligomers are unique in their property of 

hybridization to their complement and this property has been exploited in the development of novel 

radiopharmaceuticals for nuclear imaging and radiotherapy by pretargeting, by antisense localization 

and by aptamer-mediated approaches [3-5]. While the use of unlabeled oligomers in medicine has been 

extensively reported over the past several decades, much less is presently in the literature regarding 

methods of labeling these oligomers with radionuclides, especially metallic radionuclides. 

Radionuclides such as 
14

C, 
11

C, 
14

N, 
35

S, 
3
H and 

32
P have been used to label biologicals including 

oligomers, often by isotope substitution (e.g., 
11

C for 
12

C, 
3
H for 

1
H). While labeling by isotope 

substitution essentially guarantees that the properties of the biological will not have been altered, the 

labeling process is usually nontrivial. With few exceptions, biologicals cannot be radiolabeled with 

metallic radionuclides in this manner but require the preliminary covalent attachment of a chelator, a 

chemical structure capable of binding a metal in a claw-like fashion with two or more bonds. Since 

chelators are usually large molecules, in contrast to nonmetals, labeling with metals is much more 

likely to alter biological properties. However, an important advantage of labeling by chelation is that 

the labeling itself can be extremely simple to the point where kit formulations are possible. This 

contribution is intended to provide a brief description of several chelators that have been successfully 

used to radiolabeled oligomers. The coverage is not intended to be comprehensive. Rather we hope 

merely to raise awareness of what has been done in the recent past and of some of the problems that 

have been successfully addressed. 

2. Oligomers 

The term oligomers as used herein refers to oligonucleotides such as DNAs and RNAs and includes 

analogs that are not polynucleotides (such as PNAs, MORFs and LNAs). To overcome the instability 

to nucleases of native DNA and RNAs with phosphodiester (PO) backbones, several families of 

synthetic analogs have become commercially available, including phosphorothioate (PS) DNAs [6], 

phosphorodiamidate morpholino oligomers (MORF) [7], peptide nucleic acids (PNA) [8] and locked 

nucleic acid (LNA) [9,10] as shown in Figure 1. The modified backbones in each of these synthetic 

DNA analogs have stabilized the oligomers against nuclease hydrolysis while still permitting similar, 

in some cases increased, affinities for their complement.  
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Figure 1. Chemical structures of DNAs and several important analogs. (a) phosphodiester 

(PO), phosphorothioate (PS) and methylphosphonate (MP) DNAs; (b) phosphorodiamidate 

morpholino (MORF); (c) peptide nucleic acids (PNA); (d) locked nucleic acids (LNA). 

 

 

 

 

 

 

 

 

 

 

 

3. Metallic Radionuclides 

Theoretically, almost any radionuclide can be chemically attached to oligomers, but the choice will 

depend upon the application. Although justification of a particular choice is usually not now included 

in published reports, implicit are those factors extensively discussed decades ago [11-13], including (1) 

decay type, (2) physical half life, (3) availability and (4) ease of labeling. For example: radionuclides 

decaying by short-range high LET emissions such as betas, alphas and Auger electrons are highly 

cytotoxic and used to label biologicals designed for radiotherapeutic purposes, while diagnostic 

imaging agents require radionuclides that are relatively low in cytotoxicity but decay with imaginable 

emissions, either gammas for planar and Single Photon Computerized Emission Tomography (SPECT) 

imaging or annihilation photons for Positron Emission Tomography (PET). In general, radionuclides 

with short physical half lives are preferred for imaging to minimize the radiation exposure to subjects. 

However, too short a half life may not provide sufficient time for radiolabeling. Furthermore the half 

life must be a good match to the time between administration and imaging that is required to reach an 

adequate target/nontarget ratio that can vary over a wide range depending upon the application. For 

radiotherapy, radionuclides with longer half lives are often preferred if that results in delivering a 

higher radiation dose to the target. Nevertheless, an overriding prerequisite is always availability. Thus, 

in addition to its superior decay property, 
99m

Tc is often a favorite choice for planar and SPECT 

imaging since it may be made available on demand from a 
99

Mo/
99m

Tc radionuclide generator.  

 

 

 

 

 



Materials 2010, 3 

 

3207 

Table 1. Properties of selected metallic radionuclides useful in nuclear medicine. 

Radionuclide half-life  energy (KeV)  emitter source 
64

Cu 12.7 h 653 β
+
  cyclotron 

67
Ga 78.3 h  93,185  γ cyclotron 

89
Sr 50.6 d  1460  β

-
  reactor 

90
Y 64.1 h  2270 β

-
  

 
reactor 

99m
Tc 6.02 h  141 γ     generator 

111
In 67.9 h  171,247  γ     cyclotron 

153
Sm 46.3 h  702,810;103  β

-
,γ  reactor 

177
Lu 6.7 d  176,497;113,208  β

-
,γ     reactor 

186
Re 90.6 h  936,1070;137  β

-
,γ     reactor 

188
Re 16.9 h  1500;155  β

-
,γ  generator 

201
Tl  73.1 h  135,167  γ     cyclotron 

 

4. Chelators and/or Linkers  

The labeling strategy of oligomers is very similar to that of other biologicals such as peptides and 

antibodies. If the radionuclide is an isotope of a metal, a chelator, possibly attached via a linker to 

avoid steric hindrances, is required. We describe below the use of MAG3, DTPA, and DOTA as 

bifunctional chelators (i.e., with two functionalities, one permitting covalent attachment and another 

permitting chelation) because of their common use for radiolabeling oligomers with some  

metallic radionuclides.  

4.1. MAG3 derivatives 

When labeled with 
99m

Tc, mercaptoacetyltriglycine (MAG3) is a clinical radiopharmaceutical for 

imaging kidney function [14]. The sulfhydryl group in the clinical MAG3 radiopharmaceutical is 

protected by a benzoyl group that requires high temperatures and basic pH conditions for deprotection. 

Figure 2. Conjugation of the NHS-MAG3 to amine-derivatized oligomers, and radiolabeling. 

 

 

Because of its ability to stabilize chelate 
99m

Tc, MAG3 has also been modified into a bifunctional 

chelator for the labeling of biologicals. A NHS (N-Hydroxyl succinimide) activated MAG3 

bifunctional chelator (S-acetyl NHS-MAG3) has been used for the labeling of amine derivatized 

oligomers with 
99m

Tc (Figure 2). To avoid the harsh conditions of boiled water temperature and 

alkaline pH of benzoyl deprotection, S-acetyl NHS-MAG3 was synthesized in which an acetyl replaces 

the benzoyl group. As a better leaving group, acetyl can be more easily removed at neutral pH and 
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room temperature [15]. However, while the labeling of DNAs in this manner with 
99m

Tc at room 

temperature and neutral pH became routine [16-19], post-labeling purification was required to raise the 

radiochemical purity to 90% or higher [20]. Fortunately, oligomers tend to be insensitive to heat. In an 

investigation to examine the reasons for the lower labeling efficiency, the conjugation and labeling 

chemistry was found to be more complicated than expected. When the free S-acetyl NHS-MAG3 was 

labeled at room temperature, the product was an unidentified labeled product and not the expected 
99m

TcO-MAG3 [21] although the unidentified labeled products was converted into 
99m

TcO-MAG3 after 

heating. When NHS-MAG3 was first used to radiolabel an anime-derivatized MORF, low labeling 

efficiency was found despite boiling water temperatures [22,23]. Subsequent investigations found that 

the low labeling efficiency was not due to incomplete purification of the MAG3-MORF after 

conjugation but due to the labeling of impurities [20]. Liu et al found that these impurities could be 

removed by introducing a preliminary purification procedure before labeling and a labeling efficiency 

of over 95% is now obtained routinely [24,25].  

To our knowledge, activated groups other than NHS active esters have not been used for the 

conjugation of MAG3 to oligomers. However, as earlier mentioned, all other conjugation approaches 

employed in the labeling of peptides and antibodies can be potentially translatable to the labeling of 

oligomers, for example MAG3 activated by an isothiocyanate group [26]. Like most chelators useful 

with 
99m

Tc, MAG3 can also form stable complex with 
186

Re and 
188

Re, because of similarities in the 

chemistry of technetium and rhenium. 

4.2. DTPA 

Although the active DTPA ester formed in situ by reacting with a carbodiimide such as EDC  

[1-Ethyl-3(3-dimethylaminopropyl)carbodiimide Hydrochloride)] has been used for the conjugation of 

DTPA to biologicals [27], DTPA in the form of a bifunctional chelator has proved to be more popular. 

As the simplest bifunctional form of DTPA, the cyclic DTPA anhydride has been widely used [28], for 

example to radiolabel amine derivatized DNAs and MORFs with 
99m

Tc [19,27]. However unlike 
99m

Tc-MAG3, the 
99m

Tc within the DTPA chelator is susceptible to oxidation once the excess Sn(II) 

used in the labeling is removed [29]. Furthermore, the labeling efficiency is usually low because 

DTPA is a poor chelator for 
99m

Tc [30]. As such, DTPA has seen more use for attaching trivalent 

metals such as 
111

In as shown in Figure 3 [31] and radioactive lanthanides such as 
90

Y [32]. The 

labeling can be achieved by simply mixing the DTPA-conjugated biologicals with the acetate, the 

kinetics is rapid and an almost quantitative labeling efficiency is usually achieved even at neutral pH 

and room temperature. This method of labeling is therefore suitable for biologicals sensitive to 

excessive heat and acidity. 
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Figure 3. Conjugation of the cyclic DTPA anhydride to amine-derivatized oligomers, and 

radiolabeling. 

 

 

Earlier there was a concern that the use of the cyclic DTPA anhydride could cross link two 

biologicals because of the two anhydride groups [33]. However, to our knowledge, no direct evidence 

of cross linking has been reported. A plausible explanation is that the cyclic DTPA anhydride is 

normally added at a five-fold molar excess or higher. The excess anhydride is also often necessary to 

compensate for the hydrolysis of the anhydride that will occur in aqueous solution in competition  

with conjugation. 

Another concern to the use of the cyclic anhydride is the possible compromised chelation stability 

because of the loss of one carboxylate to the conjugation [34,35]. Therefore other activated 

conjugation groups have been introduced in which the linker is attached to one of the ethylene carbons 

thus leaving all five carboxylates intact. For example, an isothiocyanate group has been added to the 

DTPA structure and used to conjugate biologicals [34] including RNA analogs [36]. The 

isothiocyanate benzyl DTPA is commercially available, the conjugation condition is mild, and the 

labeling efficiency is high for some isotopes, such as 
111

In, 
90

Y and 
177

Lu [37-39]. 

4.3. DOTA 

Similar to DTPA, 1,4,7,10-Tetraazacyclododecane-N,N‟,N‟‟,N‟‟‟-tetraacetic acid (DOTA) is also a 

good chelator for trivalent metals, such as In
3+

, Y
3+

 and other metals of the lanthanide series [40] and 

can be readily modified into a bifunctional chelator, although by first activating a carboxylate with a 

carbodiimide as with DTPA, DOTA itself may be conjugated. Alternatively, DOTA bifunctional 

chelators may be prepared by derivatization of one of the carboxylates, and their NHS or SCN 

activated derivatives as shown in Figure 4.  

Figure 4. DOTA and three bifunctional DOTA chelators. 

 

 

Unlike DTPA, DOTA is a macrocyle with a 12-membered tetraaza macrocycle ring and due to the 

rigid ring structure, its radiometal complexes tend to be kinetically inert to dissociation and its 
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complexes are also characterized by high thermodynamic stability [41]. However, because the kinetics 

of radiolabeling of all macrocycles tends to be slow at room temperature, heating is often applied [42]. 

In addition, the ring size is a sensitive parameter of radiolabeling efficiency and radiolabel stability. 

For example, DOTA prefers smaller ions including Y
3+

 and other lanthanides to In
3+

 and Ga
3+ 

[43]. A 

MORF has been labeled with 
90

Y and 
111

In using SCN-benzyl-DOTA [44]. Figure 5 illustrates 

conjugation of SCN-benzyl-DOTA to an amine-derivatized oligomer and the subsequent radiolabeling. 

Figure 5. Conjugation of the SCN-benzyl-DOTA to amine-derivatized oligomers, and radiolabeling. 

 

 

4.4. HYNIC 

The bifunctional chelator 6-Hydrazinopridine-3-carboxylic acid (Hynic) is used mainly for 

radiolabeling of biologicals with 
99m

Tc [31,45,46]. Strictly speaking, Hynic is not a chelator because 

the strong association between Hynic and 
99m

Tc is not due to chelation but due to the formation of a 

single strong diazenido double bond. The oxidation state of technetium in this structure is 5 [
99m

Tc(V)] 

[47-54]. Although the 
99m

Tc bond to Hynic is very stable towards dissociation, it is susceptible to air 

oxidation. While chelators for 
99m

Tc are usually translatable to radiorhennium, Hynic may be an 

exception [55]. It has been reported that the labeling efficiency of a 
188

Re labeled Hynic conjugate 

dropped from 97% to 80% in 1 h upon storage [56], probably because rhenium is more easily air 

oxidized especially in the absence of excess tin (II). 

Because Hynic occupies only one or two coordination positions (see below) of the octahedral 

coordination sphere of technetium, a coligand is required. The wrong choice of coligands can seriously 

decrease the labeling efficiency and stability of the radiolabel. If a weak coligand such as tricine  

[57-63] (Figure 6) or glucoheptonate [64-70] is selected, dissociation of the coligand can occur in vivo 

and replaced with endogenous proteins leading to high normal tissue backgrounds [71]. Stronger 

coligands such as EDDA and tricine/phosphine can be introduced to replace tricine after labeling to 

avoid this ligands exchange [72,73]. 

The bifunctional chelator NHS-Hynic is commercially available and has been used to label 

oligomers but postlabeling purification was required [19,31]. In addition to labeling with 
99m

Tc(V), 

Hynic has also been used as a true bidentate chelator when used with 
99m

Tc(I) as 
99m

Tc(CO)3
+
, 

however the labeling chemistry remains poorly understood. One concern over this approach is high 

kidney accumulation that may be explained by the one remaining labile position [74].  
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Figure 6. Conjugation of the NHS-Hynic to amine-derivatized oligomers, and 

radiolabeling with 
99m

Tc. 

 

 

 

 

 

 

 

 

 

 

5. Biological Properties and Labeling  

Radiolabeled biologicals used in nuclear medicine are usually required to faithfully trace the 

behavior of the unlabeled biological in vivo. Since determining the biodistributions accurately of 

unlabeled compounds is extremely difficult, the reasonable assumption is usually made that the 

biodistribution of a biological will be unchanged if labeled by isotope substitution in which a stable 

atom in the structure is replaced with its radioactive isotope as mentioned above. However, as already 

mentioned, there are no convenient long lived, imaginable radioisotopes of naturally occurring 

elements such as carbon, oxygen and nitrogen. Biologicals are therefore usually radiolabeled with 

elements not found in biologicals such as technetium, indium and yttrium. Because the radioisotopes 

of these elements are metals, the modification of the biological usually requires attaching a relatively 

bulky chelator. For large molecules such as IgG antibodies, the effect on the biodistribution due to the 

radiolabeling is normally assumed to be minimal, however for molecules of small size such as peptides, 

biodistribution change after radiolabeling has been observed [75,76]. 

A search of the literature failed to find any comparison of biodistributions of oligomers before and 

after radiolabeling by chelation. It has been shown that biodistribution of an oligomer can be 

influenced by different conjugation groups and labeling methods [19]. However, the biodistributions of 

a 25 mer MORF oligomer labeled with 
90

Y and 
111

In using SCN-Benzyl-DTPA and with 
99m

Tc and 
188

Re using NHS-MAG3 were shown to be essentially identical [44]. This observation was partially 

supported by measuring the biodistributions of an 18 mer MORF oligomer labeled both with 
99m

Tc via 

MAG3 and 
111

In via DTPA. The biodistributions were again essentially identical in normal organs 

except for the intestinal tract [27] where the excretion was essentially negligible in the case of 
111

In 

and was about 2% in the case of 
99m

Tc. 

6. Conclusions 

Reports describing the radiolabeling of DNA and RNA and their analogs with radionuclides of 

diagnostic and therapeutic importance are continually appearing. However, we have focused herein 

only on the chelation labeling of oligomers with metallic radionuclides using common chelators 

popular in this and other laboratories. We hope that we have shown that a range of labeling methods 
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are available for these biologicals to attach the more common metallic radionuclides useful in nuclear 

medicine but that each has its peculiar advantages and disadvantages. Compared to only a few years 

ago, these labeling methods may now be described as mature such that the emphasis need not be 

placed to the same degree on the labeling but on the use of these radiolabeled oligomers in various 

attractive in vivo applications.  
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