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Abstract: Two-dimensional superconductors, especially the covalent metals such as borophene, have
received significant attention due to their new fundamental physics, as well as potential applica-
tions. Furthermore, the bilayer borophene has recently ignited interest due to its high stability and
versatile properties. Here, the mechanical and superconducting properties of bilayer-δ6 borophene
are explored by means of first-principles computations and anisotropic Migdal–Eliashberg analytics.
We find that the coexistence of strong covalent bonds and delocalized metallic bonds endows this
structure with remarkable mechanical properties (maximum 2D-Young’s modulus of ~570 N/m)
and superconductivity with a critical temperature of ~20 K. Moreover, the superconducting critical
temperature of this structure can be further boosted to ~46 K by applied strain, which is the highest
value known among all borophenes or two-dimensional elemental materials.

Keywords: bilayer borophene; superhard; anisotropic superconductivity; electron–phonon coupling;
strain effect; first-principles calculations

1. Introduction

Superconductivity in two-dimensional (2D) materials has attracted perennial and
ever-increasing attention over past decades, owing both to fundamental scientific interest
and tantalizing applications [1–5]. One of the most important goals in superconductivity
research is raising the superconducting transition temperature, Tc. In general, supercon-
ducting materials can be classified into two categories: low-temperature superconductors,
characterized by critical temperatures (Tc) below 30 K, such as Nb-Ge films [6], and high-
temperature superconductors with Tc exceeding 30 K, exemplified by Cu-based oxides [7–9].
Within the framework of the conventional Bardeen–Cooper–Schrieffer (BCS) theory [10],
it is reasonably anticipated that metals composed of light elements have a better chance
to induce a high Tc, because the Debye temperatures within such metals are usually high
enough to trigger a strong phonon-mediated superconducting pairing. More specifically,
according to the celebrated McMillan–Allen–Dynes (MAD) formula [11,12]:

Tc =
ωlog

1.20
exp[

−1.04(1 + λ)

λ − µ∗(1 + 0.62λ)
] (1)

Tc should be elevated by increasing the log-averaged characteristic phonon frequency
(ωlog) and the electron–phonon coupling (EPC) parameter, λ. The light elemental materi-
als typically have high frequency phonon modes, enlarging ωlog and thus increasing Tc.
Furthermore, large phonon frequency and EPC potential V = λ

N(E f )
induced by strong

covalent bonding in light elemental material, together with N
(

E f

)
, and the electronic den-

sity of states (DOS) at the Fermi level [13], should result in a higher Tc. In fact, the metals
with strong covalent bonding can be grouped as “covalent metals” [13] and their potential
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to harbor a high Tc in 2D form have been confirmed, e.g., hydrogenated monolayer MgB2
(67 K) [14], doped graphene (8.1 K~30 K) [15–17], hydrogenated monolayer borophene
(32.4 K) [5] and especially 2D metal borides (1.4 K~72 K) [18–22].

Among covalent metals, 2D boron sheets (borophenes) recently came to the fore of su-
perconducting research, motivated by their inherent metallicity, light weight and significant
experimental progress on their synthesis [23–25]. Based on the first-principles calculations
and MAD formula, Penev et al. [26] reported early on the Tc of the (experimentally syn-
thesized δ6, β12 and χ3 borophenes) to be in the range of 11.5 K~20.5 K and Gao et al. [27]
found them to span 18.7 K–24.7 K. Using a more accurate and sophisticated anisotropic
Migdal–Eliashberg (ME) equation, Zhao et al. [28] found the Tc in those borophenes in
26.2 K–33 K. Apart from intrinsic metallicity and light weight, another impetus for searching
high-temperature superconductivity in borophenes is their vast polymorphs and supe-
rior mechanical properties, which provide a great benefit to potential superconductors,
suggesting effective ways to modulate the superconductivity [29].

The monolayer borophenes have been intensively studied; however, the investigations
are scarce [30–32] for bilayer or multilayer borophenes, where more intriguing properties
and tunability could be manifested, compared to their monolayer counterparts. Very
recently, the realization of bilayer borophenes were reported [33,34]. Unfortunately, the
first reported bilayer α-borophene is expected to be unstable if peeled off from the metal
substrate [35], and the β12-like bilayer synthesized on Cu(111) surface appears complicated
due to ambiguity (with more than three hundred atoms in its unit cell and the atomic
structure still in debate), preventing an exploration of its properties or further application.
It can be anticipated that more stable and versatile bilayer borophenes are still to be unveiled
for research.

In this work, we investigate the mechanical and superconducting properties of a bilayer
composed of two covalently bonded δ6 borophene monolayers, “(BL)-δ6” in Figure 1a–c. The
compact atomic structure endows BL-δ6 with remarkable stability and tantalizing properties
compared to its monolayer counterparts. Its computed high Young’s modulus of 570 N/m is
even higher than 346 N/m for graphene (or near 280 N/m “per layer”, for a fair comparison).
Based on the anisotropic ME equation, we find its Tc = 20 K and can be boosted to 46 K by strain
effect, reaching the highest Tc found among all borophenes or elemental 2D materials known to
date. The coexistence of superhard (in basal plane direction) and superconducting properties
in one material is rare, making BL-δ6 a fascinating superconductor for emergent nanoscale
devices such as quantum interferometers, superconducting transistors, superconducting
qubits, and wear-resistant parts of superconducting devices [3,36,37].
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Figure 1. (a) Planar and (b,c) side views of the atomic structure of BL-δ6. The yellow shaded region 
is its unit cell, and the green shaded region is the unit cell of δ6. There are three irreducible boron 
atoms colored as B1 (green), B2 (blue), and B3 (pink). The direction dependence of (d) Young’s mod-
ulus and (e) Poisson’s ratio of BL-δ6. (f) Stress–strain curves of BL-δ6, the vertical blue and red 
dashed lines denote the fractured stress along the a and b directions, respectively. 

  

Figure 1. (a) Planar and (b,c) side views of the atomic structure of BL-δ6. The yellow shaded region is
its unit cell, and the green shaded region is the unit cell of δ6. There are three irreducible boron atoms
colored as B1 (green), B2 (blue), and B3 (pink). The direction dependence of (d) Young’s modulus
and (e) Poisson’s ratio of BL-δ6. (f) Stress–strain curves of BL-δ6, the vertical blue and red dashed
lines denote the fractured stress along the a and b directions, respectively.
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2. Results and Discussion
2.1. Atomic Structure and Mechanical Properties

BL-δ6 and δ6 share the same top view (Figure 1a), and BL-δ6 can be viewed as AB
stacking of two δ6 monolayers bonded via interlayer covalent bonds (side view in Figure 1b,c).
The unit cell of BL-δ6 is a rectangle with lattice constants a = 3.243 Å, b = 2.883 Å (Table 1),
which is obtained with a Vienna ab initio Simulation Package [38,39] (computational details
can be found in Supplementary Note S1). The total energy of BL-δ6 is computed to be lower
than all experimental synthesized monolayers, due to the interlayer bonding: −6.38 eV/atom,
which is 0.171 eV/atom, 0.125 eV/atom and 0.113 eV/atom lower than that of the synthesized
δ6, β12 and χ3, respectively (see Table 1, for atomic structures see Figure S2). Moreover, the
slight dynamical instability of δ6 is also eliminated by the interlayer bonding of BL-δ6. The
energetic stability of BL-δ6 was also confirmed by an ab initio evolutionary global structure
search in our prior work [40] and reported by Zhou et al. [41]. Given that the monolayer
δ6 has been fabricated on a Ag(111) substrate, the thermal stability of BL-δ6 is also tested
on Ag(111) substrate by an AIMD simulation at 500 K, and one can observe that its whole
structure is well maintained after 5 ps with a timestep of 1 fs under such a high temperature
(Figure S3). Therefore, it is well-expected that BL-δ6 will be accessed experimentally, supported
by its outstanding energetic and thermal stability, and the progress in bilayer borophene
synthesis [42,43].

Table 1. The space group, lattice constants (Å), elastic constants (N/m), Young’s moduli (N/m),
Poisson’s ratios, and cohesive energies (eV/atom) of BL-δ6, δ6, β12, χ3.

System Space
Group a b C11 C22 C12 C44 Ya Yb va vb Ec

BL − δ6 Pmmm 3.243 2.883 570.0 322.0 22.0 146.0 569.4 321.4 0.038 0.068 −6.380
δ6 Pmmn

1.614 2.874 398.6 171.8 −4.0 93.9 398.6 171.8 −0.01 −0.02 −6.209
δ6 [24] 1.617 2.865 398.0 170.0 −7.0 94.0 398.0 170.0 −0.04 −0.02
β12 Pmmm

2.931 5.065 187.0 218.6 36.8 62.7 180.8 211.4 0.168 0.197 −6.255
β12 [44] 185.5 210.5 37.0 68.5 179.0 203.1 0.176 0.199

χ3 Cmmm
8.407 2.912 207.3 198.5 28.2 60.0 203.3 194.7 0.135 0.142 −6.267

χ3 [44] 201.0 185.0 21.5 60.5 198.5 182.7 0.116 0.107
Graphene

P6/mmm
2.468 356.9 62.2 147.3 346.1 0.174

Graphene [45] 2.470 352.7 60.9 145.9 342.2 0.173

We obtain the four independent elastic constants for BL-δ6: C11 = 570 N/m,
C22 = 322 N/m, C12 = 22 N/m, and C44 = 146 N/m, which apparently satisfy the Born–
Huang criteria [46]: C11C22 − C2

12 > 0 and C44 > 0, demonstrating the mechanical stability
of BL-δ6. The θ dependence of in-plane Young’s modulus Y and Poisson’s ratio ν of BL-δ6
are plotted with polar coordinates in Figure 1d,e (computational details can be found in
Supplementary Note S2 and Figures S5 and S6). We find that the in-plane Young’s moduli
and the Poisson’s ratios of BL-δ6 are highly anisotropic. For comparison, the values of
elastic constants, Young’s moduli, Poisson’s ratios of δ6, β12, χ3 and graphene are summa-
rized in Table 1. The introduced B3-B3 bonds in BL-δ6 boost the Ya and Yb to 570 N/m
and 321 N/m, respectively. Although graphene is well-known as the strongest 2D material,
along the armchair direction Ya = 570 N/m exceeds the Ya = 364 N/m of graphene, partially
due to the strong directional B-B σ-bonds, making it stand out among 2D materials. In
contrast, the Yb = 321 N/m (still comparable to graphene) is lower, due to the much weaker
multicenter bonds involved in the zigzag direction.

We find the fracture strain is 13% along the a and 8% along the b direction, according
to the strained phonon spectra (Figure S4), before reaching the elastic maximum of 16%
and 14% (Figure 1f). Thus, the failure mechanism of BL-δ6 is phonon instability, for both
directions, which is different from that of δ6 (elastic instability in the zigzag direction and
phonon instability in the armchair direction) [47]. The fracture strengths of BL-δ6 are 43
and 23 N/m along the a and b directions, much above that of δ6 (20.26 and 12.98 N/m) [47],
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black phosphorene (9.99 and 4.44 N/m) [48], and even graphene (40.41 and 36.74 N/m) [49]
along the zigzag direction. Considering the ultrahigh Young’s moduli and large fracture
strength, one can judge the BL-δ6 being in-plane superhard.

2.2. Electronic Properties

The electronic structure of BL-δ6 is summarized in Figure 2. Three bands cross the
Fermi level and form the Fermi surface, of which one forms a small electron pocket cen-
tered around the corner of the first BZ and the other two contribute to the rest of Fermi
surface (Figure 2b). The atomic- and orbital-resolved band structures suggest that the main
contribution near the Fermi level is from the py orbital of B1/B3 atoms and the pz orbital of
all B atoms (Figure 2f,g, more details in Figure S7), which is also confirmed by the charge
distribution in the states within ±0.3 eV from the Fermi level (Figure 2c–e). Using Wan-
nier90 (v 3.1.0) code [50], the Wannier-interpolated band structures are also provided and
show excellent agreement with those by first-principles calculations (Figure 2a), which lays
a clear ground for subsequent anisotropic superconductivity calculations, as implemented
in electron–phonon Wannier (EPW v 5.4) code [51].
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Figure 2. (a) Electronic band structures of BL-δ6 by DFT (red solid lines) and Wannier90 (blue dashed
lines). (b) Fermi surface, (c–e) top and side views of the charge density corresponding to the energy
range shaded green in (a), and electronic band structures weighted by the py orbital of B1 and B3
atoms (f) and the pz orbital contributions of all boron atoms (g) of BL-δ6.

2.3. Isotropic and Anisotropic Superconducting Properties

In the phonon spectrum of BL-δ6 (Figure 3a), we find no negative frequencies, demon-
strating its dynamic stability. This is in stark contrast to δ6, a layer whose phonon dispersion
displays small imaginary frequency near the Γ point [24]. Mechanically intuitive, the BL-δ6
is stabilized by the covalent B3-B3 bonds. The (ν) mode- and (q) momentum-resolved EPC
λqν is also given, calculated by the following equation:

λqν =
2

ℏN( f )Nk
∑nmk

1
ωqν

∣∣∣gnm
k,qν

∣∣∣2δ(ϵn
k )δ(ϵ

m
k+q), (2)

where Nk represents the total number of k points in the k space, gnm
k,qν is an EPC matrix

element, n/m and ν represent the indices of electronic bands and phonon mode, ϵn
k and ϵm

k+q



Materials 2024, 17, 1967 5 of 11

are the eigenvalues with respect to the Fermi level, and ωqν is the phonon frequency. We
found three modes (B2u and two Ag) have comparatively large EPC near the Γ point (left
panel of Figure 3a). In the B2u shear mode at 39.3 meV, the B1 and B2 atoms move in one
direction and the B3 atoms move in the opposite (Figure 3b). The first Ag mode at 102.6 meV
corresponds to a bond stretching contributed by B3 atoms (Figure 3c). The second Ag mode
at 168.7 meV is also a stretch mode, but predominantly contributed by B1 atoms (Figure 3d).
The vibrational contribution of these three modes can also be inferred from the phonon
density of states (right panel of Figure 3a). The Eliashberg spectral function α2F(ω) is a key
quantity, which determines the total EPC λ by the following equation:

λ = ∑
qν

λqν = 2
∫

α2F(ω)

ω
dω (3)
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Figure 3. (a) From left to right: phonon band structure of BL-δ6 weighted by EPC λqν with purple
circles, isotropic Eliashberg function α2F and EPC λ(ω), and phonon density of states contributed by
different kinds of boron atoms. (b–d) Vibrational modes of the B2u mode and the two Ag modes at Γ,
as labeled in (a).

Accordingly, the α2F(ω) and cumulative EPC λ(ω) are calculated (middle panel of
Figure 3a). We observe three sharp peaks mainly contributed by the three phonon modes
analyzed above. Correspondingly, the EPC strength λ calculated by Equation (3) is 0.59
and the Tc of BL-δ6 within the MAD approximation calculated by Equation (1) is 10.1 K.

Akin to structure and mechanics anisotropy, the Fermi surface of BL-δ6, formed by
multiple bands with different orbital contributions (py and pz orbitals, Figure 2f,g) is also
significantly anisotropic. For such a system with a complicated Fermi surface, using the
anisotropic ME equation is essential, in order to obtain an anisotropic EPC, and an accurate
Tc, compared with the isotropic superconductivity calculated from the MAD formula using
an isotropic EPC [28]. As shown in Figure 4a,b, the variation in momentum-dependent
EPC parameter λk and the superconducting gap ∆k at 10 K displays similar anisotropy, i.e.,
the maximum along the Γ −X direction and the minimum along the Γ −Y direction. We find
the superconducting gap ratio ∆aniso = (∆max − ∆min)/∆ave = (2.499 − 0.444)/1.470 ≈ 140%, a
measure of its strong anisotropy at the Fermi surface, also signifying that the anisotropic
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ME formula is indispensable for predicting Tc. Figure 4c shows the evolution of the
superconducting gap as a function of temperature, based on the ME equations solved
in either isotropic or fully anisotropic approximations. The Tc is identified as the lowest
temperature at which the vanishing gap is observed. Under the isotropic approximation
Tc = 12 K, comparable to the value (10 K) obtained by the MAD formula but is much lower
than the value calculated with the fully anisotropic approximation (20 K), further attesting
to the anisotropic superconducting nature of BL-δ6, omitted previously [32].
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Figure 4. (a) Momentum-dependent EPC λk across the full BZ and (b) momentum-dependent
superconducting band gap ∆k at 10 K and projected onto the Fermi surface. (c) Variation in the
superconducting gap ∆k with temperature, calculated by solving the ME equations in the isotropic
approximation (yellow dots and dashed line interpolated) and with the fully anisotropic solution,
where the purple shadowed regions indicate the magnitude distribution of the ∆k and the light green
dots connected with the dashed line represents the average value of the entire anisotropic ∆k.

The mechanical robustness of BL-δ6 permits a consideration of whether the tensile strain
could enhance the Tc, motivated mainly by two reasons. First, according to Equation (2), it can
be seen that EPC λqν is inversely proportional to the phonon frequency ωqν, which would be
helpful to lower, perhaps by tension, weakening the atomic force constants and thus softening
the phonon modes. Second, the atomic orbitals overlap is reduced so that the electronic bands
become less dispersive, enlarging the N(E f ), which provides more electrons susceptible to
pairing interactions, mediated by dynamic phonons, to certainly contribute to the Tc rise.

To examine the effect of strain on the BL-δ6 superconductivity, the evolution of EPC λ,
the log and maximum frequencies ωlog and ωmax, as well as Tc, are all calculated within
three approximations (i.e., MAD, isotropic ME, anisotropic ME), as a function of tensile
strain along the a direction, and presented in Figure 5a,b (for details see Figures S8–S11).
As expected, the increment in Tc is accompanied by a decrease in frequency-dependent
ωlog/ωmax and an increase in EPC λ (Figure 5b). The phonon spectrum under a 13%
tension along a (near fracture strain) weighted by λqν, the Eliashberg spectral function
α2F(ω) and EPC λ(ω) are shown in Figure 5c,d. The red shift of phonon frequency can
be clearly observed and the enhanced EPC λqν due to the phonon softening can be seen
in all frequency ranges (Figure 5d). In addition, the contribution of low-frequency part
becomes more dominant. In particular, four largely softened phonon Kohn anomalies with
considerable EPCs around 15 meV appear on the path of X-M-Y. Eventually, these combined
effects lead to a significant increase, by strain, in λ from 0.59 to 1.33 and Tc from 20 K to 46 K.
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It should be emphasized that 46 K is the highest Tc among all borophenes and elemental 2D
materials (Table 2). It should be noted that for bilayer or multilayer materials with positive
Poisson ratios, such as BL-δ6, the tensile strain would lead to vertical shrinking (Figure 5a),
suggesting that the vertical pressure may also be an effective way to enhance the Tc of
BL-δ6, as the tensile strain does.
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Figure 5. (a) Evolution with tensile strain along the a direction, of the Tc at three approximations
(MAD, circles; isotropic ME, triangles; anisotropic ME, squares) and the distance between δ6 planes
measured as B3-B3 bond length d. (b) Evolution of EPC λ (solid crosses), the log-weighted frequency
ωlog, (circles) and maximum phonon frequency ωmax (triangles) versus the strain. (c) Phonon band
structure weighted by EPC ωqν under 13% strain. (d) Isotropic Eliashberg α2F and EPC λ with 13%
tensile strain along the a direction. Data with no strain are shown in gray, for comparison.

Table 2. The EPC λ, Tc calculated with MAD formula and anisotropic ME equation of δ6, β12, χ3, for
Li-doped graphene [15] and BL-δ6.

System λ
TMAD

c
(K, µ* = 0.1)

Taniso
c

(K, µ* = 0.1)

δ6 [26] 1.10 20.5
δ6 [28] 0.82 27.0
β12 [26] 0.80 16.1
β12 [27] 0.89 18.7
β12 [28] 1.01 33.0
χ3 [26] 0.60 11.5
χ3 [27] 0.95 24.7
χ3 [28] 0.79 26.2

Graphene (Li deposition) [15] 0.61 8.1
BL − δ6 0.59 10.1 20

BL − δ6 [32] 0.61 11.9
BL − δ6 (13%) 1.33 30.78 46

Before concluding, a few remarks need to be addressed. Superhard materials are
usually semiconductors with large bandgaps or insulators, because the majority of electrons
are bound into covalent bonds, depleting any excess electrons from electron transport. For
instance, diamond is an insulator and the hardest material known. It may seem that
metallicity and superhardness cannot coexist in one covalent material. However, this
dilemma can be resolved in 2D borophenes, because the electron deficiency nature of boron
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atom enables strong localized covalent bonds and delocalized multicenter metal bonds in
one system, which endows the system with superb mechanical performance and excellent
metallicity, as evidenced by the high Young’s moduli and metallicity in BL-δ6.

It is worth mentioning that research on BL borophenes is still in its infancy and has
just been ignited by two recent independent experimental investigations. We would also
like to point out that in addition to the striking mechanical properties and superconduc-
tivity studied in this work, BL-δ6 is expected to possess other interesting properties, such
as anisotropic plasmonics [52] and ultrahigh thermal conductivity [53], awaiting more
research. On the other hand, the excellent mechanical stability is also beneficial for BL-δ6
transfer to or even growth on some inert substrates [54], for convenience of characterization.
Our results also show that the interlayer bonds, while strengthening the bilayer, do not
destroy the σ-bond resonance nor the conducting π-bonds [55], adding a fine tuning-knob
to the properties. This also highlights the potential of covalent metals in the quest for high
Tc superconductors.

In our investigation, the tensile strain is applied to enhance the superconducting
temperature of bilayer borophene. In addition to strain, the phenomenon of disorder,
particularly correlated disorder, can also significantly enhance the superconductivity in
a material [56,57]. In bilayer borophene, manipulating disorder could pave new paths to
enhance superconducting performance. On the other hand, a caveat common for all ≤2D
materials, due to the Mermin–Wagner theorem, must be mentioned, since it restricts the
stability, both merely structural and of the superconducting phase. Nevertheless, in any
BL borophene realization, the sample finite size (and support by a 3D-substrate) should
mitigate these concerns, although quantifying the size limitation is far beyond the scope of
the present study.

3. Conclusions

In conclusion, we comprehensively investigated mechanical and superconducting prop-
erties of a bilayer borophene (BL-δ6), which can be viewed as AB stacking, with interlayer
covalent bonding, of earlier realized δ6 borophene. The original good stability of δ6 and
the introduced covalent bond endows BL-δ6 with very prominent energy—thermodynamic,
thermal, and mechanical stability, suggesting that it has a high chance of occurrence in experi-
ments. The strong directional σ B-B bonds and very compact atomic configuration give BL-δ6
a 2D Young’s modulus along the a direction (569.4 N/m) higher than graphene (346.1 N/m),
while ensuring that BL-δ6 can sustain an ultimate 13% and 8% tensile strain along the a and
b directions, respectively. Furthermore, according to a fully anisotropic solution of the ME
equation, we predict BL-δ6 is a conventional phonon-mediated 2D superconductor with Tc as
high as 20 K. We also highlighted the effects of tensile strain on EPCs and found that the Tc can
be boosted to 46 K at a 13% tensile strain along the a direction. To the best of our knowledge,
it is the highest value currently known for borophene or elemental 2D materials. Our findings
also consolidated the justification that covalent metals, such as borophene, should benefit the
search for high Tc superconductors. The concurrent superior mechanical performance and
excellent superconductivity is scarce; thus, promising BL-δ6 many potential applications, such
as quantum interferometers, superconducting transistors, superconducting qubits, and even
wear-resistant parts for superconducting devices.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma17091967/s1. Figure S1: The evolution of Tc with different k and q
meshes. Figure S2: The atomic structures of (a) δ6, (b) β12 and (c) χ3. Figure S3: (a) The total potential
energy fluctuation of BL-δ6 during AIMD simulation at 500 K. (b) The top view and (c) side view of the
atomic configuration of BL-δ6 on Ag (111) surface after 5 ps of AIMD simulation at 500 K. Figure S4:
The phonon spectra of strains under (a) 13% and (b) 14% along a axis, (c) 8% and (d) 9% along b axis.
Figure S5: The strain energy per area under different kinds of strains for BL-δ6. Figure S6: The strain
energy per area under different kinds of strains for (a) δ6, (b) β12, (c) χ3 and (d) graphene. Figure S7:
The atomic and orbital resolved band structures of BL-δ6. Figure S8: (a) The electronic band properties
of BL-δ6 under 3% tensile strain along a direction, red line and blue dashed line denote the results
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calculated from DFT and Wannier90, respectively. (b) Phonon band structure of BL-δ6 weighted by EPC
λqν with purple circles, isotropic Eliashberg function α2F and EPC λ(ω), PHDOS from different kinds of
boron atoms’ contribution. (c) Evolution of the superconducting gap ∆k as a function of temperature,
calculated by solving the ME equations in the isotropic approximation (yellow dots and dashed line
interpolation) and with a fully anisotropic solution where the purple shadowed regions indicate the
magnitude distribution of the ∆k and the light green dots connected with dashed line represents the
average value of the entire anisotropic ∆k. Figure S9: The results of BL-δ6 under 6% tensile strain along a
direction. The meaning of (a–c) are the same as Figure S8. Figure S10: The results of BL-δ6 under 10%
tensile strain along a direction. The meaning of (a–c) are the same as Figure S8. Figure S11: The results
of BL-δ6 under 13% tensile strain along a direction. The meaning of (a–c) are the same as Figure S8.
Refs. [38,39,50,51,58–65] are cited in the Supplementary Materials.
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