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Abstract: This paper proposes a local resonance-type pentagonal phononic crystal beam structure
for practical engineering applications to achieve better vibration and noise reduction. The energy
band, transmission curve, and displacement field corresponding to the vibration modes of the
structure are calculated based on the finite element method and Bloch-Floquet theorem. Furthermore,
an analysis is conducted to understand the mechanism behind the generation of bandgaps. The
numerical analysis indicates that the pentagonal unit oscillator creates a low-frequency bandgap
between 60–70 Hz and 107–130 Hz. Additionally, the pentagonal phononic crystal double-layer beam
structure exhibits excellent vibration damping, whereas the single-layer beam has poor vibration
damping. The article comparatively analyzes the effects of different parameters on the bandgap
range and transmission loss of a pentagonal phononic crystal beam. For instance, increasing the
thickness of the lead layer leads to an increase in the width of the bandgap. Similarly, increasing
the thickness of the rubber layer, intermediate plate, and total thickness of the phononic crystals
results in a bandgap at lower frequencies. By adjusting the parameters, the beam can be optimized
for practical engineering purposes.

Keywords: phononic crystal double-layer beam; local resonance; energy band structure; transmission
attenuation; vibration modes; displacement field

1. Introduction

The economic and technological development of human society has led to the creation
and use of various mechanical equipment, providing mankind with a convenient way of
life. However, the resulting noise problem has been a cause for concern. Noise not only
reduces the service life of a machine and affects its precision, but it also poses a risk to
people’s hearing and can lead to fatal diseases, including cancer. Therefore, it is crucial to
reduce vibration and noise for the sake of people’s health. To mitigate the impact of noise
on the environment and people’s lives, there are three primary methods of noise control:
the direct suppression of the noise source, the control of the noise propagation path, and
the protection of the receiver. Controlling the propagation pathway is a common method
for reducing the noise pollution caused by engineering and mechanical equipment. This
can be achieved by using soundproof walls to block the spread of noise. Directly inhibiting
the sound source is often difficult. Scholars have been struggling to determine which
materials or structures of soundproofing mediums are most effective in blocking noise.
In recent years, scholars both domestically and internationally have conducted extensive
research on phononic crystals. It was found that elastic waves are significantly suppressed
when propagating through materials and structures with periodic distributions of elastic
constants and densities due to their periodic structure. The emergence of this structure
offers new solutions for problems such as vibration and noise reduction. This is expected
to lead to breakthroughs in this field in the future.

Phononic crystals [1–3] are materials or structures that have a periodic distribution
of elastic constants and densities. Phononic crystals suppress or prohibit elastic wave
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propagation in certain frequency ranges due to their periodic structure. This makes them a
promising solution for vibration and noise reduction. In recent years, scientists have applied
phononic crystals in the fields of marine hydroacoustic detection [4], automobiles [5], and
architecture. These crystals have shown potential for various applications due to their
unique properties. Two mechanisms generate bandgaps in phononic crystals: Bragg
scattering [6,7] and local resonance [8–11]. The first phenomenon is primarily caused by
the periodicity of the structure, while the second is mainly due to the resonance properties
of the individual crystal cells. The Bragg scattering principle [12] states that elastic waves
propagating in phononic crystals with a periodic structure experience the formation of a
unique dispersion relation, or energy band structure. The frequency range between the
dispersion relation curves is known as the bandgap. The principle of local resonance states
that a strong coupling between an elastic wave and a crystal cell structure occurs when
their frequencies are close, resulting in the emergence of a bandgap. Research has shown
that locally resonant phononic crystals [13–15] contain oscillators as a result of a softer
composite block in their middle, which connects the harder plate to the substrate. When
the frequency of the elastic wave coincides with the resonance frequency of the oscillator,
a very strong coupling occurs between the oscillator and the elastic wave. This coupling
can inhibit or even prohibit the propagation of the elastic wave, resulting in the formation
of a bandgap. Due to the low-frequency characteristics of local resonance-type phononic
crystals, scholars have shown increased interest in using them to achieve low-frequency
vibration and noise reduction.

In their study, Khales et al. [16] examined a phononic crystal beam structure composed
of a linear lattice array of square pillars on a beam. They demonstrated the existence of a
fully ultrasonic bandgap in this structure both theoretically and experimentally. Addition-
ally, they predicted that this structure would reduce energy loss in machinery operating
in a high-frequency range. Shen et al. [17] proposed a low-frequency vibrational energy
generator that utilizes a locally resonant phononic crystal plate. The local resonance at
the flat-band frequency of the phononic crystal is verified to result in a spiral beam with a
significant deformation perpendicular to the plate when using the finite element method.
The experimental design enables the phonon crystal plate structure to collect widely dis-
tributed vibration energy. Zhou et al. [18] experimentally and numerically confirmed
the low-frequency vibration isolation capabilities of a new hybrid phononic crystal plate.
The structure proposed comprises of two periodic double-sided composite resonators
deposited on a two-component plate. The finite element method was used to calculate the
eigenmodes, dispersion relations, transmission spectra, and displacement fields. Vibra-
tion tests were conducted on the prepared specimens to confirm the transmission loss of
elastic waves within a specific frequency range. The effectiveness of the proposed struc-
ture as an alternative for broadband low-frequency vibration isolation was demonstrated.
Kuang et al. [19] conducted a numerical investigation of the phonon energy band structure
of two-dimensional solid phononic crystals. The crystals consisted of lattices with different
symmetries and scatterers (hexagon, circle, square, and triangle) with varying shapes
(triangular, hexagonal, and square), orientations, and sizes. The study provides insights for
designing beam-and-plate-type structures for phononic crystals. Li et al. [5] proposed a
new type of phononic crystal plate based on common two-dimensional convex phononic
crystals combined with micro-perforated plates, and applied this new combined phononic
crystal structure to the front panel of an automobile, which had a significant noise reduc-
tion effect on the driver’s cab. Xiao et al. [20] designed a plate resonator using a periodic
arrangement of phononic crystal beams supported by phononic crystals through analysis
and experimentation with local resonance-type phononic crystals. The experimental results
indicate that the complete bandgap ranges from 465 Hz to 860 Hz. This suggests that
the acoustic sub-panel has potential applications in low-frequency mechanical vibration
attenuation and low-frequency audible sound insulation. Liu et al. [21] proposed a two-
dimensional phononic crystal model based on the T-square fractal for a comprehensive
study of Bragg scattering and locally resonant fractal phononic crystals. The energy band
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structure between fractal and non-fractal phononic crystals at the same filling ratio differs
significantly when using the finite element method. The fractal design significantly affects
the energy band structure of two-dimensional phononic crystals. Yin et al. [22] proposed a
novel structure for a compression–torsion coupled phononic crystal beam, which includes
a curved beam. They optimized this structure using a genetic algorithm. This work opens
up new possibilities for designing phononic crystal beam structures.

In recent years, several structural forms of phononic crystals have gained attention.
However, only a limited number of phononic crystals have been studied in the frequency
range below 200 Hz, where the bandgap and transmission attenuation bands are located.
Among these structures, the study of phononic crystal beams [12,23] and phononic crystal
plates [24–26] is particularly important for practical engineering applications. The devel-
opment of phononic crystals in beam and plate form, made of lead, steel, and rubber, has
contributed to both the field of engineering and the quality of life by reducing vibration
and noise at frequencies below 200 Hz. This paper presents a novel localized resonant
pentagonal phononic crystal. First, the author builds a pentagonal unit oscillator and
takes five pentagonal unit oscillators to form a union by arranging them periodically in
the vertical direction. The upper and lower surfaces of this structure are affixed with two
thin metal plates to form the cell structure. Then, five cell structures are arranged laterally
and periodically to form a two-layer beam structure of a phonon crystal. The bandgap
characteristics of phonon crystal beams were studied using the finite element method with
COMSOL Multiphysics 6.1. The article analyzes the mechanism of bandgap formation by
comparing the band structure and transmission loss of a phonon crystal single-layer beam
and double-layer beam. It also studies the influence of different parameters on bandgap and
transmission loss to optimize the structural model for practical engineering applications.

2. Model and Methods

Based on the elastic constants and periodic structure of the phononic crystal, a pen-
tagonal unit oscillator structure is established, as shown in Figure 1. It can be seen from
Figure 1a that the pentagonal element oscillator is composed of 6 steel plates and 5 compos-
ite blocks attached at a certain angle. The top and bottom are the two thinner steel plates,
while the middle is the four thicker steel plates. The composite block is composed of a
rubber–lead block and rubber interleaving, and the periodic structure distribution forms
the vibrator. The cell structure is formed by attaching two plates above and below it, as
shown in Figure 2a. The formed cell is arranged transversely and periodically to form a
phononic crystal bilayer beam structure, as shown in Figure 2b. In the structural model,
the lattice constants, the thicknesses of the upper and lower plates of the cell structure, the
thicknesses of the upper and lower plates of the pentagonal unit oscillator, the thickness
of the rubber layer, the thickness of the lead layer, the thicknesses of the four plates in
the middle of the pentagonal unit oscillator, and the total height of the pentagonal unit
oscillator are a, e, h1, h2, h3, h4, and h, respectively, as shown in Figure 1d. The length and
width of one plate in the pentagonal unit oscillator are l and m, respectively, as shown
in Figure 1a.

The elastic fluctuation equation in a perfectly linearly elastic, isotropic medium inde-
pendent of external forces is

−ρω2u(r) = (λ + µ)∇(∇ · u(r)) + µ∇2u(r) (1)

In the above equation, r is the position vector, ∇ is the Hamiltonian operator, u is the
particle displacement vector, ρ is the density of the medium, µ and λ are the Lame constant
of the medium, and ω is the characteristic circular frequency.



Materials 2024, 17, 1702 4 of 20
Materials 2024, 17, x FOR PEER REVIEW 4 of 21 
 

 

 

(a) (b) (c) 

 
(d) 

Figure 1. Pentagonal unit cell structure. (a) Panorama. (b) Main view. (c) Top view. (d) Partial unit 
cell structure. 

(a) (b) 

Figure 2. Modeling of the double-layer beam structure of phononic crystals. (a) Cell structure of 
phononic crystal beams. (b) Phononic crystal beam structure. 

The elastic fluctuation equation in a perfectly linearly elastic, isotropic medium inde-
pendent of external forces is 

2 2( ) ( ) ( ( )) ( )u r u r u rρω λ μ μ− = + ∇ ∇ ⋅ + ∇  (1)

In the above equation, r  is the position vector, ∇  is the Hamiltonian operator, u  
is the particle displacement vector, ρ  is the density of the medium, μ  and λ  are the 

Lame constant of the medium, and ω  is the characteristic circular frequency. 
The energy band structure of a locally resonant pentagonal phononic crystal beam 

was calculated using the finite element method in COMSOL Multiphysics 6.1. The region 
is discretized by dividing the finite element mesh into tetrahedral meshes. For the bound-
ary conditions, the pressure-free free boundary condition is used for all non-contact sur-
faces of the pentagonal phononic crystal, and the Bloch–Floquet periodic boundary con-
dition is used for the contact surfaces of the neighboring unitary oscillators, viz: 

( )( ) ( ) i k au r a u r e ⋅+ =  (2)

In the above equation a  is the lattice constant. The setup of the periodic boundary 
conditions for the different structures is shown below. 

Figure 1. Pentagonal unit cell structure. (a) Panorama. (b) Main view. (c) Top view. (d) Partial unit
cell structure.

Materials 2024, 17, x FOR PEER REVIEW 4 of 21 
 

 

 

(a) (b) (c) 

 
(d) 

Figure 1. Pentagonal unit cell structure. (a) Panorama. (b) Main view. (c) Top view. (d) Partial unit 
cell structure. 

(a) (b) 

Figure 2. Modeling of the double-layer beam structure of phononic crystals. (a) Cell structure of 
phononic crystal beams. (b) Phononic crystal beam structure. 

The elastic fluctuation equation in a perfectly linearly elastic, isotropic medium inde-
pendent of external forces is 

2 2( ) ( ) ( ( )) ( )u r u r u rρω λ μ μ− = + ∇ ∇ ⋅ + ∇  (1)

In the above equation, r  is the position vector, ∇  is the Hamiltonian operator, u  
is the particle displacement vector, ρ  is the density of the medium, μ  and λ  are the 

Lame constant of the medium, and ω  is the characteristic circular frequency. 
The energy band structure of a locally resonant pentagonal phononic crystal beam 

was calculated using the finite element method in COMSOL Multiphysics 6.1. The region 
is discretized by dividing the finite element mesh into tetrahedral meshes. For the bound-
ary conditions, the pressure-free free boundary condition is used for all non-contact sur-
faces of the pentagonal phononic crystal, and the Bloch–Floquet periodic boundary con-
dition is used for the contact surfaces of the neighboring unitary oscillators, viz: 

( )( ) ( ) i k au r a u r e ⋅+ =  (2)

In the above equation a  is the lattice constant. The setup of the periodic boundary 
conditions for the different structures is shown below. 

Figure 2. Modeling of the double-layer beam structure of phononic crystals. (a) Cell structure of
phononic crystal beams. (b) Phononic crystal beam structure.

The energy band structure of a locally resonant pentagonal phononic crystal beam
was calculated using the finite element method in COMSOL Multiphysics 6.1. The region is
discretized by dividing the finite element mesh into tetrahedral meshes. For the boundary
conditions, the pressure-free free boundary condition is used for all non-contact surfaces of
the pentagonal phononic crystal, and the Bloch–Floquet periodic boundary condition is
used for the contact surfaces of the neighboring unitary oscillators, viz:

u(r + a) = u(r)ei(k·a) (2)

In the above equation a is the lattice constant. The setup of the periodic boundary
conditions for the different structures is shown below.

Substituting the periodic boundary condition Equation (2) into the finite element
characteristic equation for free vibration yields

Ku = ω2Mu (3)

where K is the stiffness matrix and M is the mass matrix, both of which contain Bloch
wavevector coupling terms. For the unitary oscillator, as shown in Figure 3a, the two bound-
aries in the z-direction are taken as the source terms, the periodic boundary conditions are
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used for the upper and lower boundaries, and the wavevector kz is added in the z-direction,
and the wavevector is scanned parametrically. The scan range, frequency and step size
are set as desired, so the wavevector traverses the first irreducible Brillouin to obtain the
energy band structure. For each given value of kz, the corresponding eigenfrequency is
obtained by solving for the eigenvalue. The energy band diagram shows a wider bandgap
between the dispersion curves, which is in a lower frequency range. This low-frequency
bandgap has broad potential for practical engineering applications. It can effectively sup-
press or prohibit noise propagation within this frequency range. To be applicable in real-life
scenarios, a single pentagonal oscillator is insufficient. Therefore, a pentagonal phonon
crystal beam cell structure, as depicted in Figure 2a, must be constructed. The phonon
crystal beam cell structure can be used in practical engineering by arranging it transversely
and periodically to form a phonon crystal beam structure. This structure has potential
applications in various fields due to its unique properties.
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Figure 3. Set periodic boundary conditions on the surface indicated by the arrow. (a) Setting of
periodic boundary conditions for unit oscillators. (b) The setting of periodic boundary conditions for
single-layer phononic crystal beams. (c) The setting of periodic boundary conditions for phononic
crystal bilayer beams.

The study demonstrates that the transmission loss of the finite-period phonon crystal
structure and the wireless-period phonon crystal structure coincide. Therefore, the finite-
period phonon crystal structure can be used in place of the infinite-period phonon crystal
structure for this study. In practice, it is not possible to create a phononic crystal structure
with an infinite period. Therefore, the best possible vibration and noise reduction can only
be achieved within a limited range. In this paper, the author establishes the phonon crystal
double-layer beam structure formed by the lateral periodic arrangement of five phonon
crystal beam cells, as shown in Figure 2b.The sample utilizes the finite element method
with pressure-free free boundary conditions for the non-contact surfaces and Bloch–Floquet
periodic boundary conditions for the contact surfaces, as shown in Figure 3c, to derive the
energy band diagrams of the pentagonal phononic crystal bilayer beam structure.

3. Numerical Results and Analyses
3.1. Energy Band Structure and Transmission Curves of Pentagonal Unit Oscillators

The energy band structure of the pentagonal unit oscillator was calculated using the
finite element method with the assistance of COMSOL Multiphysics 6.1, as depicted in
Figure 4. The material and geometrical parameters utilized in the calculation are presented
in Tables 1 and 2. In order to verify the correctness of the energy band structure, five
unit cell oscillators are periodically arranged in the vertical direction to form a crystal cell
structure and their transmission curves are calculated. Verify the correctness of bandgap
occurrence by comparing the energy band diagram and the transmission curve diagram.
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Table 1. Material parameters.

Material Density/(kg·m−3) Modulus of Elasticity × 1010/(N·m−2) Poisson’s Ratio

Steel 7780 21.060 0.300
Lead 11,600 4.080 0.369

Rubber 1300 1.175 × 10−5 0.469

Table 2. Geometrical parameter.

Parameter a e h1 h2 h3 h4 h l m

Numerical value 160 1.2 1.2 1.2 2.4 2.4 36 100 24

The energy band diagram in Figure 4 shows that the bandgap is more pronounced in
two frequency ranges: 60–70 Hz and 107–130 Hz, with a total width of 33 Hz. The bandgap
frequency is significantly low, making it important for studying the vibration and noise
reduction of phononic crystals at low frequencies. After arranging the unit oscillator verti-
cally and periodically to form a crystal cell, the excitation and response points are added to
the lower and upper plates of the cell structure, as shown in Figure 5. The transmission
curve obtained by scanning the energy band graph with COMSOL Multiphysics 6.1 in the
frequency domain of 0–143 Hz is shown in Figure 6. The transmission curve shows that
the frequency band of transmission attenuation corresponds well with the frequency band
of the bandgap range, which confirms the occurrence of the bandgap. To investigate the
reason for the appearance of the bandgap, we analyze the displacement field corresponding
to the eigenmode at the critical point of the bandgap.
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In the pentagonal unit vibration energy band structure, the displacement fields cor-
responding to vibration modes B1 and B3, as shown in Figure 7, are mainly due to the
horizontal rotational vibration of the steel plate caused by the shear vibration of the compos-
ite block (rubber–lead–rubber) in the xoy plane. However, since each steel plate generates a
horizontal rotational vibration, the unit oscillator still maintains the pentagonal structure
and undergoes small changes, and the horizontal rotational vibration of each steel plate is
coupled with each other to achieve dynamic equilibrium. For modes B2 and B4, the steel
plate is mainly subjected to shear vibration in the xoy plane, at which time the frequency of
the elastic wave is similar to the resonance frequency of the composite block, and the elastic
wave strongly couples with the phononic crystal, so that a band of frequencies ranging
from 107 Hz to 130 Hz is opened. The reason for the horizontal shear vibration of the steel
plate may be that the pentagonal element vibrator is at the critical point of band truncation,
and the bandgap just begins to appear.
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For vibrational modes D1 and D3, as shown in Figure 8, which are similar to vibrational
modes B1 and B3 above, vibrational modes D2 and D4 are similar to B2 and B4. The
difference is that this local resonance of the pentagonal phononic crystal oscillator only
opens the bandgap between 60 Hz and 70 Hz, but provides a basis for the subsequent
opening of a wider bandgap. And with such a low-frequency bandgap, there is good
potential for practical applications.
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is arranged laterally and periodically to form a single layer beam structure of pentagonal
phonon crystals. For the pentagonal phononic crystal single-layer beam structure, the
excitation and response points are added on both sides of the lower plate, as shown in
Figure 9, to obtain its transmission profile, as shown in Figure 10. From the transmission
curve, it can be observed that there is no significant frequency band of vibration attenuation
in the single-layer beam. In order to investigate the cause, the vibration mode marked in
Figure 11 is selected for analysis.
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In the single-layer beam cell energy band structure, the displacement fields corre-
sponding to vibration modes E1 and E2, as shown in Figure 12, are both longitudinal
torsional vibrations of the lower steel plate. There is a steel plate in which one pair of
corners vibrates longitudinally upward in torsion and the other pair of corners vibrates
longitudinally downward in torsion. This corresponds to the antisymmetric vibration of
the corners of the adjacent edges and the symmetric vibration of the corners of the opposite
edges, so that the vibration phase of the lower panel reaches a longitudinal dynamic equi-
librium. For vibration mode E3, an oscillator at the lowest level vibrates rotationally in the
xoy plane, and in vibration mode E4, the lower steel plate vibrates horizontally in the xoy
plane. Vibration modes E3 and E4 are the vibration of the oscillator and plate on the lower
side in the xoy plane, and these vibrations are coupled with each other to achieve lateral
vibration dynamic equilibrium. For vibrational modes E5 and E6, both are at the position of
the critical point of the bandgap range, vibrational mode E6 is the position of the beginning
of the local resonance, where the uppermost oscillators start to vibrate, while vibrational
mode E5 is at the critical point of the end of the local resonance, where the majority of
the oscillators have already started to produce strong vibrations. From the above analysis,
it is concluded that even though local resonance can occur in the cellular structure of a
single-layer beam, when both the excitation point and the response point are located on the
lower side of the single-layer beam, the oscillator cannot function, the elastic wave can still
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be propagated in the lower side plate, and the elastic wave does not have any significant
transmission loss. This shows that it is not always possible to achieve vibration and noise
reduction using a phononic crystal oscillator, and that the effects of a number of factors
must often be considered.
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3.3. Band Structure and Transport Curve of Pentagonal Phonon Crystal Double-Layer Beams

A steel plate is attached to both the upper and lower surfaces of the unitary oscillator
cell structure to form a pentagonal double-layer beam cell structure, to which the cell
structure is periodically arranged transversely to form a pentagonal phononic crystal
double-layer beam structure. As can be seen from the band diagram of the double-layer
beam in Figure 13, there is no obvious bandgap, but the transmission curve diagram in
Figure 14 shows an obvious transmission attenuation band. Therefore, the vibration modes
of the points marked in the band diagram are selected for analysis, and the causes of the
transmission attenuation frequency bands are studied.

The excitation and response points of the pentagonal phononic crystal double-layer
beam structure are shown in Figure 15. In the energy band structure of a double-layer
beam, the displacement fields corresponding to vibration modes F1 and F2, as shown in
Figure 16, are torsional vibrations of the upper (lower) plate in the longitudinal direction.
In vibration mode F1, the upper plate torsionally vibrates in the longitudinal direction,
while the lower side plate and the intermediate vibrator do not vibrate. In vibration mode
F2, the lower plate vibrates in the longitudinal direction in torsion, and the intermediate
vibrator and the upper side plate do not vibrate. Therefore, the torsional vibration of
the lower side plate of vibration mode F2 is symmetrical with the torsional vibration of
the upper side plate of vibration mode F1, so as to achieve the dynamic equilibrium of
vibration in the longitudinal direction. In vibration modes F3 and F4, the corresponding
displacement fields are such that the uppermost (lowermost) vibrator vibrates and neither
the upper nor lower plates vibrate, and the elastic waves in the frequency range are well
suppressed. Vibration modes F5 and F6 are the displacement fields corresponding to the
critical points of the elastic wave attenuation band. Vibration mode F6 is the vibration mode
at the beginning of the appearance of the attenuation band, where the composite block of
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each oscillator in the middle rotates and vibrates in the xoy plane, while the upper and
lower plates do not vibrate. This is due to the fact that at the beginning of the elastic wave
transmission decay, the vibration frequency of the composite block (rubber–lead–rubber)
inside the phononic crystal is close to the elastic wave frequency, and the composite block
generates a local resonance. The elastic wave is localized in the composite block and the
energy of the elastic wave is also concentrated in the composite block, resulting in the
elastic wave not being able to propagate further and the transmission being suppressed,
resulting in a band with increased transmission loss. Vibration mode F5 is the termination
point of the transmission decay band, and the vibration of the double-layer beam cell
structure of the pentagonal phononic crystal also occurs only in the middle oscillator, while
the upper and lower plates do not vibrate. The mechanism is similar to that of the onset
vibration mode F6 that occurs in the transmission-fading band. However, the rotational and
horizontal vibrations of the intermediate oscillator in the xoy plane are more pronounced in
the displacement field corresponding to vibrational mode F5. This is due to the fact that the
F5 vibration mode is already at the end of the vibration-damping band, where the vibration
amplitude increases significantly and the transmission loss decreases. No matter which
vibration mode corresponds to the displacement field, only one side of the plate can produce
vibration at most, and the other side of the plate does not produce vibration, indicating that
the propagation of elastic waves is suppressed. The above analysis of the vibration modes
of the points marked in the energy band diagram of the double-layer beam in Figure 13 is
an effective proof of the emergence of the elastic wave vibration-damping band.
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Figure 16. The displacement field corresponding to the labeled modes in the figure.

To better explain why there is no significant bandgap in the energy band diagram and
why there is a significant vibrational attenuation band in the transmission curve diagram,
the vibration modes of double-layer beams falling in the non-transmission attenuation
bands with frequencies of 5 Hz, 17 Hz, and 30 Hz and the vibration modes of double-layer
beams falling in the transmission attenuation bands with frequencies of 67 Hz, 110 Hz, and
120 Hz are selected.

From Figure 17, it can be seen that the in vibration mode falling in the non-transmitted
damping band, when the lower plate is assigned a displacement excitation in the z-direction,
the vibration will not only be transmitted along the lower plate, but the upper plate will
also be affected by the directional displacement excitation and will vibrate. This indicates
that in the non-transmitted attenuation band, phononic crystals cannot function to block
the elastic wave that can be transmitted from the lower plate to the upper plate. As can be
seen from the vibration modes in Figure 18, elastic waves whose frequencies fall within
the transmission attenuation band can propagate in the lower panel. However, due to the
effect of the local resonance pentagonal phononic crystal, the elastic wave is isolated in the
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phononic crystal, and the elastic wave transmitted in that direction cannot be transmitted
from the lower plate to the upper plate, so the upper plate does not vibrate and is in a stable
state. The phononic crystal double-layer beam structure effectively suppresses vibration.
However, the presence of a cavity portion inside the structure allows the elastic wave
generated by the excitation of the lower plate to propagate freely in the acoustic field within
the structure. As for the field outside the structure, the vibration of the structure and the
noise acoustic waves from the structural vibration can be considered to be well suppressed.
This is the reason why a significant vibration attenuation band is present, but there is no
significant bandgap.
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Figure 17. Vibration modes falling in the non-transmission attenuation frequency band. (a) A
vibration mode with a frequency of 5 Hz falling in the non-transmission attenuation frequency band.
(b) A vibration mode with a frequency of 5 Hz falling in the non-transmission attenuation frequency
band. (c) A vibration mode with a frequency of 17 Hz falling in the non-transmission attenuation
frequency band.
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Figure 18. Vibration modes falling in the transmission attenuation frequency band. (a) A vibration
mode with a frequency of 67 Hz falling in the transmission attenuation frequency band. (b) A vibra-
tion mode with a frequency of 110 Hz falling in the transmission attenuation frequency band. (c) A
vibration mode with a frequency of 120 Hz falling in the transmission attenuation frequency band.

3.4. Influence of Different Geometric Parameters on Bandgap Range and Maximum Transmission
Attenuation Value

When selecting the number of periodic oscillators as a variable, calculate the trans-
mission curves for oscillators of one, three, and five, respectively. From the transmission
curves corresponding to different numbers of oscillators in Figure 19, it can be seen that
when the number of oscillators is one, the maximum transmission attenuation value is
−129 dB. When the number of oscillators is three, the maximum transmission attenuation
value is −134 dB. When the number of oscillators is five, the maximum transmission atten-
uation value is −142 dB. It can be seen that the maximum transmission attenuation value
increases as the number of oscillators increases. In the actual project, the cost and desired
effect of vibration and noise reduction can be combined to select the appropriate number
of vibrators.
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Figure 19. The transmission curve corresponding to the number of different oscillators. (a) The
transmission curve of a double-layer beam structure with one oscillator. (b) The transmission curve
of a double-layer beam structure with three oscillators. (c) The transmission curve of a double-layer
beam structure with five oscillators.

The rubber layer’s thickness h2, lead layer’s thickness h3, upper and lower plates’
thickness e, intermediate plate’s thickness h4, phononic crystal’s thickness and lattice
constant a were used as parameter variables to study the effects of their values on the
start and end frequency and the bandgap range. From Figure 20a, it can be seen that as
the thickness of the lead layer increases, the bandgap onset frequency decreases and the
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termination frequency remains essentially unchanged, so the bandgap range increases as
the onset frequency decreases. As shown in Figure 20b,d, variations in the thickness of
the rubber layer and the thickness of the spacer plate have a large effect on the bandgap
initiation and termination as well as the bandgap extent. As the thickness of the rubber
layer increases, the onset and termination frequencies of the bandgap gradually decrease.
However, the corresponding range of the bandgap shows a slight downward trend. As
shown in Figure 20c,f, the bandgap onset and termination as well as the bandgap range
remain essentially unchanged as the thickness and lattice constant of the top and bottom
plates increase. So, the upper and lower plate thicknesses and lattice constants affect the
bandgap to a very small extent. As shown in Figure 20e, the total thickness of the phononic
crystal has a significant impact on the initiation and termination of the bandgap, as well as
its range. As the thickness of the phononic crystal increases, the frequencies at which the
bandgap begins and ends decrease rapidly, but the range of the bandgap also decreases.
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Figure 20. The influence of different parameters on the start and end of the bandgap and the bandgap
range. (a) Effect of the lead layer’s thickness on the bandgap starting frequency, bandgap ending
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thickness on the bandgap starting frequency, end frequency, and the bandgap range. (d) Effect of
the intermediate plate’s thickness on the bandgap start and end frequencies and the bandgap range.
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frequencies and the bandgap range. (f) Effect of the lattice constants on the bandgap start and end
frequencies and the bandgap range.

4. Conclusions

In this paper, the energy band structure and transmission curves of the local resonance-
type pentagonal phononic crystal beam structure proposed in this paper are calculated
using the finite element method and analyzed for the appearance of a bandgap and a
transmission-fading band. On this basis, the effects of different geometric parameters
on bandgap and transmission attenuation are studied, and the following conclusions
are drawn:

Through the analysis of the energy band diagram and the transmission curve of
the pentagonal unit oscillator, a bandgap with a width of 33 Hz appeared. Through
research, it has been found that the appearance of bandgaps is the result of the coupling of
displacement fields corresponding to the vibration modes of pentagonal phononic crystals
during local resonance. Therefore, pentagonal phononic crystals have the function of
vibration reduction and noise reduction. By comparing the energy band and transmission
curves of single-layer and double-layer beams of pentagram phonon crystals, it is concluded
that the effect of a single-layer beam on vibration and noise reduction is poor, while that of
a double-layer beam is better. By analyzing the effects of different parameters on bandgap
and transmission loss, it is concluded that increasing the number of periodic pentagonal
phonon crystals is beneficial for increasing transmission loss. Increasing the thickness of
lead layer, the thickness of intermediate plate, and the total thickness of phononic crystal
can reduce the initial frequency of the bandgap and increase the width of the bandgap.
Increasing the thickness of the rubber layer will result in a lower frequency bandgap,
but the width of the bandgap will decrease accordingly. Increasing the thickness and
lattice constant of the upper and lower plates has little effect on the bandgap. The new
pentagonal phononic crystal proposed in this paper emerges with low-frequency bandgaps
in the frequency range of 60–70 Hz and 107–130 Hz. Compared to other morphological
structures, pentagonal phononic crystals are more competitive in reducing low-frequency
vibration and noise, with a bandgap range just below 200 Hz. Low-frequency noise below
200 Hz is usually uncomfortable. The sound produced by an engine and the friction of
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the tires while driving a car is considered to be low-frequency noise below 200 Hz. The
low-frequency noises below 200 Hz produced by aircraft engines and the airflow friction
sounds of the fuselage during flight are referred to as operation noises and airflow friction
sounds, respectively. The noise of the propeller is also below 200 Hz when a ship is traveling
at high speed. Properly installing pentagonal phononic crystal structures on car bodies,
fuselages, and ships can effectively reduce the impact of low-frequency noises on people.
Therefore, the local resonance-type pentagonal phononic crystal proposed in this paper can
be utilized in automotive, aerospace and marine applications.
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