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Abstract: Fiber-reinforced cementitious matrix (FRCM) composites have been largely used to
strengthen existing concrete and masonry structures in the last decade. To design FRCM-strengthened
members, the provisions of the Italian CNR-DT 215 (2018) or the American ACI 549.4R and 6R (2020)
guidelines can be adopted. According to the former, the FRCM effective strain, i.e., the composite
strain associated with the loss of composite action, can be obtained by combining the results of direct
shear tests on FRCM–substrate joints and of tensile tests on the bare reinforcing textile. According to
the latter, the effective strain can be obtained by testing FRCM coupons in tension, using the so-called
clevis-grip test set-up. However, the complex bond behavior of the FRCM cannot be fully captured
by considering only the effective strain. Thus, a cohesive approach has been used to describe the
stress transfer between the composite and the substrate and cohesive material laws (CMLs) with
different shapes have been proposed. The determination of the CML associated with a specific
FRCM–substrate joint is fundamental to capture the behavior of the FRCM-strengthened member
and should be determined based on the results of experimental bond tests. In this paper, a procedure
previously proposed by the authors to calibrate the CML from the load response obtained by direct
shear tests of FRCM–substrate joints is applied to different FRCM composites. Namely, carbon,
AR glass, and PBO FRCMs are considered. The results obtained prove that the procedure allows
to estimate the CML and to associate the idealized load response of a specific type of FRCM to
the corresponding CML. The estimated CML can be used to determine the onset of debonding in
FRCM–substrate joints, the crack number and spacing in FRCM coupons, and the locations where
debonding occurs in FRCM-strengthened members.

Keywords: cohesive material law (CML); FRCM; TRM; calibration; direct shear test

1. Introduction

Fiber-reinforced cementitious matrix (FRCM) composites have attracted the interest of
the civil engineering industry as an alternative to fiber-reinforced polymer (FRP) composites
for strengthening/retrofitting existing concrete and masonry members. FRCMs comprise
open mesh textiles embedded within an inorganic matrix. The textile can be made of various
types of fiber, e.g., carbon, basalt, glass, and polyparaphenylene benzobisoxazole (PBO),
whereas the matrix is usually a cement- or a lime-based mortar. FRCMs are externally
bonded (EB) to existing concrete and masonry members and can be used to improve
bending [1–4] and shear strengths [5–8], as well as the axial compressive capacity of
predominantly axially-loaded members [9–12]. EB FRCM reinforcement generally fails due
to debonding of the composite at the FRCM–substrate interface, with or without damage of
the substrate, or at the matrix–fiber interface [13]. Understanding the FRCM bond behavior
is thus fundamental to properly assess the reinforcement effectiveness. The bond between
FRCM and different substrates was studied using direct shear tests and small-scale beam
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tests [14–18]. In the single-lap direct shear test set-up recommended by the Italian [19] and
European [20] acceptance criteria for FRCM composites, the FRCM strip is applied to one
face of the substrate block and a portion of textile is left bare at the loaded end (beyond
the bonded area) to be gripped and pulled by the testing machine, while the substrate is
constrained (Figure 1a). During this test, the load P applied to the FRCM textile and the
relative displacement between the textile and the substrate at the composite loaded end,
named global slip g, are measured. An idealized load response obtained by the direct shear
test of an FRCM–substrate joint that failed due to debonding at the matrix–fiber interface
is shown in Figure 1b. This load response comprises an initial ascending branch and a
subsequent descending branch that ends with a constant applied load Pf. Pf is provided
by friction at the matrix–fiber interface after debonding has occurred along the entire
bonded length and was observed for different FRCM composites [21,22]. The presence
of friction is responsible for a peak load P* higher than that associated with the onset of
debonding, provided that the bonded length is greater than the minimum length needed to
fully develop the bond stress transfer mechanism, i.e., the effective bond length [23].
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Figure 1. (a) Sketch of a specimen used in single-lap direct shear tests; (b) Idealized load response
obtained by a direct shear test of a FRCM–substrate joint that failed due to debonding at the matrix–
fiber interface.

The bond behavior of an FRCM–substrate joint can be described using the differential
equation [23]:

d2s(x)
dx2 −

p f

E f A f
τzx(x) = 0 (1)

where s(x) is the matrix–fiber slip (the reference system is shown in Figure 1a), τzx(x) is the
matrix–fiber shear stress, pf is the matrix–fiber contact perimeter, Ef is the textile elastic
modulus, and Af is the textile cross-sectional area. In the remainder of the paper, only
shear stresses in the direction of the load will be considered and the subscript zx will be
omitted for the sake of brevity. Equation (1) is based on the assumption of a pure Mode-II
loading condition at the interface where debonding occurs. This assumption, which is often
adopted to describe the results of single-lap direct shear tests, is supported by the presence
of the matrix layer that covers the textile in FRCM composites, which contrasts the effect of
a possible Mode-I loading component.

Once the relationship between the matrix–fiber shear stress and slip, i.e., the interfacial
cohesive material law (CML), is known, Equation (1) can be used to describe the stress
transfer mechanism along the joint bonded length and study the contribution of EB FRCM
strips to the capacity of strengthened members [24]. Various shapes of the shear stress–slip
relationship were proposed in the literature (Figure 2). Among them, an exponential CML
was proposed in [25] to describe the matrix–fiber bond behavior of PBO FRCM-concrete
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joints. Different piece-wise functions were also proposed. A trilinear CML was used
in [26–28], while an elasto–brittle relationship and a rigid–cohesive CML were used in [29]
and [30], respectively. Finally, a rigid–trilinear CML was proposed to obtain finite values of
the effective bond length in PBO FRCM–substrate joints [23]. These shapes can be adopted
to describe the CML associated with interfaces with different mechanical properties.
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Figure 2. Shear stress–slip curves proposed in the literature [23,25–30].

A procedure to calibrate a trilinear CML (see Figure 2) using the load response obtained
with direct shear tests of FRCM–substrate joints was proposed by the authors in [31]. Since
FRCM composites can be manufactured using textiles with different fibers, layouts, and
types of matrixes and can be applied to various substrates, FRCM–substrate joints often
have a peculiar behavior. To verify the capability of the procedure proposed in capturing the
complex behavior shown by various FRCM–substrate joints, in this paper it was applied to
carbon, AR glass, and PBO FRCM composites applied to concrete and masonry substrates.

2. Calibration of the Proposed Trilinear CML

The proposed trilinear CML consists of a linear ascending branch up to the slip s0 and
maximum shear stress τm, followed by a linear descending branch up to the slip sf and
a constant branch, corresponding to the friction shear stress τf. τf could also be equal to
zero. The trilinear CML proposed can be calibrated starting from the applied load P–global
slip g response obtained with a direct shear test (experimental P–g response) following
6 steps. These steps were previously described by the authors in [31] and are recalled here
for the sake of clarity. The experimental P–g response consists of a set of applied forces Pj
(j = 1, 2, . . . , N) and corresponding measured global slips gj (j = 1, 2, . . . , N).

Step 1. In general, experimental data present small oscillations that can affect the
calibration procedure proposed. In the first step, Equations (2)–(4) were employed to
reduce these oscillations and obtain a set of global slips gk and a set of applied load Pk
(k = 1, 2, . . . , N) of gj and Pj (j = 1, 2, . . . , N), respectively:

J1 = 1 Ji = int
[

N
N
(i − 1)

]
i = 2, 3, . . . , N + 1 (2)

gk =
1

Jk+1 − Jk

Jk+1−1

∑
i=Jk

gi k = 1, 2, . . . , N (3)

Pk =
1

Jk+1 − Jk

Jk+1−1

∑
i=Jk

Pi k = 1, 2, . . . , N (4)
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where N is the number of elements in gk and Pk, which can be determined using a trial and
error procedure until a satisfactory solution is obtained, and int(Z) denotes the positive
integer number nearest to the rational number Z.

Step 2. The friction shear stress τf (see Figure 2), if any, can be determined from the
approximately constant applied load Pf at the end of the P–g response of specimens that
showed matrix–fiber debonding. According to the procedure proposed, Pf is the average
applied load for global slips higher than gf, which is the global slip associated with a slope
of the P–g response lower than a certain P′

f that needs to be defined by the user:

Pf =
1

N − k f + 1

N

∑
k=k f

Pk (5)

with
k ≥ k f ⇒

∣∣P′
k
∣∣ ≤ P′

f (6)

P′
k =

Pk+1 − Pk
gk+1 − gk

k = 1, 2, . . . , N − 1 (7)

Once Pf is known, τf can be obtained as the constant shear stress acting at the matrix–
fiber interface along the bonded length ℓ (Figure 1):

τ f =
Pf

ℓp f
(8)

Figure 3a shows an idealized Pk − gk curve with the indication of gf and of the average
applied load for gk ≥ g f , whereas Figure 3b shows the corresponding P′

k − gk curve with
the indication of g f = gk f

.
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Step 3. The slope h of the ascending branch of the CML can be computed from the
slope p0 of the ascending branch of the P–g curve. The slope of the ascending branch of the
CML can be computed as

p0 =
P2 − P1

g2 − g1
(9)

where P1 and P2 are the applied loads associated with 0.1P* and 0.5P* and g1 and g2 the
corresponding global slips extracted from the Pj−gj response. It should be noted that this
method works provided that g1 and g2 are smaller than s0, which should be verified at
the end of the procedure. If the slip s0 resulting from the procedure is smaller than g2, the
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procedure can be repeated using a P2 smaller than 0.5P*. The slope h of the ascending
branch of the trilinear CML can be obtained as

h =
p2

0
A f E f p f

(10)

Step 4. In this step, the oscillation of the ascending and part of the descending branches
of the P–g response (note that the descending branch is considered only to ensure that
the stress transfer mechanism is fully established) are reduced via Equations (11)–(13). In
particular, global slips g̃k and corresponding applied loads P̃k (k = 1, , . . . , Ñ + 1) were
obtained:

ng = int

(
jmax + Ñ

Ñ

)
(11)

g̃k =
1

ng

ngk

∑
i=(k−1)ng+1

gi k = 1, 2, . . . , Ñ + 1 (12)

P̃k =
1

ng

ngk

∑
i=(k−1)ng+1

Pi k = 1, 2, . . . , Ñ + 1 (13)

where Ñ + 1 is the number of P̃k and g̃k points obtained and jmax is the index of the
maximum load in the set of Pj.

Step 5. This step allows for identifying the slip sf at the onset of debonding. Equation (14)
is employed to compute the shear stress τ̃k associated with each g̃k ( k = 1, 2, . . . , Ñ):

τ̃k =
1

2p f E f A f

P̃2
k+1 − P̃2

k
g̃k+1 − g̃k

k = 1, 2, . . . , Ñ (14)

The τ̃k−g̃k response represents the experimental CML obtained from the P̃k−g̃k re-
sponse. sf is the slip corresponding to τf in the τ̃k−g̃k response and can be computed
as

s f =
g̃k f r−1 + g̃k f r

2
(15)

where kfr is the minimum index k such that τ̃k f r−1 > τ f and τ̃k f r
< τ f . Figure 4 shows the

τ̃k−g̃k relationship provided by Equation (14) considering the P̃k−g̃k response obtained
with the idealized response of Figure 3a, where the horizontal constant branch starting at
sf, computed by Equation (15), is indicated with a red line.
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It should be noted that Equation (14) was obtained from the well-known fracture
mechanics relationship in Equation (16) [32], which is valid only if the free end slip is null.

P(g) =

√√√√√2p f E f A f

g∫
0

τ(s) ds (16)

Step 6. The fracture energy GF, which is the area below the CML from s = 0 to s = sf,
can be obtained by applying the trapezoidal rule to the τ̃k−g̃k relationship:

GF =
s f

k f r

 τ̃1 + τ f

2
+

k f r−1

∑
k=1

τ̃k

 (17)

Step 6a. Since the applied load is assumed to be evenly distributed across the com-
posite width, i.e., there is no width effect, the fracture energy GF can be obtained, as an
alternative to the procedure in Step 6, by rearranging Equation (16) and considering the
debonding load Pdeb, i.e., the applied load associated with the onset of debonding (g = sf):

Pdeb =
P̃k f r−1 + P̃k f r

2
(18)

GF =
P2

deb
2p f E f A f

(19)

Figure 5 shows the identification of Pdeb on the idealized load response of Figure 3a.
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Step 7. The trilinear CML peak shear stress τm and corresponding slip s0 can be
obtained from the fracture energy GF, slope of the ascending branch h, shear stress at the
onset of debonding τf, and corresponding slip sf:

s0 =
2GF − s f τ f

hs f − τ f
(20)

τm = hs0 (21)

Figure 6 shows the trilinear CML obtained using the procedure proposed, compared
with the experimental τ̃k−g̃k curve (see Figure 4). In Figure 6, τ̃k f r

and g̃k f r
were replaced

with τf and sf, respectively.
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Final checks. To confirm that the calibrated trilinear CML correctly and accurately
describes the experimental response, it can be substituted in Equation (16) to obtain the
analytical load response to be compared with the corresponding experimental P–g rela-
tionship. However, since Equation (16) assumes infinite bonded length, the trilinear CML
should be used to solve Equation (1) and compared with the experimental load response to
assure that the free end slip can be neglected (see Step 5).

3. Results and Discussion

The procedure proposed was applied to obtain the CML that describes the matrix–
fiber interface of various FRCM composites. Namely, the experimental load responses
of PBO FRCM–concrete joints [23,33], carbon FRCM–masonry joints [34], glass FRCM–
concrete joints [35], and glass FRCM–masonry joints [36] were considered. For each type of
composite, the P–g responses obtained with two single-lap direct shear tests were analyzed.
All composite strips applied either to a concrete block or to a masonry wallet included
a single layer of textile except for two PBO FRCM–concrete joints [33], which included
two layers of textile. The geometrical and mechanical properties of the textile and matrix
comprising the composite strips are provided in Table 1, where tf = textile equivalent
thickness, b* = width of a single textile yarn, ff = textile tensile strength, Ef = textile elastic
modulus, fmu = matrix compressive strength [37], and fmt = matrix flexural strength [37].

Table 1. Geometrical and mechanical properties of the textile and matrix comprising the composites.

Composite tf [mm] b* [mm] ff [MPa] Ef [GPa] fmu [MPa] fmt [MPa]

PBO FRCM–concrete 0.046 [38] 5.0 [38] 3014 [25] 206 [25] 51.6 [23] 8.1 [23]
Carbon FRCM–masonry 0.094 [39] 5.0 [39] 1944 [34] 203 [34] 25.0 [34] 6.1 [34]

Glass FRCM–concrete 0.048 [35] 4.0 [35] 1300 [35] - 35.5 [35] 6.1 [35]
Glass FRCM–masonry 0.063 [40] 2.7 [40] 756 [36] 52 [36] 22.0 1 [41] 6.0 1 [41]

1 Declared by the manufacturer [41].

The FRCM strips considered had different bonded lengths ℓ and widths b1, including a
different number of longitudinal yarns n. Each specimen was named following the notation
adopted in the corresponding publication. The geometrical properties of the FRCM strips
of each specimen, including the number of layers L and the textile cross-sectional area Af,
are provided in Table 2, along with the peak load attained P*.
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Table 2. Geometrical and mechanical properties of the textile and matrix comprising the composites.

Composite Name ℓ [mm] b1 [MPa] n [-] L [-] Af [mm2] P* [kN]

PBO FRCM–concrete

DS_300_50_1 300 50 5 1 2.30 4.58
DS_300_50_6 300 50 5 1 2.30 4.84
DS_300_60_2L_X_4 300 60 6 2 5.52 10.32
DS_300_60_2L_X_5 300 60 6 2 5.52 11.85

Carbon FRCM–masonry DS_C_210_60_1 210 60 6 1 5.64 3.32
DS_C_210_60_2 210 60 6 1 5.64 2.85

Glass FRCM–concrete
DS_G221S_330_60_2 330 60 5 1 2.88 1.35
DS_G221S_330_60_3 330 60 5 1 2.88 1.56

Glass FRCM–masonry DS_300_50_c_1 300 50 3 1 3.15 2.03
DS_300_50_c_2 300 50 3 1 3.15 1.98

Figure 7 shows that, despite the irregularity of the experimental τ̃k − g̃k responses (due
to the numerical differentiation of the experimental Pj − gj responses), the simple trilinear
model allows for capturing the experimental P–g responses up to the onset of debonding
for different FRCM composites.

Three main critical aspects can be identified in the proposed procedure. The first
critical aspect is related to the determination of sf. This slip is defined in Step 5 as the
minimum slip corresponding to the crossing of the horizontal line τ = τ f by the τ̃k − g̃k
response. Due to its irregularity, the τ̃k − g̃k could cross the τ = τ f line at several slips,
as happens in Figure 7b,d,h. In such cases, assuming that sf is located in the descending
portion of the τ̃k − g̃k response, sf should be chosen so that for slips greater than sf the shear
stress τ̃k is similar to τf. This is the reason why s f

∼= 1.4 mm was chosen for specimen
DS_300_50_1 instead of s f

∼= 0.8 mm. A rational criterion to establish whether the right
value of sf has been identified consists of decreasing Ñ, which entails for a smoother τ̃k − g̃k
response, and checking if a similar sf is obtained.

The second critical aspect arises from the assumption that the experimental free end
slip is zero. The correctness and eventually the influence of this assumption should be
checked by comparing the analytical P(g) response obtained with Equation (16), which
assumes zero slip at the free end, and the P(g) response obtained with the procedure
described in [42], which is based on Equation (1) and allows for nonzero slip at the free
end. The two P(g) responses should be consistent, at least up to g = s f .

The third critical aspect arises from the assumption that the bonded length adopted in
the experimental tests is greater than the effective bond length. If the bonded length of the
FRCM composite considered is not known from previous work, it is necessary to apply the
procedure with experimental results obtained with different bonded lengths and check that
the obtained CMLs do not depend on the bonded length. If a dependency of the CML on
the bonded length is found, it is possible that the short bonded lengths are shorter than the
effective bond length. Consequently, the CMLs determined based on the P–g response of
those specimens should be disregarded.

The results obtained confirmed that the proposed procedure can be effectively adopted
to obtain the CML from the load response of direct shear tests, without the need for a direct
measurement of the composite axial strain. Furthermore, the CML shape adopted provided
a simple solution of the differential equation in Equation (1). Due to the complex behavior
of FRCM–substrate joints, the procedure required a careful analysis of the load response
obtained, since slight variations in the CML can be obtained by varying, for instance, the
parameters considered to reduce the oscillations in the load response (see Step 1). However,
the final checks proposed allow for verifying that the CML calibrated correctly reproduces
the experimental results.
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4. Conclusions

In this paper, an analytical procedure to determine a trilinear CML of FRCM–substrate
joints was applied to carbon, AR glass, and PBO FRCM composites applied to concrete
and masonry substrates. The results obtained allowed for drawing the following main
conclusions:

• The proposed procedure may be used to estimate the parameters of a trilinear CML
able to accurately reproduce the experimental load response. Attention should be paid
in determining the parameters needed for the procedure. However, the accuracy of
the procedure can be assessed by comparing the analytical load response provided by
the calibrated CML with the experimental load response.

• The proposed procedure represents a valuable tool to estimate the CML of FRCM–
substrate joints that can then be used to identify fundamental features of the FRCM
composite, such as the onset of debonding in FRCM–substrate joints, the crack number
and spacing in FRCM coupons, and the locations where debonding occurs in FRCM-
strengthened members.

• The proposed procedure allows for simply and rapidly obtaining the parameters of
the trilinear CML, which can be used in nonlinear finite element models to estimate
the behavior of concrete or masonry structural members strengthened with FRCM
composites.
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