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Abstract: Nonmetallic ionic liquids (ILs) exhibit unique advantages in catalyzing poly (ethylene
terephthalate) (PET) glycolysis, but usually require longer reaction times. We found that exposure
to UV radiation can accelerate the glycolysis reaction and significantly reduce the reaction time. In
this work, we synthesized five nonmetallic dibasic ILs, and their glycolysis catalytic activity was
investigated. 1,8-diazabicyclo [5,4,0] undec-7-ene imidazole ([HDBU]Im) exhibited better catalytic
performance. Meanwhile, UV radiation is used as a reinforcement method to improve the PET
glycolysis efficiency. Under optimal conditions (5 g PET, 20 g ethylene glycol (EG), 0.25 g [HDBU]Im,
10,000 µW·cm−2 UV radiation reacted for 90 min at 185 ◦C), the PET conversion and BHET yield
were 100% and 88.9%, respectively. Based on the UV-visible spectrum, it was found that UV radiation
can activate the C=O in PET. Hence, the incorporation of UV radiation can considerably diminish the
activation energy of the reaction, shortening the reaction time of PET degradation. Finally, a possible
reaction mechanism of [HDBU]Im-catalyzed PET glycolysis under UV radiation was proposed.

Keywords: PET glycolysis; nonmetallic dibasic ionic liquids; UV radiation; catalyst

1. Introduction

PET has an important position in the field of plastic applications since it is non-toxic,
odorless, and tasteless [1]. These unique qualities allow PET to be employed in diverse textiles
and soft drink bottles [2,3]. However, it poses a serious threat to both the environment and
ecosystems due to the accumulation of large quantities of PET waste [4]. Furthermore, while
PET itself is considered nontoxic, certain additives and colorants present in PET products
have the potential to accumulate in the body and lead to toxicity in organisms [5]. And under
100% humidity conditions, the life expectancy of a PET bottle is approximately 93 years [6].
Therefore, achieving complete degradation of PET in natural environments is an almost
impossible challenge. In addition, approximately seven barrels of petroleum resources can
be saved for every ton of mixed plastic recycled [7]. Hence, the recycling of waste PET holds
significant importance for the environment, resources, and economy.

Chemical recycling of waste PET has garnered increasing attention as a means to achieve
a closed-loop process and diminish the reliance on fossil energy resources. It facilitates the
efficient utilization of waste PET by depolymerizing it into monomers or other chemical
compounds [8,9]. Various chemical manners have been studied including glycolysis [10],
hydrolysis [11], methanolysis [12], and aminolysis [13]. Among them, glycolysis has attracted
great attention because of its mild reaction conditions and because no toxic substances are
released during the reaction. PET glycolysis is a process of transesterification with EG at a
certain temperature to generate bis (hydroxyethyl) terephthalate (BHET). In the absence of
a catalyst, the reaction takes place very slowly [14]. Therefore, various glycolysis catalysts
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have been developed [15]. Some catalysts, such as ZnO [16], Mn3O4 [16], zeolite [17], and
SO4

2−/ZnO [18] have been adopted, but they can not dissolve in EG [19]. Thus, the catalytic
activity is relatively low due to the complexity of mass transfer. Compared with these solid
catalysts, ILs exhibit superior catalytic activity. In 2009, our team first used [Bmim]Cl as a
solvent to dissolve and degrade PET [20]. Since then, more and more imidazolium-based ILs
have been adopted, such as [Bmim]2[CoCl4] [21], [Amim][ZnCl3] [22], and [Bmim][ZnCl3] [23].
Similar to metal salts, ILs that contain Zn2+ exhibit excellent catalytic efficiency. However, the
residual Zn2+ in BHET can seriously downgrade the quality of BHET and recycled PET. There-
fore, to solve this issue, some nonmetallic ILs catalysts were designed, such as [Ch][OAc] [24]
and [Ch]3[PO4] [25]. All of them are biocompatible ILs, but it takes more than three hours to
fully degrade PET, which leads to high energy consumption and is not conducive to large-scale
production. Therefore, it is imperative to improve the reaction rate of nonmetallic IL catalysts.
Previous researchers have indicated that alkaline ILs often exhibit better catalytic activity
than acidic ILs in PET glycolysis reactions. The catalytic performance of DBU, which has
stronger alkalinity, has been demonstrated [26]. Additionally, imidazole anion ([Im]-) also
exhibits alkalinity. Therefore, it is considered desirable to design and synthesize [HDBU]Im as
a nonmetallic dibasic catalyst, with the anticipation of showcasing remarkable catalytic efficacy
in the PET glycolysis reaction.

On the other hand, researchers have developed various auxiliary promotion methods to
further enhance PET glycolysis reactions. Alnaqbi et al. [27] used [Bmim]Br as a catalyst for
PET glycolysis under microwaves, which could reduce the glycolysis time from nearly 9 h
(conventional heating) to 2 h, dramatically increasing the catalytic reaction rate. Imran et al. [28]
utilized supercritical ethylene glycol (450 ◦C and 15.3 MPa) for PET degradation, resulting
in a BHET yield of 93.5% within 30 min. The shortened reaction time is attributed to its
solubility and high solvent density. However, the temperature and pressure under supercritical
conditions are relatively high. Le et al. [29] developed a co-solvent-assisted PET glycolysis
method that can complete PET decomposition by reacting at 153 ◦C for 2 h using anisole as a co-
solvent. However, anisole has a detrimental impact on the environment. As part of the sunlight
spectrum, ultraviolet (UV) radiation is cheaper, more accessible, and more environmentally
friendly than other auxiliary promotion methods. UV radiation has been identified as the
primary factor for plastic degradation in the natural environment [30]. MacLeod et al. [31]
reported that under marine conditions, the photo-induced oxidation of PET is likely to occur,
which leads to a reduction in molecular weight. In this process, the function of UV radiation is
to induce the cleavage of the carbon–carbon backbone, leading to chain scission. Lee et al. [32]
identified the photo-degradation products of PET films including esters, peresters, and benzoic
acids. More et al. [33] applied UV radiation in PET aminolysis. It can be found that the speed
of the degradation process was enhanced, which was due to the UV radiation attacking the
ester linkage of the PET [33]. Therefore, UV radiation can be used as an efficacious method
to promote the occurrence of PET degradation. However, the research on IL-catalyzed PET
glycolysis under UV radiation-assisted systems is still limited. Motivated by this, UV radiation
was introduced into the PET degradation system to enhance the catalytic reaction rate of
nonmetallic ILs and the yield of BHET.

In this study, UV radiation was introduced into the IL-catalyzed PET glycolysis system
as an auxiliary strengthening method. Meanwhile, five nonmetallic dibasic ILs catalysts
were synthesized, and their activity was tested under the same conditions. Among them,
[HDBU]Im exhibited the best activity. The optimization of the reaction conditions was
achieved through the evaluation of influencing parameters. The reaction kinetics under
UV radiation and without UV radiation were studied, and the impact of UV radiation on
the reaction mechanism was subsequently examined. Finally, based on the experimental
findings a potential degradation mechanism was suggested. Compared with conventional
heating methods, UV radiation can shorten the reaction time of nonmetallic IL-catalyzed
PET glycolysis and increase the yield of BHET. This approach conserves energy and pro-
cessing expenses without using hazardous reagents, offering a novel strategy for enhancing
the efficiency and sustainability of PET chemical recycling.
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2. Materials and Methods
2.1. Materials

Raw PET material was acquired from DuPont (Wilmington, DE, USA). They were smashed
to 40–60 mesh. At this particle size, PET has a large surface area, which is conducive to mutual
contact between PET, EG, and IL, which can speed up the reaction rate and achieve faster
degradation of PET. The molecular weight (Mn) of the PET powder was 4.35 × 104 g·mol−1, de-
termined using GPC analysis. Imidazole (Im), 2-methylimidazole (2-MeIm), 2-ethylimidazole
(2-EtIm), 4-methylimidazole (4-MeIm), and 2-ethyl-4-methylimidazole (2-Et-4-MeIm) were
purchased from Sinopharm Chemical Reagent Beijing Co., Ltd., Beijing, China.

2.2. Synthesis of ILs

A series of nonmetallic dibasic ILs were synthesized according to reported proce-
dures [34,35]. Taking [HDBU]Im as an example, it was synthesized through the neutraliza-
tion reaction of DBU and imidazole. A certain amount of imidazole was added dropwise
to the anhydrous ethanol solution of DBU. The molar amount of imidazole in the mixture
is equimolar to DBU. DBU, imidazole, and anhydrous ethanol were stirred vigorously at
25 ◦C for 24 h. The anhydrous ethanol was removed using vacuum evaporation, and a
pale yellow transparent liquid was obtained. The synthesis steps of 1,8-diazabicyclo [5,4,0]
undec-7-ene 2-methylimidazole ([HDBU][2-MeIm]), 1,8-diazabicyclo [5,4,0] undec-7-ene
2-ethylimidazole ([HDBU][2-EtIm]), 1,8-diazabicyclo [5,4,0] undec-7-ene 4-methylimidazole
([HDBU][4-MeIm]), and 1,8-diazabicyclo [5,4,0] undec-7-ene 4-methylimidazole 2-ethyl-4-
methylimidazole ([HDBU][2-Et-4-MeIm]) were similar to [HDBU]Im.

2.3. PET Glycolysis under UV Radiation

The reaction was conducted in a dark box under UV radiation. In each experiment, a
50 mL three-neck flask containing a thermometer, a condensation device, and a magnetic
stirrer was utilized, and 5.0 g PET powder, 20 g EG, and a definite amount of catalyst were
added. They were heated in an oil bath. The temperature was from 160 ◦C to 195 ◦C and the
reaction time was from 20 min to 150 min. After the completion of degradation, the mixture
was cooled to 25 ◦C, then poured into 500 mL deionized water and stirred vigorously at
70 ◦C for 1 h to separate the unreacted PET particles through filtration. The unreacted PET
was dried at 65 ◦C for 12 h, and it was weighted to compute PET conversion, which was
defined using Equation (1)

PET Conversion =
W0 − W1

W0
× 100% (1)

where W0 represents the initial weight of the PET and W1 represents the weight of the unreacted
PET. The filtrate was subsequently subjected to rotary evaporation in a vacuum at 65 ◦C, and
the concentrated filtrate was cooled at 4 ◦C for 12 h. Finally, a needle-like BHET monomer was
obtained through filtration and drying. The BHET yield is defined using Equation (2):

BHET Yield =
WBHET/MBHET

W0/MPET
(2)

where WBHET is the weight of BHET and MBHET and MPET are the molecular weight of
BHET and the PET repeat unit, respectively.

2.4. Recycling of the EG and Catalyst

After the BHET was extracted through filtration, the remaining EG and catalyst in the
filtrate were subjected to rotary evaporation at 65 ◦C and then stored in a vacuum oven at
70 ◦C for over 12 h to remove as much water as possible. In the succeeding cycle, a certain
amount of the EG was added to ensure that the quantity of the solution was equal to 20 g.

2.5. Characterization

The 1H NMR spectra were analyzed using an AVANCE-III 600 NMR spectrometer (Bruker,
Fällanden, Switzerland), operated at 600 MHz in CDCl3 and DMSO-d6. The FT-IR testing of
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the catalysts and main product were performed with a Nicolet 380 FT-IR spectrograph (Thermo
Nicolet, Waltham, MA, USA). The differentials scanning calorimeter (DSC) STARe system
was applied to generate the DSC curve from 25 ◦C to 200 ◦C at the heating rate of 10 ◦C/min
under a nitrogen atmosphere. The thermogravimetric analysis (TGA) curve was tested using
DTG-60H (Shimadzu, Tokyo, Japan) under the nitrogen atmosphere, and the samples were
heated from 25 ◦C to 600 ◦C at the heating rate of 10 ◦C/min. Gel permeation chromatography
(GPC) (Agilent, PL-50, Santa Clara, CA, USA) was applied to determine the molecular weights
of PET pellets and oligomers. The testing condition was as follows: the oven temperature was
30 ◦C, the mobile phase was chloroform.

3. Results
3.1. Screening of Catalysts

To investigate the effect of imidazole derivatives anions on catalytic activity, a series of
nonmetallic dibasic ILs were prepared. Their structures are shown in Scheme 1. The steric-
hindrance effect of anions can significantly affect the catalytic activity. From Table 1, it is
evident that [HDBU][Im] exhibits the highest catalytic activity, with a BHET yield of 82.9%.
It was also found that when the position of 2-H, 4-H, and 5-H of the imidazole ring are
replaced by other functional groups, the catalytic activity can be reduced. For entry 2 and
entry 3, the catalytic activity is similar. Therefore, the position of the substituent group
on the imidazole ring has relatively tiny influence on catalytic activity. For entry 3 and
entry 4, if the volume of the substituent group is bigger, the steric-hindrance effect is
noticeable and the hydrogen bonds between the catalyst and the EG will be weakened.
Meanwhile, the electron density will be reduced. Thus, the catalytic activity decreases.
It can be proved that the 2-H of the imidazole ring plays a crucial role in catalyzing
PET glycolysis. 2-H is more active than others, which can leave the imidazole ring and
become H+. The H+ can attack the carbon of C=O in PET, and then the electrophilicity will
be improved. Thus, [HDBU][Im] is the best catalyst, and the structure of the [HDBU][Im]
was characterized using FT-IR and 1H NMR (see Supplementary Materials). On the other
hand, through a series of characterizations of the main product, it was proved that the main
product obtained from the degradation of PET catalyzed by [HDBU][Im] is the monomer
BHET (see Supplementary Materials for more detail).
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Table 1. Different catalysts activities for PET glycolysis 1.

Entry ILs PET Conversion (%) BHET Yield (%)

1 [HDBU][Im] 100 82.9
2 [HDBU][4-MeIm] 100 78.3
3 [HDBU][2-MeIm] 100 77.2
4 [HDBU][2-EtIm] 96.2 74.1
5 [HDBU][2-Et-4-MeIm] 100 70.5

1 Reaction conditions: 5.0 g PET, 5.0 wt% catalyst, 20.0 g EG reacted for 90 min at 190 ◦C under 5000 µW·cm−2

UV radiation.
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3.2. The Effect of UV Radiation

In order to explore the effect of UV radiation on this reaction, the conversion of PET
and the yield of BHET were compared with and without UV radiation. The experimental
data are shown in Figure 1. UV radiation has been shown to enhance the depolymerization
reaction of PET, resulting in a 100% conversion rate after 30 min compared to 120 min
without UV radiation. Therefore, UV radiation can significantly accelerate the reaction and
shorten the reaction time, and it can also increase the yield of BHET. This may be because
UV radiation can degrade the polymer into oligomers effectively. To verify this conjecture,
the oligomers generated under UV radiation and without UV were separated and analyzed
using GPC (Table 2). UV radiation reduced the Mn of oligomers by approximately 50%.
This shows that UV does accelerate polymer degradation, so more oligomers with lower
molecular weight were produced. Son et al. [36] found that UV radiation can reduce the
activation energy of the reaction system. Therefore, it is speculated that in this glycolysis
reaction, UV radiation can also reduce the activation energy, accelerating the reaction rate. The
effect of UV radiation on activation energy will be discussed in detail in subsequent sections.
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Figure 1. Effect of UV on PET conversion and BHET yield at different reaction time (reaction
conditions: 5 g PET, 5 wt% catalyst/PET ratio, 1/4 PET/EG weight ratio at 185 ◦C).

Table 2. GPC analysis for oligomers.

Condition Mn (g·mol−1) Mw (g·mol−1) PD

Without UV radiation 2419 2461 1.02
With UV radiation 1084 1102 1.02

Mn: number-average Molecular Weight, Mw: weight-average Molecular Weight, PD = Mw/Mn.

3.3. Influence of Reaction Conditions

To determine the optimal reaction conditions for [HDBU][Im], various factors includ-
ing temperature, reaction time, catalyst amount, and UV radiation intensity were explored.
The effect of the reaction temperature is shown in Figure 2a. Below 150 ◦C, BHET is barely
detectable. As the temperature increases, the conversion rate of PET and yield of BHET
increase sharply. From 180 ◦C to 195 ◦C, the conversion rate was maintained at 100% and
the BHET yield remained steady up to 78.96% from 185 ◦C to 195 ◦C. It was obvious that the
transesterification reaction is an endothermic reaction, and the reaction temperature played
a crucial role in the degradation of PET, so the increase in temperature was conducive to the
progress of the reaction. The BHET yields at 185 ◦C and 195 ◦C were 78.82% and 78.96%,
respectively. At these two temperatures, there is no significant difference in the yield of
BHET. It is worth noting that as the temperature rises, so does the energy consumption.
Therefore, in terms of energy conservation, 185 ◦C is the optimal temperature.
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with 5000 µW·cm−2 UV radiation at 185 ◦C for 90 min), and UV radiation intensity (d) (reaction
conditions: 5 g PET, 5 wt% catalyst/PET ratio, 1/4 PET/EG weight ratio at 185 ◦C for 90 min) on
PET degradation.

The effect of the reaction time is shown in Figure 2b. It is observed that from 40 min
to 150 min, the conversion of PET was maintained at 100%. Under UV radiation, the PET
conversion reached 100% within 40 min. Degradation was quicker than in conventional
experimental conditions [21]. In this process, the conversion of PET reached 100%, while
the yield of BHET demonstrated a notable increase as the reaction time was prolonged from
40 min to 90 min. Therefore, we speculated that PET was first degraded into oligomers and
then the oligomers turned into BHET. Furthermore, the glycolysis of PET is a reversible
reaction, with a dynamic equilibrium existing between the BHET and the oligomers. The
reaction reached equilibrium after 90 min; further extending the reaction time did not
enhance the yield of BHET. Thus, 90 min was determined as optimal.

Figure 2c illustrates the effect of the amount of catalyst. PET is difficult to degrade
without a catalyst. As the [HDBU]Im increased, the PET conversion remained at 100%.
However, as the [HDBU]Im dosage increased from 0.1 g to 0.25 g, the yield of BHET
increased significantly. The BHET yield attained its maximum value when the catalyst
dosage reached 0.25 g, and the BHET yield decreased marginally with further increase of
catalyst dosage. This may be due to the excessive amount of catalyst boosting the reverse
reaction, causing more BHET to be converted into oligomers. Therefore, excessive catalyst
dosage is not conducive to the acquisition of BHET; the optimized catalyst amount is 0.25 g.

Figure 2d illustrates the effect of UV radiation intensity. As the UV radiation intensity
increased from 5000 µW·cm−2 to 15,000 µW·cm−2, the PET conversion remained at 100%.
However, UV radiation intensity can markedly affect BHET yield. When the intensity
was raised from 5000 µW·cm−2 to 10,000 µW·cm−2, the BHET yield increased gradually.
Based on the experimental results above, it can be deduced that UV radiation has the
capability to facilitate the breakage of PET molecular chains, thereby accelerating the
decomposition of PET into oligomers and monomers. After that, as the intensity was
further increased, the yield of BHET decreased. It has been previously suggested that
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photo-grafting polymerization can occur under UV radiation for compounds containing
carbonyl or ester groups [37]. When the intensity of UV radiation exceeds 10,000 µW·cm−2,
it has the potential to polymerize BHET into oligomers [38], leading to a decrease in the
yield of BHET. Therefore, 10,000 µW·cm−2 is the optimal UV radiation intensity, with a
BHET yield of 88.9%.

3.4. Recycling of Solvent and Catalyst

Recycling of the remaining EG and catalyst is an important issue for environmental and
economic reasons. The recycling ability of the catalyst is also crucial for industrialization.
It was tested under optimal experimental conditions (5 g PET, 0.25 g IL, 20 g EG, 90 min,
185 ◦C, 10,000 µW·cm−2). The recycling results are shown in Figure 3, which demonstrates
that [HDBU][Im] could sustain its catalytic activity when reused up to six times. After
recycling seven times, the catalytic performance decreased, which may be due to the
loss of [HDBU][Im] catalyst. As shown in Figure S8, the TGA curve shows that the
thermal decomposition temperature of [HDBU][Im] is 201 ◦C. The reaction temperature
of [HDBU][Im]-catalyzed PET degradation is below 201 ◦C, but prolonged exposure to
this temperature may result in partial decomposition of the [HDBU][Im]. Therefore, the
catalytic activity of [HDBU][Im] decreased after it was recycled seven times.
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3.5. Kinetics of PET Glycolysis

Kinetics can reveal reaction processes [39]. Based on PET conversion, the kinetic of PET
is first order [40–42]. We used the shrinking core model to calculate the activation energy
of the [HDBU]Im-catalyzed PET glycolysis reaction system. To better understand the effect
of UV radiation, kinetics studies with and without UV radiation were all investigated.

Figure 4a demonstrates the effect of temperature on k under UV radiation. A rapid
increase in the reaction rate constant is observed as the temperature increases from 170 ◦C
to 185 ◦C, proving that temperature is an important factor. Calculated using the Arrhenius
equation, the relationship between lnk and temperature is shown in Figure 4b. A fine
straight line was obtained with correlation coefficient squares larger than 0.98. It indicated
that PET glycolysis conforms to a first-order kinetic model. Thus, the activation energy (Ea)
is 113.76 kJ·mol−1.

Figure 5a displays the influence of temperature on k without UV radiation, and
Figure 5b expresses the relationship between lnk and temperature based on the Arrhenius
equation. A fine straight line was obtained with correlation coefficient squares larger than
0.98. The Ea is 166.50 kJ·mol−1. It is evident that UV radiation can reduce the Ea from
166.50 kJ·mol−1 to 113.82 kJ·mol−1. The Ea is defined as the minimum amount of energy
necessary to initiate a chemical reaction [43]. The lower value of the Ea means the more
viable a reaction is and the faster the reaction process. UV radiation can significantly reduce
the activation energy of [HDBU][Im]-catalyzed PET glycolysis. Therefore, 100% conversion
of PET can be achieved in a shorter time, and the yield of BHET can also be increased.
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3.6. PET Degradation Mechanism

To explore the catalytic mechanism of [HDBU]Im, a series of experiments were con-
ducted under optimal conditions. The results are shown in Table 3. Obviously, the catalytic
activity of [HDBU]Im is higher than imidazole or DBU. It can be inferred that [HDBU]+

and [Im]− play a synergistic role.

Table 3. Catalytic activity comparison among imidazole, DBU, and [HDBU]Im 1.

Catalyst Conversion of PET (%) Yield of BHET (%)

Imidazole 22.5 14.5
DBU 100 71.5

[HDBU]Im 100 88.9
1 Reaction conditions: 5.0 g PET, 0.25 g catalyst, 20.0 g EG reacted for 90 min at 185 ◦C under 10,000 µW·cm−2

UV radiation.

According to the literature, some catalysts, such as [Ch][OAc], [dimim][FeCl4], [Ch][Gly],
and [Ch]3[PO4], can form hydrogen bonds (H-bonds) with the hydroxyl hydrogen of
EG [24,25,44,45]. The H-bonds elongate the O-H bond of EG hydroxyl and enhance the elec-
tronegativity of EG oxygen [46]. Hence, EG can easily attack the carbon of the ester group
in PET [21]. To reveal the interaction between [HDBU]Im and EG, FT-IR characterization
was conducted for [HDBU]Im/EG mixtures (Figure 6). The O-H vibration of EG showed
an obvious 14 cm−1 red shift as the [HDBU]Im was introduced into EG. This indicates that
[HDBU]Im and EG can form H-bonds, which can effectively activate the hydroxyl group of
EG. Therefore, the ability of EG to attack the ester groups in PET is enhanced. To further
realize the interaction between EG and catalysts, DBU/EG mixtures were also analyzed
(Figure S9). The weight ratios of DBU/EG mixtures are consistent with [HDBU]Im/EG. For
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DBU/EG mixtures, the red shift of EG hydroxyl vibration was 8 cm−1. This result further
indicates that the hydrogen bonding between [HDBU][Im] and EG is stronger. Therefore,
[HDBU]Im could efficiently catalyze the degradation of PET.
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To verify the interaction between UV radiation and PET, it is essential to study the
UV absorption properties of PET (Figure 7). One strong absorption band appears at nearly
280 nm, corresponding to the benzene ring in PET [47]. The other absorption band appears
at nearly 310 nm and corresponds to the carbonyl group in PET [48]. The UV absorption
of the carbonyl group causes n→π*electronic transitions. The transition responsible for
UV absorption in the carbonyl group can be traced to the lone pair of electrons on the
O atom. One of the electrons in a lone pair can be excited to an empty π* orbital of the
carbonyl group [49], so the electronegativity of the oxygen of C=O in PET becomes higher.
Meanwhile, the electrophilicity of the carbon of the C=O group in PET is enhanced. It makes
the carbonyl group more vulnerable to EG attacks. As a result, the effect of UV radiation is
to activate the carbonyl group, which can promote PET glycolysis. The activation effect is
verified by the experimental results in Section 3.5.
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In addition, the crystallinity of PET during the reaction process was investigated
(Table S1), and it was found that as the degradation reaction progressed, the crystallinity
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of the residual PET gradually increased. This may be due to the loose arrangement of
PET molecular chains in the amorphous region, which is more prone to degradation.
The experimental results provide the basis for proposing the potential mechanism of PET
glycolysis catalyzed by [HDBU]Im, as illustrated in Scheme 2. EG is activated by [HDBU]Im
via H-bonds. The formed H-bonds make the O-H bond of EG hydroxyl longer and the
electronegativity of EG oxygen higher. These cause hydrogen to be lost more easily and
enhance the nucleophilicity of oxygen. Consequently, it facilitates the attack on the carbon
of the PET ester group. DBU has shown relatively high catalytic activity [27]. When DBU is
used as catalyst alone, it can activate the carbonyl group of the ester in PET [27]. Hence,
[HDBU]+ can activate PET by protonating the carbon of the carbonyl group. Meanwhile,
the carbonyl group in PET is also activated by UV radiation. Therefore, PET is more
electrophilic, and the highly nucleophilic EG oxygen attacks the carbon of the PET ester
group more easily. As the oxygen in the EG hydroxyl attacks the carbon of the ester group in
PET, a tetrahedral intermediate will be formed. Thereafter, the hydrogen in EG dissipates.
The acyl–oxygen bonds cleave, resulting in the detachment of the –OCH2CH2– group,
which subsequently combines with H+ to form HOCH2CH2–. These processes are repeated
to form oligomers and BHET monomers. Finally, chemical equilibrium is formed between
the oligomer and the BHET.
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4. Conclusions

In summary, we synthesized a series of nonmetallic dibasic ILs, among which [HDBU]Im
showed the best performance in catalyzing PET glycolysis. The impact of UV radiation
on the PET degradation was further investigated. It was discovered that the utilization of
UV radiation expedited the reaction time and enhanced the yield of the monomer BHET.
Afterward, the effects of different reaction conditions on PET degradation were investigated;
the optimized experimental conditions were 5 g PET, 20 g EG, 0.25 g [HDBU]Im, 185 ◦C,
10,000 µW·cm−2 UV radiation reacted for 90 min, and the PET conversion and BHET yield
were 100% and 88.9%, respectively. Based on reaction kinetics, UV radiation can reduce the
Ea from 166.50 kJ·mol−1 to 113.76 kJ·mol−1

, so the rate of PET glycolysis is considerably
enhanced. Throughout the reaction, UV radiation can improve the electronegativity of
oxygen in C=O, so the electrophilicity of carbon in carbonyl can be enhanced. This makes
PET more vulnerable to EG attacks, accelerating the catalytic reaction rate.

This work verifies the high catalytic performance of dibasic nonmetallic ILs catalyst
and UV radiation. In follow-up research, UV radiation can be considered for other re-
action systems of PET degradation, aiming to reduce the reaction temperature further,
achieve efficient degradation of PET under mild conditions, and provide guidance for the
industrialization of PET recycling.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ma17071583/s1, Figure S1: FT-IR spectrum of
[HDBU][Im] [35,50,51]; Figure S2: 1H NMR spectrum of [HDBU][Im] [34,52]; Figure S3: 1H NMR
spectrum of BHET [16]; Figure S4: HPLC spectrum of BHET; Figure S5: TGA curves of PET raw mate-
rial and BHET [16]; Figure S6: DSC curves of BHET [21]; Figure S7: FTIR spectrum of BHET [22,40,53];
Figure S8: The TGA curve of [HDBU][Im]; Figure S9: FT-IR spectra of DBU/EG mixtures; Table S1:
The changes in PET crystallinity during the degradation reaction [54–58].
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