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Abstract: Magnetic thin-film modeling stands as a dynamic nexus of scientific inquiry and techno-
logical advancement, poised at the vanguard of materials science exploration. Leveraging a diverse
suite of computational methodologies, including Monte Carlo simulations and molecular dynamics,
researchers meticulously dissect the intricate interplay governing magnetism and thin-film growth
across heterogeneous substrates. Recent strides, notably in multiscale modeling and machine learning
paradigms, have engendered a paradigm shift in predictive capabilities, facilitating a nuanced under-
standing of thin-film dynamics spanning disparate spatiotemporal regimes. This interdisciplinary
synergy, complemented by avantgarde experimental modalities such as in situ microscopy, promises
a tapestry of transformative advancements in magnetic materials with far-reaching implications
across multifaceted domains including magnetic data storage, spintronics, and magnetic sensing
technologies. The confluence of computational modeling and experimental validation heralds a
new era of scientific rigor, affording unparalleled insights into the real-time dynamics of magnetic
films and bolstering the fidelity of predictive models. As researchers chart an ambitiously uncharted
trajectory, the burgeoning realm of magnetic thin-film modeling burgeons with promise, poised to
unlock novel paradigms in materials science and engineering. Through this intricate nexus of theoret-
ical elucidation and empirical validation, magnetic thin-film modeling heralds a future replete with
innovation, catalyzing a renaissance in technological possibilities across diverse industrial landscapes.

Keywords: magnetic films; substrates; first-principles calculation; density functional theory; electronic
structure; molecular dynamics simulations; interface phenomena; Monte Carlo simulation

1. Introduction

In the realm of materials science and condensed matter physics, the intricate interplay
between magnetic films and diverse substrates has emerged as a captivating avenue of
research with far-reaching implications. The ability to tailor magnetic properties at the
nanoscale has opened up a myriad of possibilities for technological advancements spanning
from data storage and sensing to spintronics and quantum computing. Central to these
developments is the indispensable role of modeling techniques, which empower researchers
to decipher the complex dynamics and behavior of magnetic films on varied substrates.

Modeling techniques have revolutionized our comprehension of magnetic phenomena
by providing invaluable insights into the underlying physical mechanisms, interactions,
and responses. These techniques encompass a diverse array of methodologies, ranging
from atomistic simulations to continuum approaches, each offering unique advantages and
perspectives. As we delve into the scientific dimensions of modeling magnetic films on
diverse substrates, it becomes evident that a comprehensive exploration of these techniques
is essential to unraveling the intricate tapestry of magnetic behavior.

The primary focus of this review is to provide a comprehensive overview of the current
state-of-the-art modeling techniques employed in studying magnetic films on diverse
substrates. We aim to elucidate the underlying principles, capabilities, and limitations of
these methods while shedding light on the varied perspectives they bring to the forefront.
By synthesizing the collective knowledge amassed from both experimental observations
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and theoretical endeavors, we endeavor to contribute to a deeper understanding of the
intricate interplay between magnetic films and substrates.

This exploration will be structured as follows: First, we will delve into the foundational
concepts that underpin the magnetic interactions and phenomena observed in thin films
on different substrates. Subsequently, we will embark on a journey through the realm of
modeling techniques, beginning with atomistic simulations that capture the fundamental
atomic-scale interactions. Moving forward, continuum models will take center stage,
offering a broader perspective on the collective behavior of magnetic domains and their
response to external stimuli.

As we navigate through these modeling techniques, we will highlight the unique in-
sights they provide into various aspects of magnetic film–substrate systems, such as surface
effects, domain wall dynamics, and magnetic anisotropy. Moreover, we will emphasize
the importance of synergy between experimental observations and theoretical predictions,
illustrating how modeling enriches our understanding by elucidating complex phenomena
that may not be readily discernible through experiments alone.

2. Growth Mechanisms of Thin Films

The growth mechanism of thin films is intricately influenced by various factors, such
as surface morphology, substrate orientation, and deposition process parameters. These fac-
tors play a crucial role in mitigating defects in the produced films, including decomposition,
fluctuation, and layer interdiffusion.

During the initial stages of film growth, evaporated particles of the deposited material
undergo absorption and chemical diffusion processes. The fate of these particles is deter-
mined by surface morphology; they may either be reflected or absorbed into the substrate
surface. Absorption, in particular, involves the interaction between the evaporated particles
and the substrate surface, characterized by a sticking coefficient representing the ratio of
absorbed particles to the total amount deposited [1].

Absorption plays a pivotal role in shaping the crystallinity and microstructure of
the resulting films. It encompasses two distinct forms: physical absorption and chemical
absorption, which differ in the strength of atomic interaction. The interplay between
these interactions can be elucidated through the Lennard–Jones curve, which describes the
repulsive and attractive forces between atoms [1].

Absorption plays a pivotal role in shaping the crystallinity and microstructure of
the resulting films. It encompasses two distinct forms: physical absorption and chemical
absorption, which differ in the strength of atomic interaction. The interplay between these
interactions can be elucidated through the Lennard–Jones curve (Figure 1), which describes
the repulsive and attractive forces between atoms [1].

Materials 2024, 17, x FOR PEER REVIEW 3 of 32 
 

 

 

Figure 1. Lennard–Jones curve. 

Typically characterized by two minima, the Lennard–Jones curve illustrates the at-

tractive and repulsive forces between atoms, corresponding to the minimum potential en-

ergy of interaction. The first minimum signifies long-range attractive interactions, while 

the second represents repulsive forces arising from electron cloud overlap around the at-

oms [1]. 

𝑉(𝑟)  =  4𝜀[(
𝜎

𝑟 
)12  −  (

𝜎

𝑟 
)6]  (1) 

The combined effect of the minima in the Lennard–Jones curve results in a potential 

well with a minimum at a specific separation distance, which is crucial for determining 

molecular interaction stability. The depth of this potential well (ε in the Lennard–Jones 

curve) signifies the strength of attractive forces, while the position of the minima (σ in the 

Lennard–Jones curve) defines the range of interaction. 

In physical absorption, particles are attracted to the surface through attractive inter-

actions, characterized by an absorption potential (Ep). As evaporated particles of the de-

posited material approach the surface, they lose kinetic energy and form bonds with sur-

face atoms, thereby reducing free surface energy. On the other hand, chemical absorption 

involves the creation of chemical bonds between the electrons of evaporated particles and 

substrate atoms, denoted by an absorption potential (Ec). 

The process of physical and chemical absorption can be visualized as a function of 

distance versus potential. Optimal physical absorption occurs at a greater distance from 

the surface compared to chemical absorption. The disparity between these two stages is 

delineated by the effective energy barrier (Ea) (Figure 2). 

 

Figure 2. Physical absorption as an attractive interaction. 

Figure 1. Lennard–Jones curve.



Materials 2024, 17, 1436 3 of 32

Typically characterized by two minima, the Lennard–Jones curve illustrates the attrac-
tive and repulsive forces between atoms, corresponding to the minimum potential energy
of interaction. The first minimum signifies long-range attractive interactions, while the
second represents repulsive forces arising from electron cloud overlap around the atoms [1].

V(r) = 4ε[(
σ

r
)

12
− (

σ

r
)

6
] (1)

The combined effect of the minima in the Lennard–Jones curve results in a potential
well with a minimum at a specific separation distance, which is crucial for determining
molecular interaction stability. The depth of this potential well (ε in the Lennard–Jones
curve) signifies the strength of attractive forces, while the position of the minima (σ in the
Lennard–Jones curve) defines the range of interaction.

In physical absorption, particles are attracted to the surface through attractive in-
teractions, characterized by an absorption potential (Ep). As evaporated particles of the
deposited material approach the surface, they lose kinetic energy and form bonds with sur-
face atoms, thereby reducing free surface energy. On the other hand, chemical absorption
involves the creation of chemical bonds between the electrons of evaporated particles and
substrate atoms, denoted by an absorption potential (Ec).

The process of physical and chemical absorption can be visualized as a function of
distance versus potential. Optimal physical absorption occurs at a greater distance from
the surface compared to chemical absorption. The disparity between these two stages is
delineated by the effective energy barrier (Ea) (Figure 2).

Materials 2024, 17, x FOR PEER REVIEW 3 of 32 
 

 

 

Figure 1. Lennard–Jones curve. 

Typically characterized by two minima, the Lennard–Jones curve illustrates the at-

tractive and repulsive forces between atoms, corresponding to the minimum potential en-

ergy of interaction. The first minimum signifies long-range attractive interactions, while 

the second represents repulsive forces arising from electron cloud overlap around the at-

oms [1]. 

𝑉(𝑟)  =  4𝜀[(
𝜎

𝑟 
)12  −  (

𝜎

𝑟 
)6]  (1) 

The combined effect of the minima in the Lennard–Jones curve results in a potential 

well with a minimum at a specific separation distance, which is crucial for determining 

molecular interaction stability. The depth of this potential well (ε in the Lennard–Jones 

curve) signifies the strength of attractive forces, while the position of the minima (σ in the 

Lennard–Jones curve) defines the range of interaction. 

In physical absorption, particles are attracted to the surface through attractive inter-

actions, characterized by an absorption potential (Ep). As evaporated particles of the de-

posited material approach the surface, they lose kinetic energy and form bonds with sur-

face atoms, thereby reducing free surface energy. On the other hand, chemical absorption 

involves the creation of chemical bonds between the electrons of evaporated particles and 

substrate atoms, denoted by an absorption potential (Ec). 

The process of physical and chemical absorption can be visualized as a function of 

distance versus potential. Optimal physical absorption occurs at a greater distance from 

the surface compared to chemical absorption. The disparity between these two stages is 

delineated by the effective energy barrier (Ea) (Figure 2). 

 

Figure 2. Physical absorption as an attractive interaction. Figure 2. Physical absorption as an attractive interaction.

In the Volmer–Weber growth mechanism (refer to Figure 3), material atoms are initially
present as clusters in the vapor phase and subsequently condense onto the substrate,
forming a thin film [2]. This growth process takes place at the atomic or molecular level
and is significantly impacted by various substrate parameters, including temperature,
deposition rate, and the properties of the deposited material, such as compatibility. The
Volmer–Weber growth mechanism has proven to be advantageous in the fabrication of thin
films for a range of applications, including semiconductor devices like transistors, solar cell
units, and optical films [2].
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In the van der Merwe mechanism (see Figure 4), thin film material is deposited onto the
substrate in the form of small particles generated through nucleation and growth processes
in the vapor phase [3]. These particles subsequently adhere to the substrate, where they
further develop into a continuous film. The growth of these particles is contingent upon
factors such as the rate of material supply to the substrate, substrate temperature, and the
properties of the metal material involved [3].
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Absorbed particles subsequently aggregate into clusters of absorbed atoms, initiating
the formation of three-dimensional (3D) islands. These islands then evolve into monolayers
of deposited material through a process known as nucleation. Prior to nucleation, the
growth of 3D islands is accompanied by the accumulation of stress, particularly tension,
during the initial film or monolayer deposition [3].

In the context of layer deposition, the first layer holds paramount importance. Its
characteristics are delineated by crucial particle size and an essential energy barrier, or
Gibbs function. These parameters dictate the initial stage of film growth and profoundly
influence subsequent layer formation and film properties (2).

∆Gtotal =
4
3

πr3∆Gv + 4πr2Y (2)

In the context of thin-film growth, Gibbs free energy plays a crucial role in determining
the feasibility of the deposition process. Gibbs free energy (∆G) is a fundamental concept
in thermodynamics, representing the maximum amount of work that can be obtained from
a system at constant temperature and pressure.

In the context of thin-film deposition, Gibbs free energy change determines whether
the process is energetically favorable or not. If ∆G < 0, the process is spontaneous and can
proceed without the input of external energy. If ∆G > 0, the process is non-spontaneous
and requires the input of energy to occur.

For the growth of the first layer in thin-film deposition, Gibbs free energy plays a
critical role in determining the feasibility of nucleation and adhesion of the deposited
material to the substrate. The decrease in Gibbs free energy associated with the formation
of the first layer indicates the stability of the system and the likelihood of successful
film growth.

This compatibility criterion is elucidated by Young’s equation [4], a fundamental
principle in the science of wetting that describes the relationship between surface tensions
at the interface of a liquid–solid system. Young’s equation provides a simple yet elegant
representation of the forces involved in wetting phenomena, facilitating an understanding
of various practical applications such as adhesion and the behavior of different materials [4].

Yf s < Yf s + Yvs × cosθ (3)

Young’s Equation (3) relates the pressure difference across the curved surface to the
tension on the surface.

Yf s < Yf s + Yvs (4)

Yf s= Yf s + Yvs (5)

The Young equation stipulates that optimal monolayer growth occurs when the contact
angle approaches 0 degrees or initiates within the range of 0 to 90 degrees [4]. This
phenomenon, known as epitaxy, encompasses two intricate processes: homoepitaxy, where
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the deposited layer mirrors the material composition of the substrate, and heteroepitaxy,
where the deposited layer features a distinct material composition from the substrate [4].

Homoepitaxy refers to a film that shares the same crystallographic orientation and
composition as the substrate, effectively extending the substrate itself [5,6]. Conversely, in
heteroepitaxy, the substrate closely matches the orientation of the deposited monolayer.
When particles are absorbed onto the substrate, surface energy decreases as the active
surface area diminishes [7]. However, the deposited monolayer typically possesses a
distinct chemical structure from the substrate. Preferential binding of absorbent particles
to the substrate rather than to each other occurs when lattice parameters are equal to or
very similar to the deposited material. When lattice constants differ, it often results in
the formation of stress within the deposited layer, which in turn promotes the growth of
island-layer structures rather than a continuous monolayer [7].

∆G∗ = { 16πYv f
3(∆Gv + ω2)

}{2 − 3cosθ + cos(θ)3

4
} (6)

The growth of a monolayer induces stress due to differences in lattice parameters,
leading to the accumulation of strain potential. This strain potential amplifies as more
monolayers stack up. As this strain potential increases beyond a critical value and the strain
energy of the deposited layer surpasses surface tension, subsequent layers can form above
the initially deposited one. During deposition, various defects may arise, consequently
elevating the overall Gibbs energy. Consequently, the size of the initially deposited layer
decreases, attributed to a reduction in the energy barrier of initial absorption (6) [7].

Nucleation and the simultaneous combination of monolayers culminate in the for-
mation of the final microstructure of the thin film. The morphology of this structure is
influenced by substrate temperature, substrate morphology, deposition rate, and surface
diffusion. By manipulating or combining these factors, the resulting film morphology can
be categorized into four subclasses: Z1, ZT, Z2, and Z3 [8].

As the film continues to grow, it begins to form basic structural zones, which are not
uniformly distributed across its surface, with thickness varying due to blurred transitions
between zones. Sometimes, distinguishing between these zones proves challenging. There
are four fundamental structural zone models—Z1, ZT, Z3, and Z4 [8]—dependent on
crucial parameters such as the ratio of normalized temperature (Ts) to surface diffusion
(Tm) and the energy transfer of atoms at high energy. The transition between Z1 and Z4
models heavily relies on this ratio. For instance, the Z1 model predominates when the
Ts/Tm ratio is low (<0.1 Pa) compared to surface diffusion. Surface diffusion manifests as
columns approximately 10–20 nm in diameter forming on the substrate surface, separated
by small gaps several nanometers wide. On this particular structure, an array of cones is
superimposed, with the cones coalescing into domains across the surface, the size of which
increases with thickness [2].

This mode closely resembles Z1 (with Ts/Tm~0.1 Pa), characterized by negligible
surface diffusion. However, unlike Z1, this mode lacks the presence of gaps and domain
cones. Z1 mode often results in significant porosity, leading to issues such as leakage, low
electrical conductivity, and inhomogeneity, which are generally undesirable. However,
porosity can be advantageous in certain technological applications, such as gas leakage
detectors, catalytic reactions, and light absorption [2].

As the ratio of normalized temperature to surface diffusion (Ts/Tm) increases (Ts/Tm
> 0.3 Pa), the system transitions into the Z2 mode. In this mode, surface diffusion becomes
increasingly significant. Column formation in Z2 mode is characterized by tight grain
boundaries between the columns. The diameter of these columns increases with the normal-
ized temperature and surface diffusion ratio, resulting in a more refined crystalline structure.
The transition from Z1 to Z2 modes is more pronounced at higher temperatures [2].

In the Z3 mode (Ts/Tm > 0.5), the ratio is even larger compared to the previous modes,
indicating stronger surface diffusion. The surface of Z3 mode appears smooth, albeit with
slight grooves across its surface. The morphology of this mode is characterized by equiaxed
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grain crystals, with the size of these crystals being proportional to the thickness of the
deposited film [2].

3. Modeling Techniques
3.1. Quantum Mechanical Modeling

Quantum mechanical modeling is a powerful theoretical framework used to study the
electronic structure and properties of magnetic films on substrates. It provides a detailed
understanding of the behavior of electrons in the system, allowing for the calculation of
energy levels, wave functions, and electronic interactions [9].

Quantum mechanical models, rooted in the foundational principles of physics, offer
unparalleled accuracy in characterizing the behavior of individual electrons and their
intricate interplay [10]. This precision is paramount for capturing nuances in magnetic
interactions within films, encompassing attributes such as spin orientations, exchange
interactions, and magnetic anisotropy [11]. Quantum mechanical frameworks provide a
microscopic lens to fathom the underlying quantum states and electron distributions that
underlie magnetic properties. This understanding extends to phenomena like magnetism
switching, domain wall movement, and magnetic hysteresis, fostering deeper comprehen-
sion [11]. The predictive capability of quantum mechanical simulations guides the design
and exploration of novel materials and configurations. By envisaging uncharted magnetic
film properties, these models expedite material discovery and optimization, propelling
advancements in magnetic-based technologies [12]. Quantum mechanical simulations
adeptly encapsulate phenomena like tunneling and superposition, critical for decoding and
manipulating magnetic behavior on the nanoscale. Such effects hold particular relevance
in domains such as quantum computing and nanoscale magnetic devices [12].

The computational demands and time constraints associated with quantum mechan-
ical calculations, particularly for extensive systems or prolonged time frames, present
challenges. These limitations curtail the size of systems amenable to accurate model-
ing and the temporal extents that can be simulated. To accommodate the intricacies of
real-world scenarios, quantum mechanical models often necessitate approximations and
abstractions [12]. These expedients can introduce discrepancies, particularly in instances
featuring robust correlations, intricate geometries, or extreme conditions. Magnetic films
often encompass a medley of materials, spanning multiple elements, defects, and interfacial
regions. Accommodating these multifaceted characteristics through quantum mechanical
modeling demands advanced theoretical and computational approaches. The efficacy of
quantum mechanical models hinges on parameters gleaned from empirical observations or
other sources [12]. The sensitivity of model predictions to these parameters can engender
uncertainties in the resultant outcomes. While quantum mechanical models yield precise
numerical outcomes, their intuitive interpretation of the underlying physical mechanisms
might not always be readily discernible. Extracting meaningful insights may necessitate a
comprehensive grasp of quantum physics principles (Figure 5).

Central to the efficacy of quantum mechanical modeling is its prowess in explicating
electronic structure and intermolecular dynamics within materials with unparalleled pre-
cision (Figure 6). The dimensionality-restricted nature of thin films confers upon them
distinctive electronic traits that are divergent from their bulk counterparts. This elucidation
augments our fundamental understanding of thin-film phenomena and concurrently stim-
ulates the conceptualization of innovative devices endowed with bespoke functionalities.
Moreover, quantum mechanical modeling furnishes a virtual crucible for unraveling the
mechanistic, thermal, and optical attributes of thin films. The gamut of thermal transport
phenomena, pivotal in nanoscale heat management, can be meticulously unveiled, thereby
channeling the development of thermally conductive materials with elevated efficiency.
Furthermore, the optical signatures inherent to thin films, including absorption, reflection,
and emission, can be meticulously foretold, thereby engendering the design of advanced
optical coatings and sensors with tailored light manipulation capabilities.
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Quantum mechanical modeling also enables the calculation of various electronic
properties of magnetic films on substrates [13]. These properties include electric bands,
structure, density of states, magnetic moments, and magnetic entropy. Understanding
surface changes can provide insight into the film’s magnetic behavior, its response to
external magnetic fields, and the influence of the substrate on the electronic structure [13].
Confluence between experimental endeavors and quantum mechanical modeling can
potentially orchestrate transformative shifts across myriad domains.

Quantum mechanics methods combined with micromagnetic simulations enable
the exploration and realization of novel spintronic device concepts, such as skyrmion-
based devices, spin-wave devices, and topological insulator-based devices, with unique
functionalities and enhanced performance [14].

Additionally, quantum mechanical modeling can provide information about film–
substrate interfaces. It allows for the instigation of bonding characteristics, charge transfer,
and interfacial electronic states. Quantum mechanical modeling, particularly DFT calcula-
tions [15], has been widely used in the study of magnetic films on substrates. By accurately
capturing the electric structure and its properties, this approach provides valuable insight
and predictions, guiding experimental investigations and the design of magnetic materials
and devices [15]. Quantum mechanical modeling is a vital tool for understanding the
behavior of magnetic films on substrates at the atomic and electronic levels. It offers a theo-
retical foundation for studying electronic structures, magnetic properties, and interfacial
effects, contributing to the advancement of magnetic film technology [16] (Table 1).

Electronic structure calculations are computational methods used in quantum mechan-
ical modeling to predict and analyze the behavior of atoms, molecules, and materials at
the atomic and molecular level. These calculations aim to solve the Schrödinger equation,
which describes the behavior of quantum mechanical systems, particularly the motion
of electrons within atoms and molecules. The Schrödinger equation, however, cannot be
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solved analytically for systems with more than one electron, except for a few simple cases.
Therefore, electronic structure calculations rely on approximations and numerical methods
to find solutions that are accurate enough to be useful for understanding chemical and
physical properties.

Table 1. Advantages and disadvantages of quantum mechanics methods.

Advantages Disadvantages

-Efficient for large systems, though it oversimplifies details. -Accuracy may be compromised, especially for complex dynamics.
-Enables parameter study. -Requires careful parameter tuning for stability.
-Captures realistic behaviors. -Limited in capturing fine-scale physics.
-Scales well for large systems. -Interpretation may be complex, requiring validation.
-Compatible with experimental data. -Simplified models may not capture all dynamics accurately.

The motivation behind electronic structure calculations lies in their ability to provide
detailed insights into the electronic properties of matter. Some of the advantages of using
electronic structure calculations include:

Electronic structure calculations allow scientists to gain a profound understanding of
chemical bonding in molecules and materials. By analyzing the distribution of electrons
and their interactions, researchers can predict molecular geometries, bond strengths, and
reactivity. These calculations can accurately predict various molecular properties such as
energy levels, electronic spectra, dipole moments, and polarizabilities. In materials science,
electronic structure calculations play a pivotal role in predicting and designing materials
with desired properties. By calculating electronic band structures, density of states, and
other electronic properties, researchers can identify materials with specific electronic and
optical characteristics for various applications, including electronics, photovoltaics, and
catalysis. Electronic structure calculations provide insights into the mechanisms of chemical
reactions by simulating the electronic structure of reactants, intermediates, and transition
states. Electronic structure calculations can complement experimental observations by
providing detailed insights into the underlying electronic structure of molecules and
materials. Through computational methods, researchers can explore a wide range of
molecular and material properties without the need for expensive and time-consuming
experimental procedures. Electronic structure calculations can be applied to a diverse range
of systems, from simple molecules to complex materials.

In the realm of quantum mechanics, a distinct avenue of inquiry involves the for-
mulation of theoretical frameworks aimed at scrutinizing the characteristics of intricate
molecular systems, denominated as quantum molecular dynamics [17]. This approach
relies upon the application of the Born–Oppenheimer approximation, postulating the seg-
regation of variables into substantial nuclei and agile electrons. The quantum molecular
dynamics methodology, as introduced by Car–Parrinello, entails the utilization of function
minimization techniques [17].

The concept underlying Car–Parrinello molecular dynamics (CPMD) involves the
simultaneous computation of electronic and atomic subsystems. The trajectory of nuclei is
dictated by the ensemble of their respective coordinates {Ri|i = 1,. . .,Nn}. The electronic
degrees of freedom are defined by a collection of quantum-mechanical wave functions
{Ψj|j = 1,. . .,Ne} [17].

Mi
..
Ri = − ∂E

∂Ri
= Fi (7)

µ
..

ψj(r, t) = −Ĥψj(r, t) + ∑
k
∧jkψk(r, t) (8)

In the given context, the symbol Fi represents the resultant force exerted on the atom.
E and Ĥ represent the energy functional and the Kohn–Sham Hamiltonian.
µ denotes the fictitious electron mass.
∧jk stands for indefinite Lagrange multipliers.
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The selection of the fictitious electron mass is aimed at expediting the convergence
of the algorithm. In parallel, the Lagrange multipliers play a pivotal role in generating
additional forces that enforce the orthonormality of the wave functions [17] (7,8).

In the Car–Parrinello theory, the total energy of a nanosystem is a function of the
coefficients in the expansion of the electron wave function over a given basis. When
specific coefficients are minimized, the system undergoes cooling and stabilization. The
initial segment of expressions comprises classical Newtonian motion equations for a set
of particles, which are iteratively solved until equilibrium is attained [18]. Consistency
between the ion and electron subsystems is achieved through the concurrent minimization
of the energy functional. It is important to note that this method does not portray the
genuine dynamics of the nanosystem but rather simulates its fictitious evolution, leading
to an equilibrium state with stable energy for a multi-electron particle system [18].

The Car–Parrinello molecular dynamics method is recognized for its ability to accu-
rately replicate the properties of semiconductor and dielectric materials [19]. However,
for metallic systems in close proximity to the band gap, where numerous states possess
closely spaced eigenvalues, even a minor alteration in total energy can lead to significant
fluctuations in electron density. Moreover, the applicability of the Car–Parrinello approach
is constrained to a limited number of atoms in a nanosystem due to the intricate nature of
solving the equations and the associated computational expenses [19].

An alternative to Car–Parrinello molecular dynamics is Born–Oppenheimer molecular
dynamics (BOMD), founded on the Born–Oppenheimer approximation [20]. This method
involves the segregation of the nuclear and electronic subsystem descriptions. The motion
of the nuclei is governed by classical mechanical equations, while the energy and forces
acting on them are computed by solving the Schrödinger equation for electronic wave
functions at each time step. This approach is advantageous in managing the complexity
of metallic systems and circumventing computational challenges associated with larger
nanosystems [20].

Mi
..
Ri = −∇i[ min

ψ1,...,ψNe
E(R1, . . . , RNn ; ψ1, . . . , ψNe)] (9)

In the given context, the total energy (E) is subject to minimization through the opti-
mization of electron wave functions at fixed nuclear coordinates [21]. Typically, this mini-
mization is achieved by solving the Kohn–Scham equations or employing multidimensional
optimization algorithms (9). The BOMD method, which involves the segregation of nuclear
and electronic subsystem descriptions, proves highly accurate and can effectively describe
the properties of dielectrics and metals. However, both BOMD and CPMD methods incur
substantial computational costs, limiting their application to smaller nanosystems [21].

To address this limitation and enhance the capacity of the system under investigation,
efforts have been directed toward the development of methods that combine classical
molecular modeling with electronic structure calculations [21]. This approach is exem-
plified by embedded atom potentials such as the Embedded Atom Model (EAM) and
Modified Embedded Atom Method (MEAM). The Embedded Atom Method is derived
from theoretical considerations of the electron density functional and describes nanosystem
behavior through a set of equations, offering a means to reduce computational complexity
and extend its applicability to larger systems [21]. The EAM originates from the theoretical
principles of the electron density functional and articulates the behavior of a nanosystem
through the following set of equations:

Mi
..
Ri = − ∂E

∂Ri
= Fi, (10)

Ui = F
(

ρ .
i

)
+ ∑

J;1·̸=j
ϕ
(∣∣Ri − Rj

∣∣)
. (11)
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ρ .
i
= ∑

J;1·̸=j
Ψ
(∣∣Ri − Rj

∣∣)
. (12)

where F(ρi) is an immersion function that characterizes the interaction of an individual
atom with a medium possessing electron density ρi. ϕ(|Ri–Rj|) is pair potential. The
electron density created by the j-th atom at the location of the i-th atom (10–12).

The BOMD method is highly accurate and effective in describing the properties of
materials such as dielectrics and metals [21]. However, both BOMD and CPMD methods
come with significant computational costs, making them primarily suitable for small-sized
nanosystems. The high accuracy of quantum mechanics methods is intricately tied to the
complexity of the algorithms and approaches employed, representing a limitation of this
theoretical framework [21].

To address the challenges posed by the complexity of quantum mechanics models,
various assumptions and modifications have been introduced to eliminate limitations and
reduce the complexity and dimensionality of solved problems by limiting the degrees of
freedom of the investigated objects. Key approximations in first-principles methods include
the Born–Oppenheimer approximation, which assumes the separation of variables into
massive nuclei and fast electrons, and the Hartree–Fock approximation, which transforms
the dependence of the Schrödinger equations on the multi-electron wave function into a
correlation relation of one-electron functions.

A significant aspect of quantum mechanics methods is occupied by the theory of
electron density functional, which addresses the issue of increasing complexity and dimen-
sionality as the number of observed particles rises. In this approach, the energy state of
a nanosystem involving nuclei and electrons interacting in an external field is described
as a functional that depends on the particle density. Evolutionary changes and various
descriptions of exchange-correlation energy, including Thomas–Fermi theory, Hohenberg–
Kohn theorems, Kohn–Sham formalism, local density approximation, generalized and
meta-generalized approximations, and hybridization of the generalized gradient method,
underscore the relevance and importance of electronic density functional theory and show-
case the ongoing development of this method.

In one study conducted by Hegedus and Kugler (2005), quantum mechanical simu-
lation was utilized in order to stimulate the dynamic interatomic interaction of selenium
molecules [22]. This model is then used to simulate the growth of amorphous selenium thin
films. Though the model has limitations, it seems most realistic to simulate the behavior of
amorphous selenium [22].

Another study is related to the simulation of Al2O3 thin films by utilizing quantum
mechanical simulation (Figure 7). The study was conducted by Turowski et al. (2015) [23].
In this study, several simulation techniques, including quantum modeling simulation,
were applied in order to simulate the scattering process and, therefore, optimize it. The
developed virtual coater concepts demonstrated remarkable performance in this investiga-
tion. Furthermore, the method holds considerable promise for its application and study of
diverse layer materials and coating processes of interest beyond Al2O3 thin films [23].

The next study conducted by the same author focused on the simulation of thin-
film technology for TiO2 [24]. The paper introduced an extension to the virtual quoted
concept, wherein the determined optical properties are linked with rare acquisition models.
This contribution highlights the significant potential of atomistic simulation techniques in
advancing our understanding and predictive capabilities in thin film and coaching process-
related domains, operating avenues of human research, and technological adventures in
the field [24].

The exploration of magnetic materials and their behavior has grown increasingly
significant across a spectrum of technological domains, from data storage and medical
imaging to energy conversion and sensing applications [25]. Within this context, the
utilization of quantum mechanical modeling has emerged as a potent avenue to unravel the
intricate dynamics of magnetic films. This approach delves into the fundamental quantum
properties of electrons, their interactions, and the resulting magnetic phenomena. As with
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any modeling methodology, employing quantum mechanics to study magnetic films comes
with a set of inherent advantages and corresponding disadvantages [25].
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Figure 7. Simulated magnetic thin film.

3.2. Monte Carlo Simulations

While quantum mechanical modeling provides essential insight into the electronic
structure, classical modeling approaches are often employed to study the dynamics and
thermal fluctuation of magnetic films on substrates. These approaches allow for the
simulation of large-scale systems and longer time scales. This technique is particularly well-
suited for studying systems characterized by randomness, uncertainty, and nonlinearity,
making it indispensable for deciphering phenomena ranging from quantum mechanics
and statistical physics to complex biological processes.

Monte Carlo simulation utilizes random sampling methods to study the thermo-
dynamic properties and thermal fluctuations of magnetic films on substrates [26]. By
considering temperature, exchange interaction, and anisotropy effects, Monte Carlo simula-
tions can explore the phase transition, domain formation, and magnetization dynamics in
the system. Monte Carlo simulations also excel at elucidating the behavior of large and
complex systems that defy traditional analytical approaches. These simulations provide sta-
tistical information that enables the investigation of the temperature-dependent properties
of film–substrate systems [26].

Monte Carlo simulation calculates the depositing process by tracking the movement
and interaction of individual atoms or molecules [27]. The simulations consider parameters
such as incident particle flux, energy, and surface interactions to determine the probability
of deposition at various sites on the substrate. By performing numerous interactions
on these stochastic processes, Monte Carlo stimulations provide statistical information
about the resulting film’s growth, including its microstructure, morphology, and surface
roughness [27]. Through Monte Carlo simulations, researchers can investigate the effect
of deposition conditions such as temperature, pressure, and induced flux on thin-film
growth. These simulations allow for the exploration of various deposition parameters and
their impact on film properties. Additionally, Monte Carlo simulations can provide insight
into the nucleation, island growth, coalescence, and other processes that occur during the
thin-film deposition (Figure 8) [28].

The Monte Carlo Metropolis algorithm offers a natural approach for simulating tem-
perature effects in scenarios where dynamic considerations are unnecessary, owing to its
rapid convergence to equilibrium and its relatively straightforward implementation [29].
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In the context of a classical spin system, the Monte Carlo Metropolis algorithm unfolds
in the following manner: Initially, a stochastic selection is made of a specific spin index i,
followed by a random alteration of its initial spin direction Si to a novel trial configuration
S0i, denoted as a “trial move” [29]. Subsequently, the alteration in energy ∆E = E(S’

i) – E(S0i)
between the pre-existing and updated states is assessed, and the trial move is accepted
with a probability determined by a specified criterion [29].

P = exp
(
− ∆E

KbT

)
(13)

The acceptance decision is made by comparing the calculated probability with a
random number drawn from a uniform distribution within the interval [0, 1] (Equation
(13)) [29]. Probabilities exceeding 1, indicative of an energy reduction, are unconditionally
approved. This iterative process is repeated until a total of N trial moves have been
undertaken, where N represents the count of spins within the entire system. Each collection
of N trial moves constitutes a single iteration of the Monte Carlo algorithm [29].

The character of the trial move holds significance in light of two essential requirements
for any Monte Carlo algorithm: ergodicity and reversibility. Ergodicity dictates that all
possible states of the system should be accessible, while reversibility necessitates that
the transition probability between two states remains invariant, explicitly expressed as
Equation (14) manifests the evident reversibility as P(Si → S’

i) = P(Si → S’
i), where the

probability of a spin change is contingent solely upon the initial and final energy [30].
Ergodicity can be readily satisfied by relocating the chosen spin to a random posi-

tion on the unit sphere. However, this approach yields an undesirable outcome at low
temperatures, where substantial deviations of spins from the collinear direction become
highly improbable due to the strength of the exchange interaction [31]. Consequently, at
low temperatures, a sequence of trial moves on the unit sphere often results in a majority
of moves being rejected. Ideally, a higher acceptance rate of approximately 50% is sought,
as excessively high or low rates necessitate a significantly greater number of Monte Carlo
steps to achieve a state representative of genuine thermal equilibrium [31].

A highly effective Monte Carlo algorithm for classical spin models was introduced by
Hinzke and Nowak [32]. This algorithm employs a combinational approach, incorporating
a mix of various trial moves. A key strength of this method lies in its ability to efficiently
sample the entire available phase space while sustaining a reasonable acceptance rate for
trial moves. The Hinzke–Nowak method specifically employs three distinct types of moves,
i.e., spin flip, Gaussian, and random [32].

The spin flip move involves a straightforward reversal of the spin direction, denoted
as S’

i = −Si, explicitly facilitating the initiation of a switching event. This move is analogous
to a step in Ising spin models [33]. It is important to note that spin flip moves, in isolation,
do not inherently satisfy ergodicity in classical spin models, as states perpendicular to the
initial spin direction are inaccessible. However, when combined with other ergodic trial
moves, this limitation is effectively addressed [33].
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The Gaussian trial move takes the initial spin direction and relocates the spin to a
point on the unit sphere near the initial position. This relocation is determined by the
following expression:

S’i =
S’i + σgΓ∣∣S’i + σgΓ

∣∣ (14)

In the expression, Γ represents a Gaussian-distributed random number and σg is the
width of a cone around the initial spin Si [34]. Following the generation of the trial position,
the position is normalized to ensure a spin of unit length. The selection of a Gaussian
distribution is intentional, as, after normalization, the trial moves exhibit uniform sampling
over the cone [34]. The width of the cone is typically chosen to be temperature-dependent
and adheres to the following form:

σg =
2

25

(
KbT
µb

)1/5
(15)

Therefore, the Gaussian trial move tends to favor small angular changes in the spin
direction at low temperatures, resulting in a favorable acceptance probability across a broad
range of temperatures. The concluding random trial move selects a random point on the
unit sphere according to the following formula:

S’i =
Γ
|Γ| (16)

This selection ensures ergodicity for the entire algorithm, guaranteeing efficient sam-
pling of the phase space, particularly at elevated temperatures. In each trial step, one of
these three trial moves is randomly chosen, generally resulting in favorable algorithmic
properties [34].

One of the fundamental components of Monte Carlo simulation is the Metropolis
algorithm, introduced by Nicholas Metropolis et al. in 1953 [35]. Metropolis algorithms
are versatile and can be adapted to simulate systems with complex energy landscapes,
making them suitable for a wide range of applications. These algorithms are particularly
efficient for simulating systems with a large number of degrees of freedom, where tradi-
tional methods may struggle due to computational complexity. Metropolis algorithms are
relatively straightforward to implement compared to some other Monte Carlo techniques,
which enhances their accessibility to researchers and practitioners. Under certain condi-
tions, Metropolis algorithms exhibit desirable convergence properties, ensuring that the
simulation results approach the true distribution of the system being modeled. Metropolis
algorithms can be applied to diverse problems, including equilibrium statistical mechanics,
optimization, and Bayesian inference, providing a unified framework for tackling different
types of simulation tasks.

In some cases, Metropolis algorithms may exhibit slow convergence or high autocor-
relation between samples, especially in systems with strong correlations or long-range
interactions. Metropolis algorithms often require careful tuning of parameters such as the
proposal distribution width or acceptance criteria, which can be nontrivial and may impact
simulation efficiency. For systems with a finite number of particles or degrees of freedom,
finite-size effects can influence the simulation results, leading to deviations from the true
behavior of the system, particularly near-phase transitions. In high-dimensional parameter
spaces, Metropolis algorithms may encounter difficulties in efficiently exploring the state
space, potentially resulting in poor sampling efficiency or biased estimates. While suitable
for many problems, Metropolis algorithms may not scale well to extremely large systems
or high-dimensional parameter spaces due to computational constraints.

Quantum Monte Carlo (QMC) methods are computational techniques used in quan-
tum chemistry and condensed matter physics to solve the electronic structure of atoms,
molecules, and materials [36]. These methods excel in systems where strong electronic
interactions cannot be accurately described using perturbative methods like Hartree–Fock
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theory or density functional theory. Quantum Monte Carlo methods utilize Monte Carlo
integration techniques to solve the Schrödinger equation for many-body systems. Instead
of directly solving the wavefunction, they typically work with the probability distribution
of particles in configurational space, providing an accurate description of the electronic
structure by sampling this space stochastically [36]. Variational Monte Carlo (VMC) uses a
trial wavefunction to approximate the ground state wavefunction, approaching the exact
ground state energy by optimizing the trial wavefunction’s parameters. Diffusion Monte
Carlo (DMC) evolves a population of random walkers in imaginary time to project out the
ground state from a trial wavefunction. Particularly effective for treating large systems with
accurate electron–electron correlation [36]. Quantum Monte Carlo with Slater Determinants
(QMC–SD) utilizes Slater determinants to represent the trial wavefunction and employs
Monte Carlo techniques to calculate the expectation values of observables [37].

Green’s Function Monte Carlo (GFMC) uses the imaginary-time Green’s function to
propagate a set of walkers, providing highly accurate results but demanding computational
resources. Quantum Monte Carlo methods offer several advantages, including high accu-
racy, especially in treating strong electron correlation effects, and well-defined convergence
properties [37]. However, they also face challenges such as computational cost, statistical
errors, and the fermion sign problem, particularly in systems with fermions. These methods
find applications in computational chemistry, studying molecular properties, reaction mech-
anisms, and material properties [38]. They are also used in condensed matter physics to
investigate the electronic structure of solids, including strongly correlated electron systems,
superconductivity, and magnetism. Overall, Quantum Monte Carlo methods represent a
powerful approach for accurately describing the electronic structure of complex systems,
continually advancing with improvements in algorithms and computing power, making
them invaluable tools in theoretical and computational chemistry and physics [38].

An example of using Monte Carlo with a combination of molecular dynamic simu-
lations was a study conducted by Namakian et al. (2021) [39]. In this study, sequential
molecular dynamic time-stepped force bias Monte Carlo simulations were employed to
simulate the deposition process and illustrate the growth mechanism of Cu thin film on TiN
substrates. The result of this study was a comparison of kinetic Monte Carlo simulations
of 2D islands of Cu thin film on TiN substrates and a demonstration of behavior and
characteristics observed during the initial stage of growth [39].

The next study by Prudnikov (2016) is related to the simulation of magnetic multilayer
structures with the use of Monte Carlo simulations [40]. This study presented a description
of giant magnetoresistance effects in magnetic multilayer structures. A tropical Heisenberg
model is employed to determine the magnetic properties of the ferromagnetic films that
constitute these structures [40]. Monte Carlo simulations are conducted to investigate the
magnetic properties of structures composed of two ferromagnetic films separated by a
nonmagnetic film. A novel methodology was developed in this study for determining
magnetoresistance using the Monte Carlo method. This approach was employed to calcu-
late the temperature dependence of magnetoresistance for both free layer and spin valve
structures and the variant thicknesses of the ferromagnetic films [40].

A similar study with regards to the growth of ferroelectrics with the use of Monte Carlo
simulation was conducted by Candia (2001) [41]. In this study, Monte Carlo simulations
were employed as a primary computational tool to investigate the growth of magnetic films
exhibiting ferromagnetic interaction between the nearest spins [41].

In the realm of magnetic film studies, Monte Carlo simulations have emerged as a
preeminent computational tool, offering a sophisticated means to unravel the intricate
dynamics governing these systems [42]. Employing a stochastic methodology, these simula-
tions meticulously replicate the complex evolution of magnetic systems, thereby furnishing
invaluable insights into their nuanced properties, intricate interactions, and expansive
applicability [42].

Monte Carlo simulations are distinguished by their adeptness in capturing the statisti-
cal intricacies and averaging effects inherent in intricate magnetic systems [43]. Leveraging
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a myriad of random processes, these simulations yield precise estimates of macroscopic
properties such as magnetization, susceptibility, and heat capacity. Furthermore, their
capacity to probe relatively large and realistic systems, which may be beyond the purview
of conventional methods like quantum mechanical modeling, renders them indispensable
in the investigation of magnetic films harboring a multitude of atoms or exhibiting intricate
structures [43]. The intrinsic incorporation of temperature effects within Monte Carlo simu-
lations enables an in-depth exploration of temperature-dependent phenomena, including
magnetic phase transitions and thermal fluctuations [44]. This capability is pivotal for com-
prehensively understanding the stability and behavioral nuances of magnetic films under
diverse thermal conditions, thus enriching our insights into their practical applicability [44].

Moreover, the accessibility and versatility of Monte Carlo simulations augment their
utility, rendering them accessible to researchers across varying levels of expertise [44].
Widely embraced within the scientific community, Monte Carlo simulations are readily
implementable through available software packages, further democratizing their usage
and fostering widespread exploration in the field [44]. Facilitating a systematic exploration
of parameter space, Monte Carlo simulations empower researchers to methodically in-
vestigate the influence of various parameters, such as exchange interactions, anisotropy
constants, and external fields, on the magnetic behavior of films [45]. This comprehensive
approach not only enhances our fundamental understanding but also paves the way for
tailored designs and optimized functionalities in magnetic film applications. However, it is
imperative to acknowledge that, akin to any modeling technique, the utilization of Monte
Carlo simulations entails certain trade-offs and considerations. Assessing these merits
and demerits judiciously in alignment with specific research objectives and computational
capabilities is essential for maximizing their efficacy in elucidating the complex behavior of
magnetic films (Figure 9).
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By integrating Monte Carlo simulations with micromagnetic simulations, researchers
can predict the performance of spintronic devices under realistic operating conditions,
including temperature variations and external magnetic fields. This aids in device opti-
mization and reliability assessment.

Monte Carlo simulations combined with micromagnetic simulations can predict the
behavior of magnetic sensors with high accuracy. Quantum mechanics methods provide
insights into the underlying physics governing spin-dependent phenomena, essential for
designing sensitive and selective spin-based sensors for applications in magnetic field
sensing, bio-sensing, and magnetic resonance imaging (MRI).

In the realm of computational modeling, Monte Carlo simulations stand as a formidable
tool for unraveling the intricate dynamics of magnetic systems, although they are not with-
out their challenges [45]. Monte Carlo simulations can be computationally intensive,
particularly for systems with intricate interactions or when probing extended time scales.
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This computational demand can limit the feasibility of studying extremely large systems
or conducting simulations over long periods. While providing statistical accuracy, Monte
Carlo simulations often involve simplifications of the underlying physical interactions.
These approximations can potentially affect the fidelity of results, particularly in cases
where quantum mechanical effects play a crucial role. Monte Carlo simulations typically
assume that the system reaches thermal equilibrium during the simulation [45].

However, this assumption may not hold in scenarios involving non-equilibrium
processes or rapid changes in system dynamics. Monte Carlo simulations are generally
classical in nature and may not fully capture quantum mechanical effects significant in
certain magnetic systems. Quantum phenomena such as spin tunneling or entanglement
may not be adequately represented in classical Monte Carlo simulations [46].

Interpreting the results of Monte Carlo simulations can be challenging, especially
when dealing with complex systems. Extracting meaningful physical insights from the
statistical data generated by simulations necessitates a profound understanding of both the
simulation technique and the magnetic phenomena under investigation [46].

Despite these challenges, Monte Carlo simulations remain a powerful tool in the study
of magnetic films, providing valuable insights into their behavior and properties. It is
imperative for researchers to navigate these complexities with care, leveraging the strengths
of Monte Carlo simulations while mitigating their limitations, to maximize the utility of
this computational approach in advancing our understanding of magnetic systems [47].

By combining Monte Carlo simulations with experimental data and other modeling
techniques, researchers can refine their understanding of thin-film growth mechanisms [48].
Optimization of the position processes and prediction of the properties of the resulting films
improves the integration of simulation and experimentation and enables more efficient and
targeted development of films for a wide range of applications [48] (Table 2).

Table 2. Advantages and disadvantages of Monte Carlo simulations.

Advantages Disadvantages

-Flexible for complex systems. -High computational cost for large systems or
long simulations.

-Provides accurate results with
proper implementation.

-Results are subject to statistical errors,
requiring multiple runs for reliability.

-Efficient for certain problems. -Challenges in accurately modeling
complex interactions.

-Allows exploring parameter space. -May not capture all real-world aspects.
-Incorporates realistic models. -Outcomes are sensitive to initial conditions.

Monte Carlo simulation and modeling of dynamic simulation shed light on dynamic
behavior, thermal effects, and thermal phenomena. These modeling approaches play a
crucial role in elucidating the magnetic properties, transport behavior, and response of
magnetic films on substrates, thereby facilitating the design and optimization of mag-
netic devices.

3.3. Density Functional Theory Calculations

Density Functional Theory (DFT) calculations, a cornerstone of modern computational
chemistry and physics, have emerged as a transformative approach with far-reaching
implications for diverse scientific domains. Density functional theory (DFT) calculations are
widely used computational methods in scientific research for investigating the properties
of materials, including thin films. DFT provides very valuable insight into the electronic
structure, chemical bonds, and physical characteristics of these films [49].

DFT is based on the principle that the electronic density contains all the necessary in-
formation about the system. By solving the Schrödinger equations for self-consistency, DFT
allows for the determination of the ground-state properties and equilibrium configuration
of the magnetic films [50].
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The core principles of density-functional theory encompass the Hohenberg–Kohn and
Kohn–Sham theorems. The original Hohenberg–Kohn and Kohn–Sham theorems readily
lend themselves to expansive adaptation beyond their initial formulations, spanning a
broad spectrum of physical scenarios.

In DFT calculations, the electric structure of the film substrate system is described by
the electron density, which is governed by the Kohn–Sham equation [50] (Equation (17))
as follows:

ĤksΨi(r) =

[
− h̄2

2m
∇2 + Ve f f (r)

]
Ψi(r) = εi Ψi(r) (17)

where:

Ψi(r) is the wave function of the i electron.
εi is the energy of the i electron.
∇2 is the Laplacian operator.
Ve f f (r) is the effective potential, which includes the external potential due to the atomic

nuclei and any additional external potential present in the system.

The Kohn–Sham equation is the fundamental equation in density function theory for
the behavior of electrons in a material, including thin films [50]. This equation represents
an effective single-particle problem, where the electrons move in an effective manner that
includes the interaction with the atomic nuclei and the exchange-correlation potential. The
exchange-correlation potential accounts for the effects of electron–electron interactions,
which are challenging to describe exactly and are often approximated in practical calcula-
tions. The Kohn–Sham equation allows us to map the interacting many electron problems
to a set of non-interacting single electron equations [50].

To solve the Kohn–Sham equations, various numerical technologies can be employed,
such as blending of weight basis sets, localization of atomic orbitals, or real-space grids [50].
These techniques discretize the electronic wave functions and perform interactive calcula-
tions to converge onto the self-consistent solution [50].

The core principles of density-functional theory encompass the Hohenberg–Kohn and
Kohn–Sham theorems. The original Hohenberg–Kohn and Kohn–Sham theorems readily
lend themselves to expansive adaptation beyond their initial formulations, spanning a
broad spectrum of physical scenarios.

The Landau–Lifshitz–Gilbert calculations for thin films involve several case steps.
First, geometry optimization is performed to determine the optimized atomic position in
the lattice parameters of the thin-film structure. This involves minimizing the total energy
of the system by iteratively adjusting the atomic position until coherence is achieved [51].
The total energy is typically calculated using appropriate exchange-correlation functions,
such as the generalization gradient approximation (GGA) or hybrid functionals. Next, the
electronic structure calculation is conducted. Once the optimization geometry is obtained,
the electronic structure of the thin film is computed [51]. This step involves solving
the Kohn–Sham equations (Hohenberg–Kohn theorem), which describe the behavior of
the electrons in the system. By solving this equation self-consistently (Equation (18)),
information about the energy levels, band structure, and density of the states of the film
can be obtained [52].

Ĥe = Σi(−
h̄2

2m
∂2

∂ri
2 − ΣI

ZIe2∣∣ri − Rj
∣∣ ) + ∑i<j

e2∣∣ri − rj
∣∣ (18)

Here, Ĥe represents the electronic Hamiltonian. The first term represents the kinetic
energy of electrons, with h̄2

2m
∂2

∂ri
2 being the kinetic energy operator. The second term is the

potential energy due to the interaction of the i-th electron with a nucleus located at Rj, given

by ZI e2

|ri−Rj| . The third term is the potential energy due to the electron–electron interaction,

given by e2

|ri−rj| for all distinct pairs i,j of electrons.
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In DFT, the electron density ρ(r) serves as the fundamental variable, in contrast to
the many-body wave function used in traditional quantum mechanics [53]. The electron
density is considerably more manageable than the many-body wave function since it
depends on only three spatial coordinate variables, irrespective of the number of electrons
in the system. This simplification has been justified by the Hohenberg–Kohn theorem,
which establishes a one-to-one correspondence between the external potential and the
ground-state electron density, rendering the electron density a sufficient and convenient
descriptor for the quantum system [53].

The Hohenberg–Kohn theorem establishes a one-to-one correspondence between the
ground-state electron density and the external potential [54]. Consequently, if the ground-
state electron density is known, the external potential is uniquely determined. Furthermore,
the physical properties associated with the ground-state wave function can, in principle,
be unambiguously derived from the electron density [54]. Specifically, the kinetic and
electron–electron interaction energies of the ground state can be expressed as universal
functionals of the electron density, denoted as Ekin[ρ] and Eee[ρ], respectively. The term
“universal” indicates that the functional forms are independent of the specific external
potential [54].

The theorem also provides a variational principle. When we define the following
energy functional:

Ev[ρ] = Ekin[ρ] +
∫

ρ(r)v(r)dr+Eee[ρ] (19)

for some external potential V(r), the functional satisfies the inequality as follows:

Ev[ρ] ≥ Ev[ρ0] = E0 (20)

where ρ0 (E0) is the ground-state electron density (energy) under the potential V(r), respec-
tively. Therefore, the ground-state electron density can be obtained by searching for the
electron density that minimizes the energy functional Ev[ρ] [55].

Although the variational principle in Equation (19) appears simple, a significant
challenge lies in the fact that the exact forms of the functionals, Ekin[ρ] and Eee[ρ], are
unknown. To address this issue, Kohn and Sham introduced the concept of “orbitals” to
approximate the kinetic energy functional Ekin[ρ]. This innovative approach has paved the
way for performing DFT calculations with sufficient accuracy for practical applications [55].

Therefore, the majority of modern DFT implementations utilize the Kohn–Sham
scheme. We will delve into this scheme in more detail below. Regarding the direct varia-
tional approach, known as orbital-free DFT, which is less accurate compared to the Kohn–
Sham approach but offers the advantage of faster computations, current research efforts are
focused on constructing accurate kinetic energy functionals. One strategy involves striving
to reproduce the Kohn–Sham kinetic energy as accurately as possible [55].

The Kohn–Sham scheme introduces an auxiliary non-interacting system designed
to yield the same electron density as that of the interacting system. The non-interacting
system is described by the single-particle Schrödinger equation, commonly referred to as
the Kohn–Sham equation, as follows:⌈

− h̄2

2m
∂2

∂ri
2 + ve f (r)

⌉
ϕi(r) = εiϕi(r) (21)

where ve f f (r) is an effective potential, ϕi(r) is the Kohn–Sham state, and εi is the Kohn–
Sham energy eigenvalue. The electron density is given by the following equation:

ρ(r) = ∑i=1|ϕi(r)|2 (22)

The thin films are characterized by their surfaces, which can significantly influence
their properties. To accurately model the thin-film surface, various substrate treatments
are applied. These treatments may involve the use of the vacuum region to stimulate
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an isolated film, the addition of the vacuum step to mimic the semi-infinite film, or the
introduction of appropriate surface terminations [56]. In many cases, a supercell approach
is employed to model the thin film. This approach consists of periodically repeating the
thin film structured in two dimensions while treating the third dimension as finite. It allows
for the investigation of the film properties while minimizing interaction between adjusted
films [56] (Figure 10).
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Within the domain of exploring magnetic films and their intricate characteristics, DFT
simulations have emerged as a predominant computational instrument [56]. DFT presents
a quantum-mechanical avenue for comprehending the electronic arrangement and energy
aspects of substances, rendering it apt for deciphering the intricate magnetic properties
demonstrated by slender films. Nevertheless, akin to any modeling methodology, DFT
computations encompass a unique array of strengths and limitations when employed in
scrutinizing magnetic films [57].

DFT provides a robust framework for accurately calculating the electronic structure of
materials, including magnetic films [57]. It can predict properties such as band structure,
density of states, and magnetic moments, offering insights into the underlying physics
governing magnetic interactions [58]. DFT can accurately capture magnetic interactions by
accounting for the arrangement of electrons’ spins. This enables the study of spin orienta-
tions, exchange interactions, and magnetic anisotropy, shedding light on the fundamental
mechanisms driving magnetic behavior in films [58]. DFT is versatile and applicable to a
wide range of materials, from simple metals to complex compounds. It can be employed to
explore the magnetic properties of various compositions, crystal structures, and film thick-
nesses, aiding in the design and optimization of novel magnetic films [59]. DFT calculations
allow for predictive modeling of magnetic films, enabling researchers to design materials
with specific magnetic properties. This accelerates material discovery and innovation in
fields like data storage, sensors, and spintronics [60]. DFT captures quantum mechanical
effects, such as electron tunneling and wave-like behavior, which are vital in understand-
ing and manipulating magnetic behavior at the nanoscale. These effects are pertinent to
cutting-edge technologies like quantum computing and nanomagnetic devices [60].

DFT calculations can be computationally demanding, especially for large systems
or extended time scales [61]. The need for substantial computational resources limits the
size of systems that can be studied and the duration of simulations. DFT calculations rely
on exchange-correlation functionals, which are approximations to the complex electron–
electron interactions. The choice of functionality can influence the accuracy of results,
particularly in strongly correlated systems common in magnetic materials. Modeling mag-
netic films often requires accurate treatment of surface and interface effects, which can be
challenging within DFT [61]. These regions may exhibit different electronic structures and
magnetic behaviors compared to the bulk, requiring advanced techniques. DFT calcula-
tions are typically performed at absolute zero temperatures and do not inherently capture
thermal effects or dynamic processes. Incorporating temperature and dynamics often
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necessitates additional methodologies and simulations. Interpreting DFT results requires
a deep understanding of both quantum mechanics and material-specific considerations.
Extracting meaningful physical insights from electronic structure data can be complex,
particularly for researchers without a strong background in quantum physics [61] (Table 3).

Table 3. Advantages and disadvantages of DFT calculations.

Advantages Disadvantages

-Efficient for broad applications. -Relies on approximations, affecting accuracy.
-Applicable to various systems. -Limited to small-to-medium-sized systems.

-Predicts properties accurately. -Requires significant computational resources for
high accuracy.

-Optimizes atomic structures accurately. -Sensitive to functional and parameter choices.
-Integrates well with other methods. -Complex interpretation, especially for non-experts.

DFT calculations can also be extended to study the absorption and diffusion of atoms
or molecules on the thin-film surface [62] (Figure 11). By calculating absorption energies
and diffusion barriers, valuable insight into the reactivity and catalytic properties of the
film can be gained. Vibrational properties of thin films can be analyzed using density
functional perturbation theory (DFPT) or finite difference methods. These techniques
provide information about the photon dispersion, vibrational frequencies, and thermal
properties of thin films [62].
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In a study related to the DFT and DFPT theoretical investigations of interfacial prop-
erties in CaVO3 thin films, Beck and Ederer (2020) utilized DFPT and DFT to simulate
the impact of the polar CaVO3 interface on the physical properties [62] (Figure 11). The
results indicate that comparison between experimental and computational results neces-
sitates meticulous attention to the corresponding boundary conditions. In another study
conducted by Kaviani and Aschauer (2022), they used density function theory to simulate
oxygen vacancies in the system SrMnO3, which is grown on SrTiO3 substrates. The results
highlight that surface and interface effects have a substantial impact on the stability and
electric substructure of oxygen vacancies [63].

The next study conducted by Unal et al. (2007) is related to the density functional
theory investigation of the initial biolayer grown of Ag on NiAl thin films. Density function
theory analysis of supported Ag films on NiAl with an ideal structure reveals that the
bilayer growth mode is facilitated by a quantum side effect [64].

After obtaining the results from DFT calculations, post-processing analysis techniques
are applied to interpret and analyze the data. This may involve visualizing the charge differ-
ence distribution, plotting the band structure, calculating surface energies, or investigating
the electronic density of states.
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3.4. Micromagnetic Simulations

Micromagnetic simulations are a powerful computational technique used to study
the magnetization behavior and magnetic properties of thin films and nanostructures at
the mesoscopic scale [65]. These techniques provide insight into the spatial distribution
of magnetization, magnetostatic interactions, domain structure, and analytics of magnetic
systems. Magnetic stimulations treat the magnetic material as a collection of magnetic
moments or spins, typically represented on a discrete grid or mesh [65]. Each spin interacts
with its neighboring spins through exchange interaction, which governs the alignment and
dynamics of the magnetization [66]. The magnetic model considers various energy contri-
butions, including exchange energy, anisotropy energy, magnetostatic energy, and external
magnetic field contributions. Micromagnetic simulation involves solving the equation of
motion for the magnetic moments or spin over time. This can be achieved using numerical
techniques such as the Landau–Lifshitz–Gilbert equation or its variance (23) [66].

dM
dt

= −γM × H(e f ) + αM × (
dM
dt

) (23)

where:

M is the magnetization vector of the material.
H(e f ) is the effective magnetic field experienced by the material.
α is the Gilbert damping parameter that characterizes the dissipation of energy during the
magnetization dynamics.
γ is the gyromagnetic ratio, a fundamental constant related to the magnetic properties of
the material.

The Landau–Lifshitz–Gilbert equation describes the precession and relaxation of
magnetization in response to applied magnetic fields and torques. Numerical integration
methods, such as the Runge–Kutta algorithm, are commonly used to solve the Landau–
Lifshitz–Gilbert equation and simulate magnetization dynamics [67].

Micromagnetic simulation requires input parameters that describe the material prop-
erties and geometry of the thin film. These parameters include exchange stiffness, contact,
saturation magnetization, anisotropy constant, external magnetic field, and sample dimen-
sions [67]. Some of these parameters can be obtained from experimental measurements,
while others can be estimated from theoretical calculations or empirical data. Boundary
conditions define the behavior of the spin at the edges of the simulation domain. Common
boundary conditions include periodic boundary conditions, which simulate an infinite
system, and fixed boundary conditions, which fix the magnetization direction at the edges.
The choice of boundary conditions depends on the specific conditions being studied for the
desired behavior of the magnetization [68].

Magnetic simulations generate large amounts of data, including the special distri-
bution of magnetization, energy distributions, and dynamic behavior over time [68]. Vi-
sualization techniques such as color mapping or vector field representations are used to
visualize the magnetization patterns and domain structures. Analysis tools are employed to
extract key parameters, such as domain wall velocity, switching fields, or magnetic barriers,
from the simulation results [68].

Magnetic stimulation has been successfully applied to a wide range of magnetic sys-
tems, including thin films, nanoparticles, magnetic heterostructures, and pattern magnetic
structures [69]. They provide valuable insight into magnetization dynamics, domain wall
motion, spin waves, and other magnetic phenomena. By adjusting input parameters and
studying different geometries and materials, researchers can explore the effect of variable
factors on the magnetic behavior of thin films and nanostructures [69].

Micromagnetic simulations have emerged as a crucial computational instrument for
comprehending the intricate phenomena displayed by magnetic films [70]. These simula-
tions offer an intermediate-scale perspective on magnetic systems, revealing the dynamics
and interplays of individual magnetic moments within the film. While granting profound
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understandings of magnetic characteristics and conduct, micromagnetic simulations also
bring forth specific pros and cons [70].

The micromagnetic methodology is established through a coarse-grained approach,
wherein the atomic structure of the system is averaged out and represented by a col-
lection of micromagnetic blocks [71]. Each micromagnetic block encompasses multiple
atoms, with their magnetic moments assumed to align parallel to each other. Consequently,
the size of these micromagnetic blocks must be smaller than the length scale associated
with characteristic magnetic inhomogeneities in the system. This length scale is denoted
as l = min(δ, lex) , where δ = π

√
A/K represents the Bloch domain wall width and

lex =
√

A/µ0M2 is the exchange length [71]. Here A, K, and M correspond to the exchange
stiffness constant, anisotropy density constant, and spontaneous magnetization, respec-
tively. It is noteworthy that the method encounters limitations near temperatures close to
the Curie point, where short-wavelength thermal fluctuations become significant. In such
cases, a fully atomic description becomes imperative; however, an alternative approach
based on the Landau–Lifshitz–Bloch equation is an intriguing option [71].

Moreover, various types of boundary conditions can be adapted to suit the specific
requirements of the system under consideration [72].

The orientation of atomic magnetic moments within a micromagnetic block is char-
acterized by a unit vector Si, denoted as a block spin (with the subscript i indicating the
block’s position). The complete magnetic state of the system is fully specified by the set of
all block spins, denoted as {Si}. The magnetic energy of the system comprises the following
four terms: E = EH + EK + EX + ED (Equations (24)–(26)), where EH, EK, EX, and ED represent
the Zeeman, anisotropy, exchange, and dipolar contributions to energy, respectively [72].

EH = −µVa ∑ MH · Si (24)

Here, µ = 4 × 10−7 N/A2 is the vacuum permeability, Va = a3 is the micromagnetic
block volume, Mi is the spontaneous magnetization for block i, and H is the external
magnetic field [73].

Anisotropy energy (EK) is calculated as follows:

Ek = −Va ∑ K((ni·Si)
2
)

(25)

The anisotropy energy accounts for the preference of magnetic moments to align along
their easy axis. Ki is the anisotropy constant density of block i, and ni is the unit vector
along its easy axis [73].

Exchange energy (EX) is calculated as follows:

Ex = −ΣJ
SiSj

2
(26)

The exchange energy favors neighboring magnetic moments to be aligned. This is
described by the Heisenberg formula [73].

Dipolar energy (ED) is calculated as follows:

ED = − µ

4π ∑ J
MiMj∣∣ri−rj

∣∣3 (27)

The dipolar energy corresponds to the magnetostatic interaction between classical
dipoles [74]. Micromagnetic simulations require knowledge of parameters such as sponta-
neous magnetization (Mi), anisotropy constant density (Ki), and exchange couplings (Jij).
These parameters are often obtained from experimental data or, alternatively, can be evalu-
ated from first-principle electronic structure calculations. The latter allows for a multiscale
approach, providing insights into the variations of parameters near interfaces. However,
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such calculations can be computationally expensive, and the accuracy of first-principles
methods may have limitations for certain materials [74].

In practical applications, parameters such as Mi, Ki, and Jij may be estimated from
experimental data, and the interlayer exchange coupling (IEC) may be treated as a free
parameter or approximated as an average of bulk exchanges [74].

Micromagnetic simulations allow researchers to study the behavior of magnetic films
with high spatial and temporal resolution [75]. This enables the exploration of dynamic
processes such as domain wall motion, magnetization switching, and spin dynamics. Micro-
magnetic simulations capture the inherent complexity of magnetic systems by incorporating
factors like crystal anisotropy, exchange interactions, and external magnetic fields [75]. This
realism is essential for accurately representing the behavior of real-world magnetic films.
Micromagnetic simulations can handle relatively large systems, encompassing millions
of spins, which is crucial for studying realistic magnetic film geometries and sizes. Re-
searchers can systematically investigate the impact of various parameters, such as film
thickness, exchange constants, and external fields, on magnetic behavior [75]. This aids in
optimizing magnetic films for specific applications. Micromagnetic simulations provide
insights into the dynamic evolution of magnetization over time, capturing transient be-
haviors that are crucial for understanding processes like magnetization precession and
relaxation (Figure 12) [75].
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Micromagnetic simulations can be computationally demanding, particularly for large
systems or when simulating extended time scales [76]. The complexity of the simulations
can require substantial computational resources and time. Micromagnetic simulations
are often conducted at zero temperature or with minimal consideration of thermal effects.
Incorporating finite-temperature effects can be challenging and may require additional
modeling approaches. Micromagnetic simulations are classical in nature and do not in-
herently capture quantum mechanical effects that could be relevant in certain magnetic
systems, particularly at the nanoscale [76]. The accuracy of micromagnetic simulations is
influenced by the numerical methods and approximations used in the simulation code. The
choice of discretization scheme and time-stepping algorithm can impact the fidelity of the
results. Extracting meaningful physical insights from micromagnetic simulation data can
be challenging, especially for complex systems. Interpretation often requires a deep under-
standing of both the simulation technique and the underlying magnetic phenomena [76]
(Table 4).
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Table 4. Advantages and disadvantages of micromagnetic simulations.

Advantages Disadvantages

-Efficient for large systems. -Oversimplification may lead to inaccuracies.
-Facilitates parameter studies. -Limited accuracy for complex dynamics.
-Captures realistic behaviors. -Requires careful tuning for numerical stability.
-Scales well for large systems. -Limited in capturing fine-scale physics.
-Compatible with experimental data. -Interpretation may be complex, requiring validation.

An example of successfully applied micromagnetic simulation was a study conducted
by Ruiz–Gómez et al. (2023) [77]. In the following study, micromagnetic simulation was
extensively used to simulate geometry and magnetic texture. The essential information
from the study is that the physics in the film being studied can be accurately captured
using micromagnetic simulations with the specified material parameters [77]. There is
no need to introduce additional terms or consider the influence of defects. Therefore,
micromagnetic simulations are sufficient for carefully predicting the behavior of ultra-thin
magnetic nanostructures without the necessity of employing atomistic spin dynamics
studies, at least on the scale of several nanometers [77].

Another study is related to the micromagnetic simulation of domains in thin films
with different anisotropy directions, which was conducted by Solovev et al. (2020) [78]. The
investigation of magnetization processes and domain structures in the films was carried out
using micromagnetic simulations. The simulations involve a thin-film model that considers
in-plain and perpendicular magnetic anisotropy. The focus of this study was to explore
the magnetic microstructure, particularly the equilibrium magnetization configuration and
the magnetization processes in the thin films of various thicknesses. The micromagnetic
simulation results revealed that when the film thicknesses were equal to slightly larger than
a crucial value, a periodic magnetic microstructure formed, characterized by the absence of
well-defined domain boundaries [78].

4. Challenges and Future Directions
4.1. Experimental Validation and Incorporation of Dynamic Effects

Experimental validation of magnetic prediction for films involves conducting exper-
iments to verify the accuracy and variability of theoretical or computational models in
predicting the magnetic properties of thin films.

Thin-film samples are prepared with controlled composition, thickness, and structure.
Various deposition techniques are employed to deposit thin films onto suitable substrates.
Careful control of the position parameter ensures reproducibility and minimizes external
influence on the magnetic properties.

Various characterization techniques are employed to measure and analyze the mag-
netic properties of thin-film samples. These techniques can include methods such as vibrat-
ing sample magnetometry (VSM) or superconducting quantum interface device (SQUID)
magnetometry, magnetic force microscopy (AFM), magneto-optical measurements (Kerr
microscopy), and magnetic resonance techniques (magnetic resonance or nuclear mag-
netic resonance). The choice of technique depends on specific magnetic properties being
investigated, such as magnetization, magnetic anisotropy, coercivity, or magnetic domain
structure. Experimental results obtained from the magnetic characterization technique
were compared with the predictions made by the theoretical or computational models.

These models may involve fundamental magnetic theories, magnetic simulations,
or initial calculations based on the density function theory. The comparison involves
evaluating the match between the experimental data and the predicted values for various
magnetic parameters, such as magnetic moments, coercive field, or hysteresis behavior.
The experimental data in comparison with the characterization are analyzed to identify any
discrepancies or deviations. Statistical analysis methods, such as error analysis, regression
analysis, or hypothesis testing, may be employed to assess the level of agreement or
disagreement between the experimental results and the predicted values. Any observed
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disparities can provide insights into the limitations and shortcomings of the theoretical
models and suggest areas for future improvement. The experimental validation process
often involves an interactive approach, where the obtained results and insight from the
initial comparison are used to refine the improved theoretical models and suggest areas for
further improvement. This iterative process helps to enhance the accuracy and reliability
of magnetic prediction and ensures a better understanding of the underlying physical
phenomena. Experimental validation of magnetic predictions of thin films is crucial for
validating theoretical models, verifying the accessibility of magnetic theories, and providing
a basis for further developments in the field.

Incorporation of dynamic effects in the modeling of thin films involves considering
the time-dependent behavior and indirections of the magnetic properties and other rele-
vant phenomena within the films. Dynamical effects can be incorporated by performing
time-dependent simulations, where the behavior of thin film is studied over a range of time
intervals. This involves solving the relevant equations of motion or governing equations
using the method that accounts for time evolution. For example, in magnetic thin films,
the Landau–Lifshitz–Gilbert equation can be solved to capture the dynamic magnetization
behavior, including precision, relaxation, and damping effects. Dynamic effects can be
studied by subjecting the thin film to external excitations or perturbations. This can be
achieved by applying time-varying magnetic fields, temperature changes, or mechanical
strain to the system. The response of the thin film to these excitations can then be an-
alyzed to understand its dynamic behavior. Techniques such as linear response theory,
floquet theory, or time-dependent perturbation theory are often employed to characterize
the system’s dynamic response. Spin waves and magnons are collective excitations in
magnetic materials that play a significant role in their dynamic behavior. Incorporating
spin wave, or magnon, and dynamics in the thin-film models allows for the study of wave
propagation, dispersion, and interaction phenomena. Techniques such as spin wave theory,
micromagnetic stimulations, or dynamic matrix methods can be utilized to incorporate
these dynamic effects. Ultrafast laser techniques and time-resolved measurements enabled
the study of extremely fast dynamic processes in thin films. By using femtosecond laser
pulses and time-resolving detection methods, researchers can prove the ultrafast magne-
tization dynamics, spin dynamics, and relaxation processes in thin films. These things
provide visible insight into processes such as magnetization switching, demagnetization,
and ultrafast phase transitions in oil.

Dynamic Monte Carlo simulations are useful for incorporating dynamic effects in the
modeling of thin films. Dynamic Monte Carlo simulation captures the stochastic nature
of dynamic processes such as surface diffusion, atomic motion, or defect formation. By
simulating these processes over time, Dynamic Monte Carlo simulations provide insights
into the growth kinetics, surface roughness, or defect evolution in the thin film.

Incorporating dynamic effects in the modeling of thin films enhances the understand-
ing of their time-dependent behavior, transient phenomena, and stability. It provides
valuable insight into processes such as magnetization dynamics, spin wave propagation,
ultrafast phenomena, and growth kinetics. These dynamic effects are crucial for the design
and optimization of thin film-based devices such as magnetic memories, spintronic devices,
or sensors (Table 5).

Table 5. Comparison of simulation methods.

Aspect Monte Carlo Simulations DFT Quantum Mechanics Micromagnetic Simulations

Description

Utilizes random sampling
to obtain numerical

results, often applied in
statistical mechanics and

finance.

Computes the electronic
properties of materials by
solving the Schrödinger

equation by approximating
the electron density.

Describes the behavior of
particles at the atomic and

subatomic levels using
mathematical formulations.

Models the behavior of magnetic
materials at microscopic scales,
simulating magnetic structures

and dynamics.

Advancing
Features

Efficient for large systems
with complex interactions.

Applicable to large systems;
used in materials science

and chemistry.

Facilitates accurate
predictions of molecular
structures and reactions.

Valuable for studying magnetic
materials and devices in

nanotechnology.
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Table 5. Cont.

Aspect Monte Carlo Simulations DFT Quantum Mechanics Micromagnetic Simulations

Computational
Complexity

Typically polynomial,
O(N) or O(NlogN).

Cubic complexity is O(N3)
for traditional methods, but
approximations (e.g., LDA,

GGA) offer better scalability.

Highly dependent on the
specific method used; it can

vary from polynomial to
exponential.

Typically polynomial, O(N2) or
O(NlogN) for large-scale

simulations.

Additional
Features

Allows for the study of
systems at equilibrium
and non-equilibrium

conditions. It enables the
simulation of rare events

and probabilistic
phenomena.

Provides insights into
chemical bonding, electronic

structures, and the optical
properties of materials.

Offers accurate predictions
of reaction pathways and

thermodynamic properties.

It enables the calculation of
properties such as energy

levels, transition
probabilities, and

spectroscopic data. Essential
for understanding

phenomena like quantum
tunneling and entanglement.

Allows for the investigation of
domain wall dynamics,
magnetization reversal

processes, and spin transport
phenomena. Supports the design

and optimization of magnetic
memory devices and spintronic

components.

Numerical
Stability

Highly dependent on
sampling scheme and
precision; sensitive to

statistical errors.

Stability is highly dependent
on the choice of

exchange-correlation
functional and numerical

integration techniques.

Numerical stability varies
depending on the method;
some methods may suffer

from convergence issues or
numerical instabilities.

Stable numerical schemes exist;
numerical stability depends on
discretization schemes and time

integration methods.

Parallelization

Can be parallelized
effectively due to

independent sampling;
scales well with increasing
computational resources.

Parallelization is challenging
due to the interdependence
of grid points in calculations
and the limited scalability of

large systems.

Highly parallelizable for
certain algorithms and
problems; scalability

depends on the method and
available computational

resources.

Parallelization is feasible for
large-scale simulations and

scales well with the increasing
number of computational

resources.

Computational
Cost

Relatively low
computational cost for

moderate-precision
simulations but can be
high for high-precision

calculations or rare-event
sampling.

Moderate to high
computational cost,

especially for large systems
or high-precision

calculations, depends on
system size and desired

accuracy.

Computational cost varies
widely based on the method,

system size, and desired
accuracy; it can be

significant for large systems
or high-precision

calculations.

Moderate to high computational
cost, depending on system size,
discretization, and simulation

time, can be significant for
large-scale simulations with fine
spatial or temporal resolutions.

4.2. Scaling Up and Integration with Complex Systems

Scaling up complex systems in the modeling of thin films involves extending the
study from individual films to multiple interacting films or film–substrate systems. This
approach allows researchers to investigate the collective behavior, emergent properties,
and interaction between different film layers or between films and substrates. Scaling up
complex systems in the modeling of different films required the use of advanced techniques
and modern methodologies to capture the intricate relationships and phenomena that arise
in such systems.

Many thin-film applications involve the deposition of multiple layers to create complex
structures and functional devices. Modeling multilayer systems requires considering the
interactions and interfaces between different film layers. This involves incorporating
interlayer coupling, such as exchange interactions or the interfacial roughness effect, into
the models. Techniques like multilateral simulations, interplay coupling calculations, or
effective medium approximations can be employed to study the properties of multilayer
thin films. Thin films are often deposited on the substrate, and the interaction between the
film and the substrate can have a significant influence on their properties. Modeling the
film–substrate interface involves considering factors such as lattice mismatch, strain effect,
surface roughness, and interfacial bonding. Techniques such as finite element modeling,
lattice mismatch calculation, or atomic simulation can be used to study the effect of film–
substrate interface interactions on the structural, mechanical, and electronic properties of
the thin films.

Complex systems of thin films can involve different materials with varying properties,
such as magnetic films coupled with superconducting or semiconducting layers. The
modality of these heterogeneous systems requires the integration of the relevant physics
and properties of each material into the models. This can involve incorporating different
equations of motion, considering material-specific parameters, or using hybrid modeling
techniques that combine different simulation methods. Complex systems on thin films can
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exhibit coupled phenomena, where the behavior of one film layer influences the properties
or behavior of another layer. Examples include exchange coupling between magnetic
films, charge transfer between conducting layers, or strain transfer between different films.
Modeling coupled phenomena involves considering the interactions, coupling strength, and
feedback mechanics between different layers. Techniques such as a couple of differential
equations, a couple of field theories, or a couple of simulations can be used to study the
dynamics and emergent behavior of these systems.

Integration with our modeling techniques in the modeling of thin films involves
combining multiple computational or theoretical approaches to gain a more comprehensive
understanding of the film’s behavior and properties.

Atomic modeling techniques, such as molecular dynamics simulation or Monte Carlo
simulations, provide detailed information at the atomic scale but are limited in their ability
to simulate large systems or long-term scales. To bridge the gap between automatic and
continuum scales, atomistic-to-continuum coupling techniques can be employed. These
methods aim to connect the automatic model with continuum models, such as finite element
analysis (FEA) or continuum mechanics, to simulate the behavior of the thin films over large
length and time scales. Multiscale modeling approaches combine models at different length
and time scales to capture the hierarchical nature of thin-film systems. This integration
involves linking models with different levels of detail, such as automatic, mesoscale, and
continuum models. Multiscale methods allow for the study of phenomena that occur
across multiple scales, such as defect formation, phase transition, or interface interaction.
Techniques, such as concurrent coupling, adaptive mesh refinement, or bridging scale
techniques, are employed to ensure consistency and accuracy across different scales.

Integrating the first-principle calculations with other modeling techniques allows for
a more comprehensive understanding of the interplay between electrical structure and
macroscopic behavior. This integration can involve coupling first-principle calculations
with continuum models, embedding DFT calculations with larger simulations, or using
DFT-derivate parameters for other models. Integration with experimental data plays a
vital role in validating and refining the models. By comparing model predictions with
experimental measurements, researchers can access the accuracy and reliability of the
models and refine the parameters. This integration involves data simulation techniques,
statistical analysis, and optimization algorithms to achieve a better arrangement between
the models and experimental data. Additionally, experimental data can be used to inform
model development, such as by providing input parameters or boundary conditions.

Hybrid models combine different modeling techniques with a single framework to
capture specific aspects of thin-film behavior. For example, combining micromagnetic
simulation with finite element analysis allows for the study of magnetization dynamics
in the presence of mechanical stress or external fields. Hybrid models can also integrate
different physics, such as combining electromagnetic simulation with thermal modeling
to study the thermal response of thin films. These methods often involve coupling or
exchanging data between different simulations or models.

The Investigation of multiple modeling techniques requires careful consideration of the
interfaces, data transfer, and calibration of parameters. Techniques such as data coupling,
model calibration, and sensitivity analysis are employed to ensure the consistency and
accuracy of the integrated modeling framework. Integrating multiple modeling techniques
into thin-film modeling enhances predictive capabilities, widens the scope of the integration,
and provides a more comprehensive understanding of film behavior and properties. It
allows researchers to study phenomena at different lengths and time scales, capturing
complex infrastructures and making more accurate predictions for material design, device
optimization, and technological optimization.

5. Discussion

In the realm of thin-film systems, a comprehensive inquiry mandates the astute amal-
gamation of multifarious modeling techniques to engender a holistic understanding of their
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inherent properties and dynamics. This integrative framework orchestrates the strategic
deployment of divergent methodologies to unravel the intricacies enshrined within mag-
netic films, thereby facilitating advancements across various domains of materials science
and applied physics. The ensuing discourse aims to explicate the seamless interplay of
these methodological paradigms, thereby affording nuanced insights into the multifaceted
landscape of magnetic thin films.

The foundational cornerstone of this investigative endeavor lies in the judicious
utilization of DFT calculations. Operative within the quantum mechanical framework,
DFT serves as the vanguard for elucidating the electronic structure domain, offering
discernment into atomistic configurations, chemical bonding motifs, and intricate electronic
interplays manifesting at the interfacial nexus between the thin film and its substrate. These
gleanings furnish the epistemic bedrock upon which subsequent explorations into quantum
mechanical modeling and micromagnetic simulations are predicated, enabling a granular
dissection of specific facets intrinsic to the system’s behavior.

DFT calculations play a pivotal role in providing invaluable insights into the magnetic
properties and stability of materials at the atomic scale. Their integration with micromag-
netic simulations facilitates the design and optimization of magnetic materials tailored to
the exigencies of spintronics and sensing applications. The convergence of these method-
ologies engenders revolutionary avenues such as the development of skyrmion-based
memory devices boasting ultrahigh storage density and minimal power consumption,
thereby heralding a paradigm shift in data storage technology. Similarly, the design and
implementation of topological insulator-based spintronic devices, underpinned by insights
garnered from these computational approaches, hold promise for efficient spin manipula-
tion and transmission, with ramifications spanning spin logic, quantum computing, and
spin-based communication realms.

Augmenting this methodological ensemble, the Monte Carlo simulation methodology
unfurls a statistical canvas, delineating the intricacies and emergent propensities arising
from the stochastic interplay of atomic constituents or magnetic moments within thin-film
systems. By elucidating temporal trajectories and stability profiles germane to interfa-
cial dynamics, Monte Carlo simulations provide a comprehensive understanding of the
stochastic underpinnings governing magnetic film behavior.

In the domain of thin-film modeling, the discernment of optimal methodologies as-
sumes paramount significance, contingent upon overarching research objectives, attributes
earmarked for scrutiny, and the computational resources at one’s disposal. A judicious
course of action entails soliciting the insights of domain experts and undertaking a meticu-
lous survey of extant literature. By assimilating the collective wisdom of predecessors and
immersing oneself within the rich tapestry of existing knowledge, an informed trajectory
for thin-film modeling can be delineated.

As the scholarly odyssey unfolds amidst this intricate tapestry, it becomes imperative
to recognize that each method bequeaths a unique facet, converging synergistically towards
a comprehensive understanding of magnetic thin-film behavior on substrates. Through the
orchestration of a harmonious interplay between DFT calculations, quantum mechanical
modeling, micromagnetic simulations, and Monte Carlo simulations, researchers endeavor
to unravel the enigmatic labyrinth of magnetic thin-film dynamics, propelling the fron-
tiers of inquiry within spintronics, sensing, and allied disciplines towards unprecedented
horizons of scientific exploration and technological innovation.

6. Conclusions

In conclusion, the scientific exploration of magnetic films on substrates has unveiled
a multifaceted landscape rich with possibilities for advancing technology across various
sectors. By delving into the intricacies of magnetic behavior at the interface between thin
films and substrates, researchers have gained profound insights into properties such as
magnetization coercivity and magnetic anisotropy, critical for optimizing material perfor-
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mance. This endeavor has been bolstered by a suite of advanced modeling techniques, each
offering unique perspectives into the underlying physics governing these systems.

As we journey forward, the intricate interplay of modeling techniques promises to
shape a future replete with breakthroughs. In this realm of scientific inquiry, where versa-
tility and adaptability reign supreme, the fusion of theoretical insights and computational
prowess fuels an unceasing exploration of magnetic thin films, charting pathways to
innovation that hold promise for a multitude of applications.

The seamless fusion of these diverse techniques not only enhances our fundamental
understanding of magnetic films but also accelerates innovation. The ability to tailor
magnetic properties for specific applications, such as flexible electronics and spintronic
devices, underscores the practical significance of this endeavor. The symphony of modeling
methodologies resonates in unison, propelling our capacity to design novel materials,
unravel intricate phenomena, and engineer cutting-edge technologies.
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