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Abstract: Photonic crystals are artificial structures with a spatial periodicity of dielectric permittivity
on the wavelength scale. This feature results in a spectral region over which no light can propagate
within such a material, known as the photonic band gap (PBG). It leads to a unique interaction
between light and matter. A photonic crystal can redirect, concentrate, or even trap incident light.
Different materials (dielectrics, semiconductors, metals, polymers, etc.) and 1D, 2D, and 3D architec-
tures (layers, inverse opal, woodpile, etc.) of photonic crystals enable great flexibility in designing
the optical response of the material. This opens an extensive range of applications, including photo-
voltaics. Photonic crystals can be used as anti-reflective and light-trapping surfaces, back reflectors,
spectrum splitters, absorption enhancers, radiation coolers, or electron transport layers. This paper
presents an overview of the developments and trends in designing photonic structures for different
photovoltaic applications.
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1. Introduction

With increasing concerns over climate change, photovoltaics play a crucial role in
the global transition to cleaner and more sustainable energy sources. Photovoltaics (PV)
involve the conversion of light into usable electrical energy through photovoltaic cells,
more often called solar cells (SC). Considering that the sun provides more than 10,000 times
the current annual global energy consumption [1], researchers and engineers have focused
on improving photovoltaic technology to make it more efficient, cost-effective, and widely
applicable. The first practical solar cell was invented in 1954 by Bell Labs researchers [2]. It
was made of silicon and had an efficiency of 6%. This breakthrough marked the beginning
of photovoltaic technology, and currently, researchers are working on the fourth generation
of solar cells [3]. Table 1 provides details of these generations.

Table 1. Various solar cell types with examples of obtained maximum efficiencies [3,4].

Generation Type Maximum Efficiency,
%:

Literature about
Using Photonic

Crystals

First
(Thick

crystalline
films)

Monocrystalline silicon 26.8 ± 0.4 [4]

Multicrystalline/polycrystalline
silicon 23.3 [5]

III-V single junctions, e.g., GaAs
thin film 29.1 ± 0.6 [4]

Second
(Thin films)

Thin film chalcogenide (e.g., CIGS) 23.35 ± 0.5 [4] [6]

Amorphous silicon (a-Si) 10.2 ± 0.3 [4] [7]

Microcrystalline silicon (mc-Si) 11.9 ± 0.3 [4] [8]
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Table 1. Cont.

Generation Type Maximum Efficiency,
%:

Literature about
Using Photonic

Crystals

Third
(Emerging
technolo-

gies)

Dye-sensitized (DSSC) 11.9 ± 0.4 [4] [9]

Quantum dots (QDSC) 18.1 [5] [10]

Organic (OSC) 15.7 ± 0.3 [4] [11]

Perovskite (PSC) 24.35 ± 0.5 [4] [12]

Multiple junctions, etc.
(e.g., III–V 5J direct-bonded
perovskite/Si cells)

38.8 ± 1.2 [4] [13]

Fouth
(Hybrid)

Metal nanoparticles and metal
oxides (e.g., hybrid silver/silver
oxide nanoparticles in OSCs)

5.2 [14] [15]

Carbon nanotubes (e.g., CNTs
in OSCs) 14.37 [16] [17]

Graphene and its derivatives (e.g.,
MoS2 quantum dot/graphene
with CH3NH3PbI3 perovskite)

20.12 [18] [19]

According to the Shockley–Queisser limit, the maximum efficiency for a single-junction
solar cell can reach approximately 33% [20]. The commonly achieved efficiency varies
depending on the type of solar cell and still falls below this limit (see Table 1) (up to
26.7% [3,21]). It is possible to surpass this limit by using, for example, multiple-junction
solar cells of the third generation, which can theoretically achieve an efficiency of up to
86.81% for an infinite number of monochromatic cells [22].

Solar cells are typically made using various materials, including silicon, cadmium tel-
luride (CdTe), copper indium gallium selenide (CIGS), perovskites, and organic/polymers.
The choice of material depends on factors like efficiency, cost, and the specific application.
Silicon in various forms is still the most commonly used material [23,24] due to its natu-
ral abundance, environmentally friendly chemistry, high efficiency, and low cost [25,26].
Nonetheless, there are certain limitations associated with silicon solar cells. These include
reduced efficiency caused by the indirect band gap of silicon, which results in the transmis-
sion of photons from the cell’s active area without generating charge carriers. Additionally,
energy losses occur due to reflection on the top surface of the cell.

Generally, there are several factors connected with the interaction of light and material
that contribute to the restrictions on the efficiency of solar cells:

− Bandgap Limitation: The bandgap of a material determines the PV conversion band,
which means the range of wavelengths it can absorb. Also, the type of band, direct or
indirect, affects the efficiency.

− Absorption limit connected to reflection and transmission losses: Not all sunlight that
strikes a solar cell can be absorbed and converted into electricity. Some wavelengths of
light may pass through or be reflected, reducing the overall efficiency. The ray optics
theory states that the absorption in a bulk solar cell’s structure should not surpass the
so-called Lambertian limit by conventional light-trapping [27].

− Recombination: Charge carriers (electrons and holes) generated by absorbed photons
can recombine before reaching the electrodes, leading to losses in efficiency.

− Thermalization Losses: When photons with energy higher than the material’s bandgap
hit the solar cell, their excess energy can be lost as heat instead of being converted into
electricity. This effect simultaneously leads to decreasing efficiency due to increasing
recombination rates and changes in material properties.
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Researchers and engineers are continually working to address these limitations through
innovative designs, materials, and manufacturing techniques to improve the efficiency of
solar cells and make them more cost-effective. Minimizing the mentioned restrictions and
enhancing solar cell output performance characteristics can be realized by applying various
photonic structures [28], e.g., plasmonic nanostructures, nanocones, triangular and pyra-
mid gratings, nanowires, and photonic crystals. Photonic crystals (PCs) are one of the best
candidates for this purpose. They can selectively manipulate reflection and transmission
spectra and enhance the interaction of light with material. Depending on the role, photonic
crystals can be integrated with the structure of solar cells as an additional layer, or an active
layer of SC can be designed as a PC structure. Table 1 includes information concerning
exemplary applications of PCs in various solar cells.

2. Photonic Crystals

Photonic crystals are artificial structures with a spatial periodicity of dielectric per-
mittivity on the wavelength scale. This gives rise to Bragg diffraction, facilitating both
constructive and destructive interference effects for certain wavelengths of light, leading to
a photonic band gap (PBG). Within this spectral region, light is unable to propagate through
the material. The existence of the PBG profoundly impacts interactions between light and
matter, enabling phenomena such as light confinement, waveguiding, trapping, enhanced
nonlinear effects, increased light emission, and the slow photon effect [29]. Periodicity
can vary from one-dimensional to three-dimensional with a period of the order of the
wavelength of light, and according to this, PCs can be categorized into one-dimensional
(1D), two-dimensional (2D), and three-dimensional (3D) photonic crystals (Figure 1).
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Figure 1. Models of photonic crystals: (a) one-dimensional (1D), (b) two-dimensional (2D),
(c) three-dimensional (3D). The different colors represent materials with various refractive indices.

The spatial period of structure “a” is called the lattice constant, analogous to the
lattice constant in ordinary crystals, built of regularly arranged atoms [29]. The interaction
of light with such periodic structures depends on their geometry, i.e., both on the type
of crystal lattice, the shape of elements located in the nodes of the lattice [30], and the
volumetric share of the material with a given refractive index in the unit cell, quantified by
the value called the filling factor, f [31]. Another crucial parameter affecting such periodic
structures’ properties is the contrast of individual areas’ refractive indices. The most crucial
feature of photonic crystals is the photonic band gap (PBG) in the photonic band structure.
Its presence can be verified by examining the spectral characteristics of the reflection or
transmission (Figure 2).
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Figure 2. The Bragg mirror scheme and the reflectance and transmission spectra calculated for the
Bragg mirror consist of 10 pairs of layers 75 nm thick and a refractive index of 2.0 and layers 100 nm
thick and a refractive index of 1.5 [32].

2.1. 1D Photonic Crystals

1D PCs are otherwise called distributed Bragg reflectors (DBR) (Figure 2). Generally,
they are designed as narrow-band reflectors. The maximum reflectance is centered at
Bragg’s wavelength (λB), referred to as the photonic band gap:

mλB = 2(nLhL + nHhH), (1)

where m is the diffraction order and hL and hH are the thicknesses of layers with refractive
indices nL and nH, respectively. In the 1D structure, the photonic band gap exists indepen-
dent of the contrast in the refractive index. However, it influences the PBG range, ∆ω, and
thus the range of high reflectance [33]:

∆ω =
8c
λB

arcsin
(
|nL − nH |
nL + nH

)
(2)

2.2. 2D Photonic Crystals

Generally, two types of such crystals can be distinguished [34,35]: photonic crystals of
the “hole” type (Figure 3a), consisting of cylinders with a low refractive index embedded
in a medium with a high refractive index [36–39], and the “rod” type (Figure 3b), consist-
ing of rods with a high refractive index surrounded by a medium with a low refractive
index [35,40–45]. Both holes and rods can be arranged differently to create different 2D
crystal lattices. A few examples are shown in Figure 3c–e.
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Figure 3. Exemplary 2D photonic crystals: (a) hole-type and (b) rod-type. Crystal lattices presented
in 2D PCs: (c) square, (d) hexagonal, and (e) “honeycomb”.

The main factors determining the properties of two-dimensional photonic crystals
are the refractive index contrast, the degree of filling with a material with a high or low
refractive index, and the type of crystal lattice. In 2D structures, the formation of a two-
dimensional PBG requires the fulfillment of additional conditions [46,47], such as the
appropriate geometry of the structure and a sufficiently high contrast of refractive in-
dices [47–49]. The greater the contrast, the wider the total PBG is.

Depending on the structure, the PBG may exist only for the TM or the TE mode [33,34,50].
Only in exceptional cases is a two-dimensional photonic band gap obtained for both polar-
izations [51,52], like in the “honeycomb” lattice.

2.3. 3D Photonic Crystals

A large variety of 3D PCs exist. Some of the most popular are presented in Figure 4.
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Figure 4. Examples of 3D PCs [33]: (a) Yablonovite, consisting of a triangular system of holes
prepared by drilling the slab at a specific angle; (b) woodpile, formed “layer by layer” by a stock of
dielectric 1D bars with alternating orthogonal orientations; (c) opal, obtained by self-organization
from monodisperse colloidal suspensions.

Similar to 2D structures, the properties of 3D PCs depend on the geometry, degree of
filling, and contrast in refractive indices [33].

An exemplary 3D photonic crystal in the form of SiO2 opal and its corresponding
photonic band structure compared with reflection spectra are presented in Figure 5 [53].
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Figure 5. (a) Typical SEM micrograph of SiO2 bare opal [54] and (b) photonic bands calculated for
SiO2 bare opal compared with measured reflectance spectra for a normal incidence of light on a (111)
surface [53].

It is much more challenging to produce three-dimensional structures with an appro-
priate, low periodicity (e.g., comparable to the wavelengths of visible light) than one-
or two-dimensional structures. They require much more sophisticated and expensive
technology like micromanipulation [55,56], wafer fusion bonding [57], interference lithog-
raphy [58,59], X-ray lithography [60], holographic lithography [61–63], and ion beam
lithography [64]. Producing the desired structure requires the use of a suitable method.
Photonic crystals of the opal or inverse opal type are noteworthy. They can be formed
due to the self-assembly of colloidal systems consisting of monodisperse spherical parti-
cles. It should be emphasized that this is the simplest and cheapest template production
method that does not require expensive equipment. Simultaneously obtained layers have
relatively good quality and a large surface. Using ordered spheres from several hundred
nanometers to several micrometers results in a gap for electromagnetic waves in the visible
and near-infrared range. Changing the sphere size shifts the wavelength range of the PBG.
This fact influences the optical spectra registered for PCs. The authors of [65] presented
reflection spectra in the range of 500–900 nm for three samples of SbSI inverse opal, which
differed only with sphere size (see Figure 6). Additionally, they analyzed the influence of
the absorption band edge (Eg) of SbSI on such spectra.
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Figure 6. (a) Typical SEM micrograph of SbSI inverse opal; (b) photonic band structure of inverse opal
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registered in RT; spectra are vertically displaced for better clarity; the range of strongly absorbed
wavelengths are marked with orange. Reprinted from [65], Copyright (2020), with permission
from Elsevier.
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The photonic crystal can redirect, concentrate, or even trap light incidents on it.
Different materials (dielectrics, semiconductors, metals, polymers, etc.) and 1D, 2D, and
3D architectures (layers, inverse opal, woodpile, etc.) of photonic crystals enable great
flexibility in designing the optical response of the material. This opens an extensive range
of applications, among which are solar absorbers. This paper presents an overview of the
latest developments and trends in applying photonic crystals for photovoltaics.

3. Photonic Crystals in Photovoltaics

Photonic crystals can be applied in solar cells to enhance their performance and
efficiency through better light management and trapping. They can be used as:

1. Anti-reflective and light-trapping surfaces
2. Back reflectors
3. Spectrum splitters
4. Absorption enhancers
5. Additional light management layers
6. Radiation coolers (RCs)
7. Electron transport layers (ETLs)

Selected solutions are presented in subsequent chapters. Very often, the choice of
structure is dictated by the technological capabilities required for PC production. However,
one can also come across proposals for more sophisticated structures, such as photonic
crystals comprising gyroidal and hyperbolic layers [66]. The advantage of such a structure is
an angle-insensitive reflector for solar energy applications, such as reflectors, a wavelength-
selective absorber, smart windows, and an intermediate layer for solar cells.

3.1. Anti-Reflective and Light-Trapping Surface

When electromagnetic radiation falls on the interface of two transparent media, gen-
erally, two phenomena occur: Part of the radiation passes from one medium to another,
undergoing refraction, and the rest reflects from the interface. The more radiation is re-
flected, the less radiation passes inside. The bare silicon, still the most common material
used in solar cells, in intimate contact with air, reflects approximately 35% of the incident
power over all wavelengths used in solar cell work [67]. Thus, applying anti-reflective coat-
ing (ARC) or surface texturization is crucial to improve the efficiency of a solar cell [68,69].
They aid in preventing reflection and ensure as much radiation as possible penetrates the
active layer, particularly of the wavelength range that interacts with the given material.

Different antireflection coatings have been optimized theoretically and experimentally
so far (Figure 7). The simplest ARC consists of a thin layer of dielectric material (Figure 7a)
with a specially chosen thickness so that interference effects in the coating cause the wave
reflected from the ARC top surface to be out of phase with the wave reflected from the
semiconductor surfaces [70]. The layer type and thickness depend on the material used in
a solar cell. The dielectric contrast between the air and material of the solar cell should be
reduced to reduce the reflection spectrum [71]. For instance, Fedawy et al. [70] examined
the efficiency of GaAs solar cells covered with a Si3N4 antireflection layer. They increased
efficiency from 14.89% to 27.16% by adding 75 nm Si3N4 ARC and 29.57% after additional
front surface texturing (Figure 7b).
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In the 1980s, Green et al. had already conducted a computer-based analysis of a
double-layer antireflection phenomenon [68]. They found that a combination of a quarter
wavelength of ZnS (refractive index, n = 2.25–2.35) and a quarter wavelength of MgF2
(n = 1.35–1.40) provided the best results (both thicknesses referred to a vacuum wavelength
of 600 nm) in the case of silicon solar cells. It is possible to keep reflection loss below 2%
from 460 to 940 nm with such a coating [68]. Multilayer antireflection structures (Figure 7d)
have also been analyzed [72,73]. Womack et al. found that stacks of two SiO2 and two ZnO2
alternating layers of various thicknesses on thin film CdTe solar cells reduced their average
reflection to ~1.2% [72]. Multilayer systems can be referred to as 1D PCs, provided that the
periodicity of the layer system is maintained. These structures, commonly called distributed
Bragg reflectors, are typically engineered to serve as narrow-band reflectors. However, their
transmittance is almost negligible in the photonic band gap range wavelength. Regardless,
applying 1D PCs as an ARC has been considered [26,69,71,74–76]. The consideration is
often limited to the one-period photonic crystal structures [26,71,74,76], meaning multilayer
structures are analyzed. The details of the examined 1D structure are presented in Table 2.
Most of the works concern only theoretical considerations. An attempt to obtain the
analyzed structure was made by Bennet’s group [75]. They used reactive sputtering to
fabricate non-stoichiometric silicon oxynitride (SixOyNz) layers whose refractive index
ranges typically from 1.4 to 1.7, depending on content.

Generally, better results were achieved in the case of ternary 1D PCs (e.g., [71]).
To enhance the absorption, the authors of [71] combined multilayer ARC with inverted
pyramid texturing on the top layer.

Two-dimensional photonic crystals (see, for example, Figure 7e,f) can also be utilized
for antireflection [77–79] and light trapping [80–84] covers (see Table 3). Two main types of
optical effects are commonly used in such structures: one based on geometric optics and the
other based on wave optics [85]. The first relates to the shape conducive to multireflection
and consequently improves absorption. The second approach is based on the peculiar
properties of photonic crystals.
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Table 2. Details of 1D PCs theoretically analyzed as ARC.

Reference Type No. of
Periods Materials Optimum

Thickness Solar Cell

[26] Ternary 1 SiO2/Si3N3/SiO2 98 nm/48 nm/8 nm PIN silicon

[74] Ternary 1 SiO2/KBr/SiO2 98 nm/48 nm/8 nm PIN silicon

[75] Binary 1 or 2 SixOyNz a-Si:H

[71] Binary 1 SiO2/TiO2 54 nm/82 nm a-Si

[71] Ternary 1 SiO2/Si3N3/TiO2 54 nm/33 nm/82 nm a-Si

[69] Ternary 1 SiO2/Al:ZnO/SiO2 98 nm/48 nm/8 nm a-Si:H

[69] Ternary 1 SiO2/SiON/SiO2 98 nm/48 nm/8 nm a-Si:H

[76] Binary MgF2/ZnS 92.39 nm/54.95 nm
92.39 nm/109.91 nm

[76] Ternary MgF2/ZnS/Al2O3

92.39 nm/
109.91 nm/
78.70 nm

Table 3. Details of 2D PCs used as anti-reflective and light-trapping surfaces.

Reference Type of 2D PC Lattice Solar Cell Methodology

[77] Tapered silicon Hexagonal a
= 375 nm

Theoretical and
experimental

[78]

Round pillars
Cones
Round pillars
Square pillars
Inverted pyramids
Round holes
Round holes
Square holes

Square
Square
Hexagonal
Rectangular
Square
Square
Hexagonal
Square

On <100>
silicon

Theoretical and
experimental

[82] Holes in ITO/p-AlGaAs
layer Hexagonal GaAs Theoretical

[79] Nanocylinders of Al2O3
or PMMA

Square
a = 440 nm

GaAs
Si Theoretical

[80] Inverted nanopyramid
surface texture

Thin-film
c-Si

Theoretical and
experimental

[81] Teepee-like PC a = 1200 nm c-Si

[83]
Parabolic-pore
thin-c-Si inverted
pyramid

a = 1000 nm Thin-film
c-Si Theoretical

[84] Inverted micropyramid
surface texture

a = 1300 nm,
1800 nm,
2100 nm, and
2500 nm,

Thin-film
c-Si Theoretical

In 2010, Hung et al. [77] applied 2D PCs with tapered rods to achieve antireflection
and enhanced absorption. That structure reduces the reflection due to a gradually changed
effective index. On the other hand, strong optical resonances for TM-mode can be found
in this structure, mainly due to the complete photonic band gap inside the material. Such
resonance can enhance the optical absorption inside the silicon PCs due to its increased
optical paths [77]. In 2013, surfaces with micropyramids (Figure 7c) were used in commer-
cial solar cells as part of an antireflection strategy [78]. Dominguez et al. [78] optimized
2D photonic crystals (PCs) onto Si wafers to improve the performance of c-Si solar cells.
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Their objective was to find a structure capable of minimizing the reflectance of the Si wafer
in the spectral range between 400 nm and 1000 nm. They analyzed both hole-type and
rod-type 2D PCs (see Figure 7e,f) with different shapes of holes (inverted pyramids, square
holes, round holes) and rods (round pillars, cones, square pillars) and different crystal lattices
(square, hexagonal, rectangular) [78]. The pattern of circular pillars arranged in a square lattice
with a pitch of 448 nm, a diameter of 325 nm, and a height of 138 nm (a) was found to be
the best structure, with an average reflectance of 3.6% in the spectral region from 400 nm to
1000 nm. This value was obtained without any other material used as an anti-reflective coating.

Shen Hong-Jun et al. [86] designed a solar cell with an antireflection layer in the form
of regularly arranged dielectric cylinders with a truncated cone shape. They used Si3N4 to
form cones and SiO2 as a substrate. [85]. Kuang et al. [81,87] proposed a unique teepee-like
PC on crystalline silicon (c-Si). This structure is characterized by excellent antireflection
due to its Gaussian-type gradient index profile. It also enhances light trapping due to its
near-orthogonal energy flow and vortex-like field concentration via the parallel-to-interface
refraction effect inside the structure. On the other hand, the structure optimized for light-
trapping, e.g., a teepee-like structure, may act as a surface recombination center and reduce
solar cell efficiency [84]. Bhattacharya and John state that the most likely candidate for
high-efficiency silicon solar cells consists of inverted micropyramid PCs [21].

It is worth mentioning that some authors treat inverted pyramid structures as a type
of texture [71,88], while others treat them as PCs [89–91], calling them surface PCs [91].
If the lattice spacing is comparable to the desired wavelength, light trapping should
be enhanced by robust wave interference in the photonic structure [89] and resonant
effects [91]. However, according to Razzaq et al. [92], the influence on the efficiency of
random pyramid texturing is comparable with a periodic inverted nanopyramid structure.
A further study [93] showed that an optimized inverse nanopyramid regular structure could
outperform the random pyramid texture when considering incidence angle variations.

These structures, playing the role of ARC, simultaneously contribute to light trapping,
absorption enhancement, radiation cooling, etc.

3.2. Back Reflector

It is vital to prevent light from escaping from the active layer without being absorbed.
This condition requires a relatively thick active layer (even up to 3 mm) in most popular
silicon solar cells [94]). Back reflectors are applied to reduce this thickness. They reflect
the light passing through the active layer back to the active region and enhance the path
along which light can be absorbed. The simplest back reflectors are metal layers [82,95],
for example, Ag [81,94] or Al [94,96]. However, they have some drawbacks (plasmonic
resonance loss of the interface between the metal and absorption layers, performance
degeneration due to metal ion diffusion) [94]. PCs find their application in thin film solar
cells by providing controllable and enhanced reflections from material layers to promote
increased absorption. The wavelength range and intensity of reflection depend on the PBG
and can be easily adjusted thanks to a geometrical dimension of the PC structure. It allows
for the easy optimization of 1D PCs concerning specific requirements.

There have been a large number of propositions for using PCs as a back reflectors
(Figure 8):

• 1D binary PCs (DBR) [23,26,97–104]
• 1D ternary PCs [24]
• Combination of a reflection grating and 1D PCs [105,106]
• Textured conductive PCs (TCPC) [107]
• 2D PCs [108,109]
• Combination of 1D and 2D PCs [94]
• 3D inverse opals [110,111]
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Thanks to the PBG, photonic crystals can reflect up to 100% [95,102] of incident light
over the PBG wavelength range. That is challenging to achieve using metal and dielectric
mirrors. One condition is that this phenomenon refers only to the wavelengths in the
range of the PBG. The key parameter for optimizing the PC design consists of adjusting the
reflection peak (Bragg peak) to the solar photon energy to reflect it. This structure should
reflect light within the range where the active material responds most efficiently. Figure 9a
shows the PC comprised of SiO2 and TiO2 layers deposited on glass by the DC magnetron
sputtering technique by Delgado-Sanches and Lillo-Bravo [99] and the corresponding
reflection spectrum. In this example, the device reflects photons within the visible range
while the near-infrared spectrum is transmitted, as shown in Figure 9b. They observed
that solar irradiance harvesting enhancement occurred when the sun’s elevation angle was
between 50◦ and normal incidence [99].

Çetinkaya et al. [103] examined the structure of SCs composed of
FTO/SnO2/CdS/CdTe/MoO3/(MgF2/MoO3)N layers. They presented the influence of a
number of periods on the absorbance of light (Figure 9c) as well as on photocurrent density
(Jph) (Figure 9d). They noticed an increase in absorption and photocurrent density after
implementing the PCs. At the same time, the periodicity of the PCs can be restricted to four
periods due to saturation effects. Doghmosh et al. [24] studied ternary 1D PCs theoretically.
By introducing a third 30 nm layer of Si3N4 between every two layers of SiO2 and Si, the
omnidirectional region was improved by approximately 16%.

Zeng et al. [105] and Zhou et al. [106] analyzed the combination of 1D PCs as a
DBR and conventional [105] or 2D PC [106] reflection grating. With such a combination,
the authors of [106] efficiently harvested solar photons without losses associated with
textured metallic reflectors. They demonstrated that for near band edge photons, the
optimized solar cells reach more than a hundred-fold increase in path length at diffraction
resonances and exceed the classical light path enhancement limit predicted for randomly
roughened interfaces.

Chen et al. [107] proposed another light trapping scheme based on a textured conduc-
tive photonic crystal (TCPC) back reflector in an n-i-p hydrogenated amorphous silicon
(a-Si:H) solar cell. TCPCs combine a flat 1D PC and a randomly textured layer of chemi-
cally etched ZnO:Al. Total efficiency enhancement was obtained thanks to the sufficient
conductivity, high reflectivity, and intense light scattering of the TCPC back reflector.
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The other proposition of using a 2D PC as a back reflector for CdTe solar cells is
presented in [109]. The proposed 2D structure has a hexagonal lattice of Ge rods placed in
the SiO2 background. A device supplemented with such a structure has approximately 5%
more power conversion efficiency than solar cells with metal back reflectors.

Zhan and Cai [94] obtained a back reflector in a full-wave band of 470–1100 nm by
combining 1D and 2D PCs. The applied 1D PC was SiO2/c-Si DBR, and the 2D PC was
a crystalline silicon slab with etched periodic air pores. The reflectivity of it is calculated
to be 97.85%. Considering only the 2D PC and a range of 800–1100 nm, they achieved
99.32% reflectivity.

Varghese et al. [110] experimentally demonstrated a-Si inverse opal PCs as back reflec-
tors for Si solar cells. The authors observed increased absorption of near-IR wavelengths
and a 10% enhancement in the short-circuit current with no degradation in the open-circuit
voltage. Additionally, they proposed simplifying the PC integration with a solar cell by
transferring the free-standing PC membrane to form the PC onto electrically contacted cells.
Simulations performed by the authors of [111] on such c-Si solar cells with inverse opal
indicated the best effects were obtained for spheres with a diameter of 1 µm. The power
conversion efficiency reached 30.4% compared with 20.95% without a back reflector.

3.3. Spectrum Splitter

Tandem solar cells are created for conversion power over a wide energy spectrum.
Such cells consist of two or more layers of material having different energy gaps. The layer
with the higher energy gap is placed at the top, and the layer with the lower energy gap
is placed at the bottom (Figure 10). The most commonly used combination of materials
is c-Si and a-Si [112]. Such a structure requires an additional intermediate reflected layer
(IRL) for spectrum splitting and light management between these layers. The non-absorbed
photons with shorter wavelengths should be reflected to the top layer of the solar cell,
and the photons with longer wavelengths should be transmitted to the bottom one [69].
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Photonic crystals are perfect for designing an IRL (see Figure 2). Moreover, the IRL must
possess adequate electrical conductivity to prevent any losses through ohmic resistance in
the interconnection of the active layers [25].
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1D multilayer structures [69,113], 1D photonic ribbon structures [114], and 3D in-
verse opals [25,113,115] as IRLs have been considered theoretically and experimentally.
O’Brien et al. [113] compared solar cells’ properties with different IRLs, like 1.5-bilayer
and 3.5-bilayer µc-Si/ZnO (acting as Bragg reflectors) and ZnO inverse opal. One of their
conclusions was that the Bragg reflectors provide a larger band gap and less parasitic
absorption than the analyzed inverted opal PC. The constituent materials of 1D binary PCs
designed for c-Si/a-Si tandem solar by Sayed et al. [69] were Bi4Ge3O12 and µc-SiOx:H.
They examined ten-period structures consisting of a 62 nm layer of Bi4Ge3O12 and µc-
SiOx:H layers with different thicknesses (40 nm, 55 nm, and 73 nm) depending on the
sample. However, they observed the widest PBG (400–730 nm) when stacked with all
three structures.

Sundar et al. [112] theoretically designed a 1D magnetic photonic crystal (MPC) as a
multilayer system of a metal-doped magnetic composite material (Cu-YIG) and µc-SiOx:H.
They found that the photonic bandgap of MPC increases with the number of periods and
the percentage of copper doping, which tends to enhance the light trapping in tandem
solar cells.

A completely different 1D structure was demonstrated by Amiri et al. [114]. It was
a one-dimensional silicon strip with a 200 nm breadth and a length of 18 µm with ten air
holes etched on it. The air hole diameter was 180 nm and the lattice spacing was 1.75 µm.
The structure parameters were matched to reflect the light of wavelengths from the specific
range thanks to a photonic band gap. The reflected signal was absorbed by the upper cell,
and the transmitted signal was absorbed by the bottom cell.

The other type of investigated IRL is inverse opal [25,113,115]. In 2008,
Bielawny et al. [25] prepared a thin film of ZnO inverse opal at the rear side of a-Si
solar cells with the intention of later integration with c-Si/a-Si tandem solar cells. Upping
et al. [115] examined the impact of the IRL in the form of ZnO:Al inverse opal on the
c-Si/a-Si tandem solar cell external quantum efficiency. They reported an increase in the
enhancement of the external quantum efficiency in the a-Si:H layer with a factor of 3.6.

3.4. Absorption Enhancer

The Lambertian limit serves as a crucial benchmark in assessing the efficiency of solar
cells [116]. Research has indicated that both extremely thick and extremely thin solar cells
can approach this limit by implementing effective photon management strategies. By opti-
mizing techniques for managing photons, these cells can operate closer to the Lambertian
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limit, resulting in improved overall performance. One way to enhance absorption is to use
an active layer of SC in the form of a PC. Ordered photonic crystals have highly localized
diffraction profiles and offer strong coupling to optical modes at specific wavelengths,
with corresponding absorption enhancements that can exceed the Lambertian limit [117].
A periodic structure leads to nonlinear dispersion, which results in flat photonic bands
and the appearance of band gaps in photonic crystals. The group velocity of light with
wavelengths close to band gaps is anomalously low, and the so-called slow photon effect is
observed [118]. The lower light velocity increases the effective optical path of light [119].
Thus, when the edge of the PBG overlaps with the electron absorption edge, the result
can be expected to enhance light absorption [119]. The absorption edge can be tuned by
varying the dimensions of the periodic structure, thereby moving the PBG [120]. This
effect occurs for the photonic band gap’s red and blue edge [121]. Many authors explain
absorption enhancement by the existence of slow photons [11,121–124]. However, Mihi
and Miguez [121], examining dye-sensitized SCs as a combination of a photonic crystal and
a layer of nanocrystalline absorbing material, concluded that absorption enhancement due
to resonant modes localized within the absorbing coating brings a better effect than slow
photons in the active layer of the PC form. Therefore, photonic crystals play only the role
of porous colloidal mirrors operating through coherent scattering [121,125]. Coupling to
the resonant modes was also considered by other authors [91,116,126,127], even in the case
of the PC active layer [127]. Another explanation based on tuning the coupling strength
of incident radiation to quasi-guided modes over a broad spectral range using the PC
structure appears in refs. [128–131]. Such coupling enables the photons to spend enough
time in the patterned active layer to be absorbed there [127]. The other mechanism for
absorption enhancement in photonic crystals arises from strong resonances from parallel
interface refraction (PIR) [132]. This anomalous refraction type is negative and usually
out of the plane of incidence. Light impinging on photonic crystals over a wide range of
frequencies couples to Bloch modes and propagates nearly parallel to the thin film-to-air
interface. This phenomenon leads to anomalously long optical path lengths and a long
time before the light beam exits the thin film. This effect can be much stronger than that of
slow photons.

Various photonic crystal structures, for example, 1D grating [11,129,133],
2D structures [7,116,123,124,127,128,130,131,134,135], and 3D structures [121,122,125,136]
have been investigated for solar cell applications (see Figure 11).
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3.4.1. 1D Photonic Crystal

1D PCs were theoretically and experimentally considered by Duche et al. [11] to
enhance absorption in the active layer in organic solar cells. Their structure consisted of
two layers with 1D gratings (Figure 11b). One of them was the active layer made of a
blend of PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) and one of the polymers: P3HT
(poly-3-hexylthiophe’ne) with an energy band gap Eg~1.88 eV or TDPTD (poly(3-(2-methyl-
2-hexyl-carboxylate) thiophene-co-thiophene)) with Eg~1.83 eV. Due to slow photons, they
demonstrated photonic absorption gains for the integrated spectra on an 8◦ incident cone,
3.36% and 15.67% for P3HT:PCBM and TDPTD:PCBM, respectively [11]. Merabti et al. [133]
theoretically explored the feasibility of 1D PC grating in the active layer of an a-Si:H-based
photovoltaic cell. This structure led to more significant electro-optical gains thanks to the
interference effects and coupling of incident light with slow Bloch modes.

3.4.2. 2D Photonic Crystal

2D structures have been the most often chosen PCs in designing solar cells for absorp-
tion enhancement.

Mallick et al. [128] restructured the active layer in ultrathin c-Si solar cells by patterning a
400 nm-thick c-Si layer into a double-layer PC with holes (Figure 11c). The holes in the upper
layer had a smaller radius than those in the lower layer. This results in an enhancement of
the maximum achievable photocurrent density from 7.1 mA/cm2 for an unstructured film
to 21.8 mA/cm2 for a structured one, approaching the Yablonovitch light-trapping limit of
26.5 mA/cm2 for the same volume of active material. De Zoysa et al. [116,126] discussed
enhancing broadband light absorption in the wavelength range of 600–1000 nm by utilizing
multiple large-area resonant modes at the band edge of a PC in the case of ultrathin µc-Si
film (Figure 11d). They achieved a high active-area current density of 22.6 mA cm−2

and obtained an active-area efficiency of >9.1% using a square-lattice 2D PC. Gomard’s
team [7] studied 2D PCs for absorption enhancement in a-Si:H thin film. Their 100 nm-
thick active material, patterned with a lattice of holes with squared symmetry, reached a
high absorption of the incident light despite thickness below the diffusion length of the
minority carriers [7]. Another proposal for improved light trapping in Si was presented
in [135]. The approach was based on the quasi-resonant absorption of photons in a tandem
arrangement of partially disordered photonic crystal plates separated by a nanoscale gap.
This construction made it possible to surpass the Lambertian limit.

2D PC structures have also been implemented in organic
solar cells [124,129,130,137,138]. Tumbleston et al. [129,130,138] attempted to enhance
absorption in the active layer of organic solar cells by designing them in a photonic crystal
structure: square posts with 395 nm 2D square periodicity and channels with 400 nm 1D
periodicity. The research of Tumbleston’s team [129,137,138] on photonic crystal photoac-
tive layers resulted in an increase in absorption by ~17% over the entire spectral range due
to band edge excitation of quasi-guided modes [130]. The proposed active layer consisted
of the poly-3-hexylthiophene/[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM)
bulk heterojunction blend and a porous form of low index of refraction (~1.4) conducting
nanocrystalline zinc oxide (nc-ZnO). Additionally, PC geometry created excitons closer to
the P3HT:PCBM exit interfaces [129]. Thus, free carriers might be more suited to escape
from the photoactive blend, enhancing electrical performance readily. Another way of
implementing 2D PCs in organic SCs was presented in [124] (Figure 11g). The author
theoretically designed semitransparent organic solar cells with 2D photonic crystals inside
the active layer, which was composed of two fullerene materials. She also concluded that
PTB7-Th:PC71BM could be a better choice as an active layer than the P3HT:PCBM [124].

The improvement of absorption due to coupling incident light into quasi-guided
modes has been investigated by Dottermusch et al. [131] in CuInSe (CIS) nanocrystalline-
based solar cells. The 2D photonic structure was in the form of photoresist polymer
nanocones of half-ellipsoidal shape arranged in a square lattice and embedded into a layer
of CIS nanocrystals (Figure 11h). It resulted in absorption enhancement of only 3–7%
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because the low refractive index of the CIS nanocrystals was the main limiting factor that
led to a restricted number of quasi-guided modes [131].

Another group of solar cells where an active layer was designed in the 2D PC were
perovskite SCs [123,127,139]. The PC structure examined in [127] comprised air holes
arranged into a hexagonal lattice (Figure 11f) in perovskite MAPbI3. The absorption
enhancement was approximately 44% better than planar material [127]. A tetragonal lattice
of indium arsenide (InAs) cylinders in the absorption layer of methylamine lead iodide
(CH3NH3PbI3, MAPbI3) (Figure 11e) was presented in [123]. Implementing a photonic
structure increased absorption efficiency up to 82.5% in the wide wavelength range of
400–1200 nm. This is much higher than the absorption layer without the PC structure. In
addition, the absorption layer with photonic crystal presented a stable absorption efficiency
of 80% in the wide incident range of 0–80◦.

3.4.3. 3D Photonic Crystal

The only 3D structure of PC considered so far for the active layer of solar cells is inverse
opal [121,122,125,136] (Figure 11i). It has been used in dye- and quantum dots-sensitized
solar cells. Already in 2003, Nishimura et al. [118] noticed a ~26% increase in the short
circuit photocurrent efficiency across the visible spectrum (400–750 nm) by coupling a
photonic crystal to a dye-sensitized nanocrystalline TiO2 photoelectrode.

Mihi and Miguez [121] observed absorption enhancement in various spectral regions
depending on the size of the spheres and, thus, depending on the position of the PBG
relative to the absorption edge while studying dye-sensitized nc-TiO2 inverse opal. This
effect occurs for the photonic band gap’s red and blue edges. However, they concluded
that better outcomes were achieved in the structure consisting of PCs and a bulk layer
of absorbing material than in the photonic crystals only. The absorption enhancement
occurs in resonant modes localized within the absorbing coating rather than in the photonic
crystals. The latter plays the role of a mirror operating through coherent scattering. This
was confirmed experimentally by Lee et al. [125]. Bayram and Halaoui [122] examined
solar cells based on quantum-confined CdSe-sensitized TiO2 photonic crystals to amplify
solar energy conversion. They observed an almost sevenfold amplification of the photon-
to-current conversion efficiency for the examined inverse opal structure compared to a
nanocrystalline TiO2 with similar CdSe sensitization [122]. The authors attributed this
enhancement to a blue-edge slow photon effect due to overlapping the photonic band gap
at 700 nm with the CdSe absorption edge (600–650 nm). The quantum dot Q-CdTe/Se
layer-sensitized TiO2 inverse opal featured a four-fold enhancement factor of the photon-
to-current conversion [136].

3.5. Additional Light Management Layer

Photonic crystals have also been introduced into SCs as light management
layers [140–142]. As mentioned in the previous section, in dye-sensitized solar cells, better
effects were achieved when colloidal PCs were used as an additional layer rather than the
active one alone [121]. In [143], an additional multilayer colloidal structure composed of
spheres with different diameters led to light harvesting enhancement of approximately
60% compared to standard dye-sensitized solar cells due to the mirror behavior of the
colloidal superlattice.

Zhang et al. [140] integrated photonic crystals in the form of multilayer structures
composed of dense TiO2 and porous SiO2 with perovskite solar cells (Figure 12). The
resulting SC, in addition to high efficiency due to well-defined reflectance bands, can be
aesthetically attractive as a result of its tunable structural color over the entire visible
spectrum, depending on the thickness of the individual layers.
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Buencuerpo et al. [141,144] simulated an ultrathin GaAs solar cell including additional
PC layers: only on the front side, only on the back side, and on both the front and back sides
of the active layer. The front layer was composed of TiO2 cylinders arranged in a square
lattice inside an ARC of MgF2 when used alone or arranged in two displaced square lattices
combined with the back PC layer. The latter was made of AlGaAs cylinders arranged in a
square lattice inside a SiO2 spacer.

Producing periodic nanostructures is challenging and expensive; thus, the proposition
of less demanding quasi-random photonic structures (e.g., disordered structures with a pre-
cisely defined reciprocal space distribution of spatial frequencies) has
appeared [142,145]. An additional layer built into the back of GaAs solar cells led to
a 10% relative improvement [142].

3.6. Radiation Cooler (RC)

An inherent effect of the work of solar cells is their heating. This undesirable effect
adversely affects the efficiency of solar-to-electricity conversion and the lifetime of photo-
voltaic panels. The efficiencies of different PV technologies decrease with temperature, e.g.,
the efficiency of crystalline Si modules decreases at a rate of 0.45%/◦C [146,147]. In the
long run, high temperature activates and accelerates such unfavorable processes as contact
corrosion and polymer degradation. As a result, in hot climates, the power degradation
of crystalline Si photovoltaic modules progresses at approximately 1.8% per year, which
is almost nine times faster than modules installed in cold climates (approximately 0.2%
per year) [148]. In hot climates, the module lifetime was less than 15 years, well below
the standard 25-year warranty for solar panels. Lowering the temperature of the cells is,
therefore, a key factor in improving their efficiency and lifetime, which is vital in producing
electronic waste. It is critically important to develop effective, practical, and preferably
passive cooling methods to reduce the operating temperature of photovoltaic (PV) modules.
This can be achieved by using the radiative cooling effect (RC), i.e., the process of heat
loss by thermal radiation that can pass through the atmosphere into outer space. It is
possible in the so-called atmospheric transparency window, i.e., in the 8–13 µm wavelength
range. Materials that can absorb energy and radiate it in those wavelengths exhibit a
strong cooling effect. However, it must be considered that for photovoltaic applications,
lowering the operating temperature by RC is only viable if sunlight absorption can be
maintained simultaneously.

Commercial solar cells are usually encapsulated with polymer or glass covers [149]
and have a glass cover on top [150]. This glass protects delicate elements of PV modules
from dirt, moisture, and mechanical damage. This glass is also a cooling element due to its
inherent RC capability. Even though glass is already highly emissive in the IR region, it is
still imperfect. Therefore, efforts are underway to produce materials that could support or
replace glass in heat dissipation and be used to cool photovoltaic panels. Nanostructured
materials, especially photonic crystals, may play an essential role. The thermal emission of
photonic crystals was noticed and studied very early. Enhancement and suppression of
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thermal emission of radiation have been theoretically and experimentally demonstrated,
among others, in 1D [151–154], 2D [155–159], and 3D [160–166] photonic crystals, as well as
in structures composed of 2D and 1D photonic crystals [167]. However, not all of them met
the requirements for solar cell radiative coolers, e.g., because of the significant reflection of
incident solar irradiance.

Gao et al. [168] argue that “an optimised radiative cooler should exhibit the fol-
lowing characteristics: (1) its substrate should not be constrained (i.e., the cooler can be
manufactured to be rigid or flexible), (2) it should be capable of large-area manufacture,
(3) have photonic crystal structures with wide emissive angles, (4) be inexpensive, (5) have
a near-ideal emittance profile, and (6) be capable of reducing the operating temperature
of solar cells. However, manufacturing a radiative cooler with the above characteristics is
still challenging”.

Zhu et al. [159] conducted a theoretical analysis of the cooling properties of a 2D
square lattice of silica pyramids with 4 µm periodicity and 20 µm height on a 100 µm-thick
uniform silica layer placed on a typical solar panel with no thermal emitter, an ideal thermal
emitter, and a uniform silica layer (see Figure 13a).
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a uniform silica layer, and a uniform silica layer with 2D silica pyramids [159]); (b) a comparison of
emissivity/absorptivity spectra [159]; and (c) the thermal scheme assumed by ref. [159]. Reproduced
from [159], licensed under the Open Access Publishing Agreement.

The silica pyramid structure has an emissivity very close to unity, with no dips over a
wide range of mid-infrared wavelengths (Figure 13b). The broadband absorption close to
the ideal is because the pyramids provide a gradual refractive index change to overcome
the impedance mismatch between silica and air at a broad range of wavelengths, including
the phonon–polariton resonant wavelengths. Zhu et al. [159], assuming the thermal scheme
presented in Figure 13c, found that the silica pyramid design substantially lowers the
temperature of the solar cell. At 800 W/m2 solar irradiation, the temperature reduction
in the silica pyramid design is 17.6 K compared with the bare solar cell. Furthermore, the
silica pyramid is also optically transparent and does not reduce the absorption of solar
energy; therefore, it is a promising cooling structure for photovoltaics. Zhu et al. [169]
practically tested the efficiency of radiation cooling of photovoltaic panels using a 2D
photonic crystal in the form of air rods in a silica matrix produced via photolithography.
They also obtained a significant increase in emissivity to a near-unity value over the entire
thermal wavelength range. Tests in rooftop conditions showed an, on average, 5.2 ◦C lower
structure temperature with the silica photonic crystal than the bare absorber structure and
over 1.3 ◦C lower than the absorber structure with the planar silica layer.

Zhao et al. [170] proposed and analyzed a photonic structure composed of 1D and 2D
photonic crystals that selectively reflect solar radiation and actively radiate heat to outer
space while maintaining its solar transmission in the PV conversion band (0.3–1.1 µm). The
1D photonic crystal forms a multilayer stack of alternating SiO2 and TiO2 layers (30 layers
in total) deposited on a single layer of MgF2. On top of this stack is placed a 2D photonic
crystal which, like in [169], is a square lattice (period = 6 µm) of air rods (diameter = 5 µm,
depth = 10 µm) etched into a uniform layer of silica (thickness = 500 µm).
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The structure designed in this way is characterized by close-to-unity transmission and,
thus, the low reflection of sunlight in the range of 0.3–1.1 µm. However, in the entire range of
mid-infrared waves and the atmospheric transmission window, the emissivity/absorptivity
of this structure is very high. Additionally, the structure is a good reflector for near-infrared
radiation above 1.1 µm (see Figure 4 in [170]). In their thermal simulation, Zhao et al., like
Zhu et al. in [159], also considered other nonradiative heat dissipation mechanisms. The
proposed photonic structure on top of the solar cell lowers its operating temperature by
10 ◦C. It is 7 ◦C lower than achieved for SCs with a glass coating on top and only 1 ◦C
higher than SCs with an ideal heat emitter.

Gao et al. [168] made and experimentally tested the effectiveness of a photonic struc-
ture formed by a square lattice of 2D truncated cones deposited on a polyethylene tereph-
thalate (PET) substrate. They designed the optimal structure using numerical simulations
for various shapes, sizes, and periodicity to maximize emittance in the atmospheric trans-
parency window. For the fabrication, Gao et al. used the UV nanoimprint method on
a UV-curable adhesive (UVA) [168], which is much more economical than, for example,
photolithography. The rooftop measurement showed that the photonic structure reduced
the temperature of the underlying silicon wafer by approximately 1.2 ◦C. A much better
effect was achieved when an additional layer of Ag was applied to the PET substrate. This
layer significantly reflected solar radiation, which helped reduce the temperature by 7.7 ◦C
but was not beneficial for the efficiency of solar cells.

A similar 2D structure in the form of SiO2 pillars was examined by Long et al. in [171].
They theoretically concluded that in extreme cases, for no convective heat coefficient (no
wind), the designed structure should reduce the temperature of the solar cell by 16 ◦C.
Simultaneously, they obtained a reduction of 2 ◦C compared with the bare structure during
the rooftop measurement.

Unlike previous structures, Silva-Oelker and Jaramillo-Fernandez [172] numerically
analyzed 2D structures based on hemispheres and a flat surface placed on a silicon pho-
tovoltaic cell. Considering different geometrical parameters, they determined maximum
power improvements of 18.1% and 19.7% when using soda-lime and polydimethylsiloxane
(PDMS) hemispheres, respectively, and a temperature reduction of 4 ◦C compared to a
glass encapsulated solar cell.

The radiative cooler proposed by An et al. [173] integrates a multilayer thin-film stack
and a SiO2 grating. They performed a comparable theoretical study on the performance
parameters of the SCs with and without the radiative cooler. In this way, they showed
that the SC temperature can be reduced by over 10 ◦C and the absolute power conversion
efficiency (PCE) can be increased by 0.45% by employing the photonic radiative cooler.
Zhao et al. [174] performed an outdoor experiment with silica micrograting as a cooler.
Their structure fabricated through the etching process has a periodicity of 7 µm, a duty
ratio of 0.2, and a vertical depth of 10 µm. The grating was highly transparent to sunlight
and reduced the temperature of the commercial silicon cell by over 3.6 ◦C after adding it
on top. Additionally, the proposed silica grating reinforced the light-trapping effect of the
solar cell.

The 3D photonic crystal with an opal structure also has good cooling properties. [175].
It should be emphasized that opals are easy to produce and cheap. Besides cooling effects,
applying opals with different sphere sizes caused the desired colorization. Kim et al. [175]
implemented self-assembled silica opals on a silicon (Si) wafer. Daytime radiative cooling
of the c-Si by as much as 13 ◦C while maintaining the nonabsorbing colorization is achieved
through colloidal suspension coating.

Tu et al. [176] designed a difunctional coating for both RC and ARC for silicon solar
cells. This coating is a PDMS layer with regularly arranged SiO2 particles (Figure 14). The
best effect was theoretically obtained for the layer with a thickness of 55 µm, filling in 8% of
the volume with SiO2 spheres of a radius of 500 nm. This PDMS/SiO2 radiative cooler can
significantly lower the temperatures of c-Si solar cells by 9.5 ◦C, avoiding a 4.28% efficiency
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loss. Under the same conditions, the standard glass cover reduces the cell temperature by
only 5.1 ◦C.
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3.7. Electron Transport Layer

ETLs are conductive scaffolds coated with perovskite, which extract electrons from per-
ovskite and deliver them onto a transparent electrode, blocking charge recombination [177,178]
and eliminating the space charge [179]. Mesoporous TiO2 [178], ZnO [138,179], and PFN [85,179]
are the materials applied in ETLs. The electron transport layer’s microstructure plays an impor-
tant role that invariably affects the perovskite infiltration, light trapping, harvesting, and charge
injection, transportation, and collection at the ETL/perovskite interfaces. Highly oriented arrays
of nanorods, nanowires, and nanotubes have been widely used as ETLs in PSCs [180–182].

Chen and co-workers [183] introduced TiO2 inverse opal as an ETL for the first time in
2015. It was prepared using a simple polystyrene assistant method (Figure 15a). The layers
combined the functions of the compact and mesoporous scaffold layers in perovskite solar
cells. The porous structure of inverse opal could enhance the devices’ light harvesting effi-
ciency. It maintained excellent transmittance of short wavelength light. Also, it promoted
the transmittance of long wavelength light, while the conventional P25 mesoporous film
demonstrates lower transmittance than bare FTO in the wavelength region from 300 to
600 nm. Due to the additional antireflection property, more light will arrive at the perovskite
layer supported by the proposed ETL. As a result, better absorbance (Figure 15b) and power
conversion efficiency (13.11%) were obtained in comparison with the conventional P25
mesoporous layer (11.00%). Moreover, the bottom of inverse opal ETLs plays the same role
as the traditional compact layer, transporting electrons and inhibiting the recombination of
electrons and holes.

Kim et al. [184] examined a layer with a TiO2 hemisphere structure which was prepared
using the nanoimprint technique. By controlling the dimension of the hemispheres, they
concluded that the 1400 nm-sized hemisphere pattern using 1600 nm polystyrene beads
provided the highest light-utilization efficiency among those in the visible range. In
addition, the recombination rate of the electron transport layer was also decreased. As
a result, the power conversion efficiency of perovskite solar cells was improved from
10.5 to 15.2%.

Another ETL monolayer structure was reported in [185]. It was a well-organized mono-
layer SnO2 inverse opal. Its periodic structure exhibited an optical coupling phenomenon,
enhancing the perovskite layer’s light absorption. Furthermore, the well-organized struc-
ture with appropriate pore size triggered the confined crystallization of perovskite films
and optimized the interface of SnO2/perovskites, suppressing the interfacial electron–hole
recombination. As a result, the power conversion efficiency of mesoporous perovskite solar
cells fabricated was boosted from 19.63% for the control device with a layer of mesoporous
SnO2 to 22.01% for devices with a SnO2 inverse opal layer as an ETL.
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Zheng et al. [186] presented a dual porous TiO2 ETL for carbon cathode-based per-
ovskite solar cells. This layer was constructed by spin-coating on a polystyrene sphere
template. It was demonstrated that the unique structure could enhance the light harvesting
efficiency via scattering and promote the crystallinity of the supported perovskite film and
the perovskite/TiO2 interface, thereby improving the performance of the carbon-perovskite
solar cell. The authors achieved 9.81% power conversion efficiency.
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4. Summary

Photonic crystals have potentially wide applications in photovoltaics and could sig-
nificantly improve the efficiency of solar cells, as shown in Table 4, which presents the
PCE values for examples of SCs with PCs and their percentage increase compared to SCs
without PCs.

Table 4. The values of power conversion efficiency (PCE) and its increase (∆PCE) as a result of
the use of PCs. For comparison, the values of ∆PCE were calculated according to the formula
(PCEPC−PCEr)/PCEr where PCEPC is the efficiency of SCs with PCs and PCEr is the efficiency of
reference SCs without PCs. *: value is taken from the reference literature.

Reference Solar Cell Type of PC Function of PC PCE, % ∆PCE, % Methodology

[187] Perovskite 2D honeycomb-like Light management 20.85 12.1 Experimental

[83] c-Si 2D parabolic-pore
inverted pyramid Light trapping 29.11 6.8 Theoretical

[111] c-Si 3D inverse opal Back reflectors 30.43 16.0 Theoretical

[109] Thin film
CdTe 2D lattice of rods Back reflector 25.51 23.1 Theoretical

[103] CdS/CdTe-
based 1D multilayer Back reflector 10.47 26.7 Experimental

[179] Polymer 1D multilayer Back reflector 8.20
5.41

23.3
26.4 Experimental

[188] Perovskite 2D lattice of rods Absorption enhancer 20.97 20.9 Theoretical

[189] Dye-
sensitized 3D inverse opal Absorption enhancer 6.875 21.7 Experimental

[190] Organic 1D multilayer RC 8.98 1.5 Theoretical
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Table 4. Cont.

Reference Solar Cell Type of PC Function of PC PCE, % ∆PCE, % Methodology

[190] Perovskite 1D multilayer RC 12.5 2.4 Theoretical

[173] Thin-film
c-Si

1D multilayer with the
SiO2 grating RC - 0.45 * Theoretical

[183]
Hybrid

per-
ovskite

3D inverse opal ETL 13.11 19.2 Theoretical

[184] Perovskite 2D lattice of hemispheres ETL 15.2 44.7 Experimental

[12] Perovskite 2D array of nanodisks ETL 18.70 19.6 Experimental

Photonic crystals can be used as an anti-reflective and light-trapping surface, back
reflector, spectrum splitter, absorption enhancer, radiation cooler, or electron transport layer,
depending on the kind of solar cell. The purpose of each of these elements is, among others,
to redirect, concentrate, or trap incident radiation, which allows for better use of light by
the solar cell. Appropriate light management reduces the active material used, which has
ecological and economic significance. In addition to photonic crystals as light-trapping
systems, research is being conducted on other nanostructures that control and manipulate
light behavior, such as plasmonic absorbers [191–193]. Plasmonic absorbers also consist
of micro- and nanostructured materials that can interact with light at the subwavelength
scale to obtain unique optical properties. Still, unlike photonic crystals, they exploit the
plasmonic properties of metallic nanostructures.

In addition, photonic crystals, due to their structural color that is a consequence of
their periodic structures, can also improve the appearance of solar cells, which is of great im-
portance when SCs are incorporated into various indoor and outdoor architectural designs.
Almost all kinds of photonic crystal structures are considered in solar cells of all generations,
mostly only theoretically. Not all the analyzed structures are easy to use for technological
reasons and often require advanced nanofabrication techniques. In general, the production
of photonic crystals is more cost-intensive the greater the dimensionality of the PCs. Hence,
proposals for photonic crystals implemented in solar cells are mostly limited to 1D and
2D structures. In the case of 3D structures, only inverse opal structures resulting from
relatively cheap technology based on self-assembly are taken into account [189]. In the
literature, the following techniques to produce SC prototypes are proposed: chemical vapor
deposition [179], physical vapor deposition [103], spin coating [187], reactive-ion etching
(RIE) [12], nano-imprinting techniques [184], and atomic layer deposition (ALD) [189].
However, the balance of production costs and benefits should be considered. Developing
effective technology is still one of the most severe challenges. Implementing photonic
crystals in SCs is a challenge in technology development for the production of PCs and
their integration with the SCs. The next significant engineering challenge is optimizing
the design and geometry of photonic crystals to minimize optical losses while maximizing
light absorption and achieving broad-band light trapping and absorption across the solar
spectrum while minimizing spectral dependencies. These challenges require a thorough
understanding of the crystal lattice’s interaction with light and matter. Photonic crystals
fabricated using nanostructured materials may be susceptible to degradation, environ-
mental factors, and long-term stability issues. Ensuring the durability and stability of
photonic crystal-enhanced solar cells under real-world operating conditions is crucial for
commercial viability. Developing materials and techniques that protect photonic crystals
from degradation and environmental factors is essential for long-term device performance.
Addressing these challenges requires interdisciplinary research efforts spanning materials
science, nanotechnology, photonics, and device engineering. Despite this, reports on the
commercialization of technological solutions using photonic crystals in solar cells, e.g.,
ref. [194], are already available.
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