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Abstract: Geopolymers (GPs) are gaining prominence due to their low carbon emissions and sustain-
able attributes. However, one challenge with GPs, particularly those made with ground granulated
blast furnace slag (GGBFS), is their significant shrinkage during the geopolymerization process,
limiting its practical applicability. This study focuses on how the substitution ratio of metakaolin
(MK) and the concentration of sodium hydroxide (NaOH) in the activator can influence the shrinkage
and strength of a GGBFS-based GP. The experimental approach employed a 3 × 3 parameter matrix,
which varied MK substitution ratios (0%, 50%, and 100%) and adjusted the NaOH concentration (6 M,
10 M, and 14 M). The results revealed that increasing MK substitution, particularly with 6 M NaOH
activation, reduced the GP shrinkage but also diminished compressive strength, requiring higher
NaOH concentrations for strength improvement. Statistical tools, including analysis of variance
(ANOVA) and second-order response surface methodology (RSM), were employed for analysis.
ANOVA results indicated the significant impacts of both the MK content and NaOH concentration
on compressive strength, with no observable interaction. However, the shrinkage exhibited a clear
interaction between MK content and NaOH concentration. The RSM model accurately predicted com-
pressive strength and shrinkage, demonstrating a high predictive accuracy, for which the coefficients
of determination (R2) were 0.99 and 0.98, respectively. The model provides a reliable method for
determining the necessary compressive strength and shrinkage for GGBFS-based GP based on MK
substitution and NaOH concentration. Within the optimization range, the RSM model compared with
experimental results showed a 6.04% error in compressive strength and 0.77% error in shrinkage for
one interpolated parameter set. This study establishes an optimized parameter range ensuring a GP
performance that is comparable to or surpassing OPC, with a parameter set achieving a compressive
strength of 34.9 MPa and shrinkage of 0.287% at 28 days.

Keywords: geopolymer; ground granulated blast furnace slag; metakaolin; shrinkage; compressive
strength

1. Introduction

A geopolymer (GP) is a type of alkali-activated material (AAM) crafted from fine
powders rich in silicon and aluminum. These powders are dissolved in alkali solutions,
forming a sodium alumino-silicate hydrate (N-A-S-H) gel [1,2], which gives GPs their
unique properties. The structure of a GP is akin to zeolite, existing in amorphous or semi-
crystalline forms [3,4]. When calcium-rich materials like ground granulated blast furnace
slag (GGBFS), CaO, or Ca(OH)2 are incorporated, a calcium (alumino-)silicate hydrate
(C-S-H) gel forms, enhancing the mechanical properties and accelerating hardening [5–8].
This has led to some debate in academic circles, with certain studies suggesting that high-
calcium-containing raw materials produce an AAM rather than a traditional GP, which is
an alkali-activated material containing silicon and aluminum without calcium [9,10].
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For practical applications, GP is often mixed with calcium sources from industrial
by-products such as GGBFS, class-C fly ash (FA), waste ceramic powder, and oyster shell
powder. The purpose is to reuse these by-products or waste from construction, industry,
agriculture, and breeding as building materials to avoid an excessive accumulation and
impact on the environment. This blending blurs the lines between GPs and AAMs [11–13].
Compared to ordinary Portland cement (OPC), GP variants like GGBFS and GGBFS/FA-
based GPs not only demonstrate higher compressive strength but also significantly reduce
carbon emissions—between 50 to 90% [14,15]. It is worth noting that the evaluation
conditions and carbon emissions factors varied in each case and country [16]. Consequently,
a GP is regarded as a low-carbon-emission material with the potential to replace OPC [17].

While GPs exhibit a higher compressive strength compared to OPC, their practical
application is limited due to excessive shrinkage issues [18–22]. This shrinkage is primarily
attributed to the consumption of nano-pore water in the GP [23]. In particular, a GGBFS-
based GP activated by sodium silicate and sodium hydroxide can experience shrinkage
up to three and six times greater than that of OPC, respectably. Although the activation
of a GGBFS-based GP using sodium carbonate can have a similar shrinkage to that of
OPC, the compressive strength will be too low [24]. Alternatives like FA and MK-based
GPs offer improved volume stability compared to GGBFS-based GPs but tend to have
lower strength [25]. Adding silica fume (SF) to FA-based GPs can enhance strength, yet it
may also increase shrinkage [26–28]. Furthermore, FA’s composition can vary significantly
depending on the coal source and power station types [29], leading to varying properties
in GPs. Consequently, a blend of FA, GGBFS, MK, and SF has been researched extensively
to strike a balance between strength and shrinkage in GP formulations [20–31].

MK as a raw material for GPs demonstrates superior volume stability compared to
GGBFS-based GPs [32]. MK, similar in properties to FA and GGBFS, possesses cementitious
properties and is commonly used in OPC concrete [33,34]. It is derived from calcining
kaolin clay at temperatures between 600 to 850 ◦C for durations ranging from 1 to 12 h,
depending on the kaolin’s chemical composition [35,36]. This calcination process eradicates
the hydroxyl groups in the kaolin, transforming it into a more reactive, amorphous MK,
ideal for effective geopolymerization [37–39]. Additionally, an MK-based GP is particularly
suitable for repair applications, given its mechanical properties closely resembling those of
OPC and its superior tensile strength [40–42].

Acknowledging MK’s more consistent source and composition compared to FA, this
study focuses on substituting GGBFS with varying proportions of MK in a GP. It also
involves adjusting the concentration of NaOH in the alkaline activator to examine the
resulting changes in compressive strength and shrinkage. Given the multitude of factors
influencing GPs, a comprehensive statistical analysis is utilized, including regression
models and analysis of variance (ANOVA). These analytical methods are employed to assess
the impacts of different parameters on GPs and to identify the optimal combinations [43–46].
The research methodology incorporates a two-variable, three-level experimental design,
with the findings subjected to ANOVA and regression modeling.

2. Material

This study aimed to enhance the shrinkage properties of GPs by incorporating MK into
a GGBFS-based GP formulation. To achieve this, a blend of GGBFS and MK was activated
using a sodium-based alkaline activator. This activator comprised sodium hydroxide
(NaOH), sodium silicate (Na2SiO3), and sodium aluminate (NaAlO2). In order to focus
solely on the effects of the binder and activator, no aggregates were added to the GP mix,
ensuring a more controlled study of the material’s intrinsic properties.

2.1. Binder

The GGBFS powder used in this research was sourced from CHC Resources Corp.
(Kaohsiung City, Taiwan), Taiwan. It had a mean particle size (D50) of 12.33 µm, a specific
surface area of 4000 cm2/g, and a specific gravity of 2.9. The MK, chosen for its fine
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particle size and chemical composition, was BURGESS No. 30 (Burgess Pigment Company,
Sandersville, GA, USA). It featured an average particle size of 1.4 µm and a specific gravity
of 2.63. The chemical compositions of both GGBFS and MK were meticulously analyzed
using X-ray fluorescence (XRF), with the results detailed in Table 1.

Table 1. The chemical composition of the GGBFS and MK.

Composition SiO2 Al2O3 CaO MgO Fe2O3 TiO2 Others

GGBFS (%) 32.43 9.96 47.32 5.16 0.69 0.83 3.61
MK (%) 58.15 38.34 0.19 0.00 0.90 1.66 0.76

2.2. Alkaline Activator

For the alkaline activation process, the study employed a sodium-based activator. This
activator was prepared by blending tap water with NaOH, Na2SiO3, and NaAlO2. The
concentration of the NaOH was varied among 6 M, 10 M, and 14 M, determined by the
ratio of NaOH to tap water. Furthermore, the molar ratios of SiO2/Na2O and Al2O3/SiO2
in the activator were maintained at 1.28 and 0.02, respectively, calculated based on their
total content in the mixture. These specific concentrations and ratios were critical for
understanding the activation process and the resulting properties of the GP.

2.3. Ordinary Portland Cement

This study used Portland Type I cement (Taiwan Cement Corp., Taipei City, Taiwan)
as a benchmark for evaluating GP specimens. The length change ratio of the OPC specimen
at 28 days was established as a standard for assessing the adequacy of the GP specimens.
Concurrently, the criterion for compressive strength at 28 days was set at a minimum of
28 MPa, in accordance with the specifications for rapid-hardening cementitious materials
outlined in ASTM C928 [47].

3. Experiment

The test method, parameters, and preparation of the specimen are described as follows.

3.1. Test Method

This research adhered to the ASTM C109/C109M-20 [48] standard for compressive
strength testing (specimen size is 50 mm × 50 mm × 50 mm), which necessitates the
slurry’s fluidity to be within 110 ± 5%. Consequently, adjustments in the activator-to-
binder ratio (A/B) were required for all specimens, ensuring compliance with the specified
fluidity criteria, as verified by fluidity tests in accordance with ASTM C230/C230M-20 [49].
The length change ratio measurements and calculations were conducted following the
ASTM C157-75 [50] standard (specimen size is 25 mm × 25 mm × 285 mm). Importantly,
the preparation of the specimens for length change measurements maintained the same
A/B ratio as those used for compressive strength testing. After a 24-h setting period, all
specimens were demolded. The initial length of the length change rate specimens was
recorded immediately post-demolding, then these specimens were placed in a controlled
curing chamber. Length measurements for these specimens were taken at various ages,
while the compressive strength tests were conducted at 28 days.

3.2. Experimental Design Parameter

The experimental design incorporated two variables across three levels to assess
the impact of MK substitution and NaOH concentration. This resulted in nine distinct
parameter sets, as detailed in Table 2. For each parameter, a minimum of three specimens
were prepared to conduct both compressive strength and shrinkage tests. The A/B ratio
for each parameter was determined based on achieving the targeted fluidity range of
110 ± 5%, ascertained through fluidity tests. Additionally, an OPC specimen was included
for comparative analysis.
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Table 2. The experimental design parameters for different specimens.

Specimen
Binder Alkaline Activator

MK (wt.%) GGBFS (wt.%) NaOH (M) SiO2/Na2O (wt.%) Al2O3/SiO2 (wt.%)

6 M-MK0 0 100 6

128 2

6 M-MK50 50 50 6
6 M-MK100 100 0 6
10 M-MK0 0 100 10
10 M-MK50 50 50 10

10 M-MK100 100 0 10
14 M-MK0 0 100 14
14 M-MK50 50 50 14

14 M-MK100 100 0 14

3.3. Preparation of Specimen

The preparation process involved mixing MK, GGBFS, and the activator for 2 to 5 min
to achieve a homogeneous slurry. This slurry was then poured into molds and sealed,
followed by a resting period in a room-temperature environment for 24 h. After demolding,
the specimens were transferred to the curing chamber with the specified conditions of
52 ± 3% humidity and 23.2 ± 2 ◦C temperature.

3.4. ANOVA

In this study, F-tests were employed to analyze the data, focusing on comparing
variances across multiple groups. This approach was chosen to ascertain the significance
of the NaOH concentration and MK content in alkaline activators as critical influencing
factors. The essence of the F-test involves contrasting the ratio of variation between groups
against the variation within groups. This comparison aims to determine if the variation
observed between groups significantly exceeds what might be expected from random
fluctuations. A significant result is indicated either when the F-value surpasses the critical
value, or when the p-value falls below the established significance level (α). In such cases,
the null hypothesis, which posits no difference in population variation among the groups, is
rejected. This suggests that the variation in at least one group is distinct from others. When
significant differences between groups are identified, additional post-hoc analyses are
conducted. These subsequent comparisons are crucial for pinpointing specific differences
among the groups.

3.5. Second-Order Response Surface Methodology (RSM)

The second-order response surface model was used to create a predictive mathe-
matical model. This model aimed to draw the curvature response surface of the com-
pressive strength and length change ratio at 28 days based on the NaOH concentration
and MK content to identify the qualification range. The model is established using the
following formula:

y = β0 + β1x1 + β2x2 + β3x2
1 + β4x2

2 + β5x1x2 (1)

where x1 is a variable of MK content, which is 0, 50 (wt.%), and 100 (wt.%) in this study; x2
is a variable of NaOH concentration of the alkaline activator, which is 6 (M), 10 (M), and
14 (M) in this study; and βi, i = 0–5 are coefficients.

The equation can be expressed in matrix form as:

Y = Xβ (2)
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where,

β =

β0
...

β5


6×1

(3a)

X =

1 x11 x21 x2
11 x2

21 x11x21
...

1 x1n x2n x2
1n x2

2n x1nx2n


n×6

(3b)

Y =

y1
...

yn


n×1

(3c)

In the above equation, n is the number of the experimental parameters and the number
of observations obtained for the corresponding experimental parameters; in this study n is
9. Note that n needs to be at least 6 or above to solve for 6 coefficients.

In this representation, Y is the matrix of observed responses, X is the matrix containing
the values of the predictors for each observation, and β is the matrix of coefficients to be
estimated. To find the coefficients, the least squares method is used, and the solution is
given by:

β = X−1Y (4)

This method aims to minimize the sum of squared errors between the observed
responses and the predicted values of the model.

4. Results and Discussion

In this study, nine GP specimens with varying parameters and one OPC specimen
were tested for comparative purposes. The water–cement ratio is 0.28 for the OPC specimen.
Table 3 lists the results of the compressive strength and length change ratio at 28 days for
these specimens.

Table 3. The compressive strength and length change ratio of specimens at 28 days.

Specimen Activator/Binder
Ratio

Compressive Strength (MPa) Length Change Ratio (%)

1 2 3 4 Average 1 2 3 Average

6 M-MK0 0.36 81.8 93.6 99.2 122.2 99.2 −0.539 −0.512 −0.51 −0.520
6 M-MK50 0.81 22.9 29.6 29.7 36.1 29.6 −0.408 −0.384 −0.367 −0.386
6 M-MK100 1.28 9.2 9.5 10.3 10.6 9.9 −0.156 −0.152 −0.151 −0.153
10 M-MK0 0.38 110.3 116.0 119.5 128.6 118.6 −0.478 −0.478 −0.471 −0.476
10 M-MK50 0.78 52.3 53.2 54.1 59.4 54.8 −0.514 −0.496 −0.444 −0.485

10 M-MK100 1.33 30.3 31.2 32.4 34.1 32.2 −0.248 −0.231 −0.213 −0.231
14 M-MK0 0.39 125.0 128.7 137.5 149.2 135.1 −0.472 −0.452 −0.441 −0.455
14 M-MK50 0.80 51.5 51.9 53.4 61.5 54.6 −0.535 −0.523 −0.385 −0.481

14 M-MK100 1.33 29.0 30.3 30.4 30.7 30.0 −0.271 −0.269 −0.259 −0.266
OPC - 34.2 38.3 38.5 42.2 38.3 −0.302 −0.297 −0.295 −0.298

4.1. Activator to Binder Ratio

The activator-to-binder ratio (A/B) for each specimen, as presented in Table 3, was
determined using a flow table test. To maintain the GP slurry’s fluidity at 110 ± 5%, an
increased amount of activator was required for slurries with a higher MK content, as
illustrated in Figure 1a. Additionally, it was observed that as the concentration of NaOH
increased from 6 M to 14 M, the amount of required activator slightly elevated, depicted in
Figure 1b.
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Figure 1. Activator-to-binder ratio of different parameters: (a) comparison of different concentrations;
(b) comparison of different MK contents.

4.2. Compressive Strength

The compressive strength data at 28 days are detailed in Table 3 and visually repre-
sented in Figure 2. A notable trend emerged where an increase in MK content led to a
decrease in the compressive strength of GP specimens. Conversely, elevating the NaOH
concentration resulted in an increase in compressive strength. However, for GP speci-
mens with over 50% MK, increasing the NaOH concentration from 10 M to 14 M did not
significantly affect the compressive strength. It is worth noting that only the specimen
containing 100% MK and made by 6 M activator is less than the 28 MPa specified by ASTM
C928, showing that the GP generally has excellent mechanical properties. Interestingly, GP
specimens either devoid of MK or containing 50% MK with NaOH concentrations above
10 M showed compressive strengths surpassing those of OPC specimens.
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Figure 2. Average compressive strength of specimens at 28 days.

4.3. Length Change Ratio

The length change ratios at 28 days are recorded in Table 3, while Figure 3 displays
the age-related length change ratios. A key observation was that GP specimens with 100%
MK content exhibited significantly less shrinkage compared to those with 0% and 50% MK.
Furthermore, GP specimens with 100% MK content showed lower shrinkage ratios than
the OPC specimens.
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In cases where GP specimens contained 50% MK and a NaOH concentration of 6 M, a
notable reduction in shrinkage was observed, as shown in Figure 3a. However, increasing
the NaOH concentration to 10 M and 14 M in these specimens led to increased shrinkage at
the initial stages, but their shrinkages at 28 and 100 days were comparable to those with 0%
MK content, as indicated in Figure 3b,c.

It is important to note that variations in NaOH concentration had a relatively minor
impact on shrinkage. For specimens with 0% MK, there was only a slight increase in 28-day
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shrinkage when the NaOH concentration was raised from 6 M to 14 M, as seen in Figure 3d.
In contrast, for specimens with 50% and 100% MK, increasing the NaOH concentration
from 6 M to 10 M and 14 M led to a noticeable increase in shrinkage, as shown in Figure 3e,f.

In conclusion, the study found that a higher MK content effectively reduced shrinkage,
particularly in GP specimens with 100% MK, which exhibited lower shrinkage than OPC
specimens. While reducing NaOH concentration did contribute to shrinkage reduction, its
impact was less pronounced than that of MK content.

5. Statistical Analysis

The experimental data were analyzed through ANOVA and a regression model to
make predictions. The results are as follows.

5.1. ANOVA

The NaOH concentration and MK content were two main factors to analyze in this
study. Each has three levels, including 6 M, 10 M, and 14 M for NaOH, and 0%, 50%, and
100% for MK. This resulted in nine distinct experimental conditions, evaluated for both the
compressive strength and length change ratio. To determine the primary factors influencing
these response variables, a two-way ANOVA was conducted. Prior to analysis, we ensured
adherence to the assumptions of normality and homogeneity of variances. The hypotheses
were structured such that the null hypothesis posited equal means across groups, while
the alternative hypotheses suggested notable differences. Specifically, the ANOVA for
compressive strength at 28 days, detailed in Table 4, utilized a two-way repeated measures
design with a significance level (α) of 5%. This method involved calculating variances
within and between groups, and the total variance, along with determining the sum of
squares, degrees of freedom (DoF), and mean square for each type of variance. The F-
value, derived from the ratio of the mean square between groups to the mean square
within groups, was compared against a critical value from an F-distribution table to gauge
statistical significance. Additionally, the p-value associated with the F-value was examined;
this value indicates the likelihood of observing such extreme results if the null hypothesis
was true. The analysis showed that the interaction p-value between MK content and NaOH
concentration exceeded 5%, suggesting no significant interaction between these variables.
However, the individual p-values for both MK content and NaOH concentration were
below 5%, confirming their significance as factors affecting compressive strength. Notably,
MK content had a more pronounced impact than NaOH concentration.

Table 4. Two-way ANOVA of the compressive strength at 28 days.

Source of Variations Sum of Squares DoF Mean Square F-Value p-Value Critical Value

MK Contain (%) 57,427.14 2 28,713.57 490.36 6.00 × 10−22 3.35
NaOH (M) 4992.03 2 2496.01 42.63 4.42 × 10−9 3.35

MK contain × NaOH 470.37 4 117.59 2.01 1.22 × 10−1 2.73
Error 1581.03 27 58.56
Total 64,470.56 35

Similarly, the ANOVA for the length change ratio at 28 days is presented in Table 5,
and followed the same methodology as that for compressive strength. The results indicated
a significant interaction between the MK content and NaOH concentration, as their p-values
did not exceed 5%. This necessitated further analysis of each factor’s individual impact,
conducted through one-way ANOVA.

The one-way ANOVA, examining six combinations for each factor, is summarized
in Table 6. With a modified significance level set at 8.3 × 10−3, the findings showed that
NaOH concentration significantly influenced the MK contents of 0% and 100%, but not 50%.
Additionally, the length change ratio at 28 days was more sensitive to NaOH concentration
changes for 100% MK content than for 0% MK content. In contrast, MK content had a
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significant impact on all tested NaOH concentrations (6 M, 10 M, and 14 M), with the 6 M
concentration being the most affected by changes in MK content, followed by 10 M.

Table 5. Two-way ANOVA of the length change ratio at 28 days.

Source of Variations Sum of Squares DoF Mean Square F-Value p-Value Critical Value

MK Contain (%) 0.3812 2 0.1906 178.52 1.35 × 10−12 3.555
NaOH (M) 0.0126 2 0.0063 5.90 1.07 × 10−2 3.555

MK contain × NaOH 0.0332 4 0.0083 7.78 7.99 × 10−4 2.928
Error 0.0192 18 0.0011
Total 0.4460 26

Table 6. One-way ANOVA of the length change ratio at 28 days.

Source of Variation Sum of Squares DoF Mean Square F-Value p-Value

NaOH
concentration

MK0 0.0034 2 0.0034 19.74 2.29 × 10−3

MK50 0.0188 2 0.0094 3.23 1.12 × 10−1

MK100 0.0202 2 0.0101 85.16 3.94 × 10−5

MK
content

6 M 0.2077 2 0.1039 449.09 2.92 × 10−7

10 M 0.1244 2 0.0622 113.34 1.71 × 10−5

14 M 0.0823 2 0.0412 16.99 3.38 × 10−3

5.2. Second-Order RSM Model

The coefficients β of the second-order RSM model, for the compressive strength and
length change ratio at 28 days, were computed by substituting the data in Table 3 into
Equations, with (3b) and (3c) as X and Y matrices, respectively. Furthermore, the coefficients
β were calculated from Equation (4) and listed in Table 7. The response surface predicted
from the second-order RSM model, along with the experimental results, are depicted in
Figure 4. The coefficient of determination (R2) for both the compressive strength and length
change ratio were 0.997 and 0.979, respectively, indicating a high degree of correlation with
the experimental values.

Table 7. The coefficients β for the compressive strength and length change ratio at 28 days.

Compressive Strength Length Change Ratio

β0 21.2 4.25 × 10−1

β1 −1.74 −8.88 × 10−4

β2 16.28 1.97 × 10−2

β3 1.01 × 10−2 4.02 × 10−5

β4 −5.85 × 10−1 −1.25 × 10−3

β5 −2.23 × 10−2 2.22 × 10−4

Figure 5 illustrates the optimal parameter range by overlaying the response surface
projections for both compressive strength and shrinkage. Within this range, the compressive
strength at 28 days is expected to exceed 28 MPa [47], and the shrinkage of OPC at 28 days is
projected to be less than 0.3%. An interpolation experiment was conducted in this optimal
range to verify the accuracy of the regression model. The chosen interpolated specimen
had 95% MK content and 12 M NaOH concentration, and it is marked as a star in Figure 5.
The results, as shown in Table 8, displayed an error of 6.04% for compressive strength and
0.77% for shrinkage, thereby confirming the substantial accuracy of the regression model.
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Table 8. Comparison of the test result and prediction result.

Test Prediction Experiment Error

Compressive strength at 28 days 32.8 MPa 34.9 MPa 6.04%
Shrinkage at 28 days 0.289% 0.287% 0.77%
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6. Conclusions

This study conducted experimental and statistical analyses with two factors and three
levels in a total of nine parameters, forming a 3 × 3 parameter matrix, which varied
GGBFS/MK ratios and adjusted the NaOH concentration of a GGBFS- and metakaolin-
based geopolymer. Several conclusions are listed below.

1. Higher MK content in the GP slurry necessitates an increased amount of activator
to maintain fluidity. The change in the activator concentration has a less significant
effect on the fluidity of the slurry.

2. GP specimens with higher MK content will reduce shrinkage, particularly when the
binder contains 100% MK (MK-based GP), but this is accompanied by a decrease in
compressive strength. The compressive strength of GP specimens containing over
50% GGBFS was improved by increasing the NaOH concentration. GP specimens
without MK or containing 50% MK with NaOH concentrations above 10 M showed
compressive strengths surpassing those of OPC specimens.

3. GP specimens with 100% MK content demonstrated significantly lower shrinkage
compared to those with 0% and 50% MK content, as well as compared to OPC
specimens. GP specimens with contents of 0% and 50% GGBFS exhibited long-term
shrinkage after 28 days.

4. The RSM model used in the study demonstrated high accuracy, with errors of 6.04%
for compressive strength and 0.77% for shrinkage, affirming its reliability in predicting
the properties of GPs based on MK content and NaOH concentration.

5. The ANOVA revealed that both the MK content and NaOH concentrations are key
factors affecting compressive strength, yet they exhibit no significant interaction. How-
ever, regarding shrinkage, a notable interaction between the MK content and NaOH
concentration was observed, and was particularly pronounced, except for at a 50% MK
content level, where their combined effect on shrinkage became significantly evident.

6. This study optimizes GP parameters to obtain the qualified compressive strength
and shrinkage characteristics within the optimized range of a GGBFS/MK ratio and
NaOH concentration, as shown in Figure 5. Through an interpolation experiment, the
compressive strength and shrinkage of the chosen interpolated specimen are 34.9 MPa
and 0.287%, respectively; those values are similar to the compressive strength and
shrinkage of OPC with 38.3 MPa and 0.298%, respectively.
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