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Abstract: The molecular-scale structural changes in polycarboxylic superplasticizer (PCE) can influ-
ence dispersion and water retention. Polycarboxylate superplasticizer, synthesized using different
methods, may alter dispersion and water-reducing effects. The synthesis of PCE involves creating
a novel macromolecular monomer with a controllable molecular mass, adjustable lipophilic, and
hydrophilic moieties, as outlined in this study. This article reviews processes for synthesizing polycar-
boxylates and identifies the optimal method through orthogonal experiments to produce a modified
polycarboxylate superplasticizer (PCE-P). The study investigated the effects of different PCE types
and concentrations on the surface tension, fluidity, and ζ potential of cement paste. PCE-P, synthe-
sized at room temperature, showed comparable performances in initial hydration and conversion
rate in cement to PCE synthesized at high temperatures. PCE-P exhibited an increased slump but had
a wider molecular weight distribution and longer main and side chains, leading to a 24.04% decrease
in surface tension, indicating a good dispersibility.

Keywords: polycarboxylic superplasticizer; synthesis; cement paste; surface tension

1. Introduction

PCE was synthesized from unsaturated carboxylic acid monomers, long-chain alkane
macromers, and other raw materials. It is a high-performance cement dispersant with
good application prospects in concrete. PCE molecules encompass a variety of functional
groups, such as -COOH, -SO3H, -NH2, and -OH groups. The hydration products of
Portland cement (PC) induce the adherence of these groups to their surfaces, disrupting
the flocculation structure between silicate particles and resulting in the formation of an
adsorption layer. The spatial hindrance and electrostatic repulsion introduced by the
added polycarboxylate superplasticizer have a significant impact on the interaction of
cement particles at the water–solid activator interface. The uniform distribution of PC
particles enhances flowability and other chemical properties [1–4]. Based on the form of the
connection of its backbone and side chains, PCE can be roughly divided into two categories:
polyester and polyether. Polyester-based PCE is characterized by the presence of ester
bonds in both its main and side chains. The synthesis technology relies on the utilization of
macromolecular monomers that undergo esterification or ester exchange reactions with
methoxy polyethylene glycol acrylate (MPGA). Nevertheless, challenges persist in this
process, encompassing difficulties in polymerization during esterification or ester exchange
reactions, the potential for the self-polymerization of small monomers, and the occurrence
of various side effects in the resulting product. Simultaneously, the polyether reaction is
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initiated through free radical polymerization, the direct polymerization of high-molecular-
weight polymers, such as vinyl polyethylene glycol ether (carboxylic acid and sulfonic
acid) and other small monomers in aqueous solution. The active group can react with the
-COOH group on the main chain of polycarboxylates, and side chains with -C=C- double
bonds can be linked to the main chain through free radical polymerization, which can
change the structure and properties of polycarboxylates.

Compared with naphthalene superplasticizer, polycarboxylate superplasticizer has the
characteristics of a low dosage and high water reduction rate. Its moisture reduction rate is
25–35%, with a dosage of about 1.5%, close to saturation, and a moisture reduction rate of
45–48% [1]. Meanwhile, polycarboxylate water-reducing agents have a good designability
in molecular structure and environmental friendliness in synthesis. During the synthesis
process, formaldehyde, concentrated sulfuric acid, or other toxic monomers cannot be used,
and the damage to equipment, operators, and the environment is minimal [2,3]. In addition,
polycarboxylate water-reducing agents have more synthetic materials and polymerization
methods. Polymerization pathways include copolymerization, grafting polymerization,
and block polymerization, etc., which are also relatively simple. In addition, PCE has a
better stability, and we rarely find phenomena such as stratification or precipitation [4,5].
Finally, the polycarboxylate water-reducing agent has a good flowability and low slump
loss for concrete. Compared with naphthalene superplasticizer, polyvinyl chloride has a
large number of hydrophilic groups on its molecular chain, making it more adaptable to
concrete [6].

Currently, significant research endeavors have been undertaken to enhance the struc-
tural design and synthesis methodologies of PCEs. Eltayeb et al. [7] exemplified this trend
by synthesizing polycarboxylic acids through the utilization of acrylic acid and isopentenyl
polyethylene glycol (IPEG) at a temperature of 60 degrees Celsius. Characterization of
the synthesized compounds was accomplished employing 13C nuclear magnetic reso-
nance (NMR) spectroscopy. The results indicate that, when the IPEG content is high, the
molecular weight is around 40,000, and the molecular weight distribution is narrow, the
dispersion effect of PCE is the best. In a separate investigation conducted by Ng et al. [8],
an amide structure PCE was synthesized through the amidation reaction between amino
methoxy polyethylene glycol (AMPG) and polyacrylic acid (PAA) at temperatures rang-
ing from 130 to 150 ◦C. In the research conducted by Dalas et al. [9], the macromonomer
employed was butyryl alkyl polyoxyethylene polyoxypropylene ether (BAPP), and 2,2-
azobisisobutyronitrile served as the initiator. The reaction was initiated under a nitrogen
atmosphere at 70 ◦C for 48 h, aiming to synthesize polycarboxylates with the capability to
significantly expedite cement hydration. In the study led by Sahin et al. [10], acrylic acid
and ω-methoxy polyethylene glycol methacrylate were utilized to synthesize non-adsorbed
polycarboxylates within a 4 h timeframe at 80 ◦C. The results indicated that the synthesized
polycarboxylate had no adsorption effect on cement and could significantly improve the
dispersibility and flowability of cement. Researchers have successfully engineered PCEs
with notable attributes, including a high water reduction rate and robust adaptability,
among other exceptional performances. Concurrently, efforts have been directed towards
broadening the spectrum of raw material sources and synthesis methodologies, minimizing
production costs, and incrementally enhancing quality stability.

2. Synthesis of Macromolecular Monomers

The introduction of side chains into the molecular structure of PCE is achieved through
the incorporation of other active monomers. The polymerization activity, molecular weight,
and polarity of these active macromers are crucial factors influencing the quality and
performance of PCE. The preparation method is outlined as follows:

2.1. Polymerization

Open-ring polymerization (ORP) is performed with unsaturated monomers like hy-
droxyalkyl acrylate or allyl alcohol as initiators, incorporating active hydrogen at the chain
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end. Then, ethylene oxide is added for polymerization to obtain active macromolecular
monomers. Following a synthesis principle akin to polyethylene glycol monomethyl ether,
its reaction is depicted in Equation (1) as follows:
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Plank et al. [11] employed methyl methacrylate (MMA) as the initiator, approximately
0.05% metal oxide complex as the catalyst, and incorporated effective polymerization
inhibitors. They conducted ORP by combining epoxy propane and ethylene oxide, resulting
in the synthesis of reactive macromers containing both components. The reaction was
conducted at a temperature of 110 ◦C and a pressure of 0.3 MPa. In a high-pressure
reactor, Chandel et al. [12] synthesized a range of macromolecular monomers with varying
molecular weights. They employed allyl alcohol as the initiator, introduced ethylene
oxide at 115–125 ◦C for polymerization, and sodium hydroxide as the catalyst. A series
of PCEs were obtained by polymerizing the obtained product with maleic anhydride.
Moreover, a novel synthesis method, termed chimeric ORP, has emerged for obtaining
macromolecular monomers. This method involves utilizing MMA as the initiator and
Mg-Al hydrotalcite as the catalyst through high-temperature melting. This mixture is then
subjected to a continuous ring-opening reaction with ethylene oxide, becoming embedded
into the ester bond in MMA. Generate novel active macromers produced through the
reaction are illustrated in Equation (2):
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Abdolhosseini Qomi et al. [13] employed phenothiazine as an inhibitor to calcine
magnesium aluminum hydrotalcite into magnesium aluminum oxide at 500 ◦C. This
product was then utilized for the ORP of methacrylate and ethylene oxide. After 5 h
at 150 ◦C, a new type of macromolecular monomer with a molecular weight of several
hundred was obtained. In summary, the industrialization of this method is significantly
hindered by its harsh conditions, substantial side effects, low conversion rate, and slow
reaction speed.

2.2. Direct Esterification

The direct esterification of acrylic acid or maleic anhydride with polyethylene gly-
col monomethyl ether of varying molecular weights is the most common and traditional
method for synthesizing active macromolecular monomers. This approach offers advan-
tages such as low cost, a straightforward process, and ease of operation. The main factors
affecting the reaction include type, time, temperature, structural ratio and amount of cat-
alyst, and the equilibrium conversion rate of the reaction in Equation (3). Furthermore,
the esterification reaction is reversible, necessitating the use of a water carrier to eliminate
water and favorably shift the equilibrium towards the product direction [14].
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There are some examples. Poellmann et al. [15,16] synthesized PCE using polyethylene
glycol as a raw material while using acrylamide, acrylic acid, methacrylic acid, methyl
allyl sulfonate, and polyoxyethylene glycol acrylate (PEO) with different chain lengths as
small monomers. The FTIR results revealed that the molecular structure of the modified
polycarboxylate superplasticizer (PCE-P) comprised sulfonic acid, carboxylic acid, and
polyepoxyethane vinyl groups, exhibiting a comb-like molecular structure. GPC also found
that the chain length of PEO and the number of macromers affected the average molecular
weight and distribution of PCE-P copolymers, thus determining the ability of PCE-P to
disperse cement particles. After using PCE-P in concrete, the water reduction rate will reach
25%. In the investigation conducted by Keiji et al. [17], MPEG and acrylic acid were chosen
for the preparation of macromolecular monomers through an esterification reaction. The
study extensively explored the impacts of various reaction conditions on the esterification
rate. The optimal process conditions were subsequently determined as follows: the molar
ratio of AA was 3:1, toluene as a water carrier, phenol as an inhibitor, phenol as 0.8%,
p-toluenesulfonic acid as a catalyst, and esterification at 120 ◦C for 8 h. In FITR, it was
observed that macromolecular monomers featuring C=C double bonds and MPGA with
extended polyoxyethylene chains could be generated.

The rate and extent of the esterification reaction are influenced by various factors,
including temperature, duration, type and quantity of catalyst, and molecular weight
of MPEG, among others. Consequently, these factors also impact the performance of
PCE [18,19].

2.3. Acylation Reaction

The acylation process commences by combining methacrylic acid with chlorides, such
as thionyl chloride, phosphorus trichloride, and phosphorus pentachloride. Subsequently,
the introduction of polyethylene glycol monomethyl ether and a catalyst facilitates the
generation of macromolecular monomers in the form of esters or amides. The chemical
reaction is represented by Equation (4) below. Acylation is recognized as an irreversible
and highly reactive procedure. However, a notable drawback lies in the poor stability
of methacryloyl chloride, rendering it susceptible to decomposition and challenging to
preserve for extended periods. Furthermore, its cost significantly surpasses that of cor-
responding carboxylic acids, imposing certain limitations on its industrial application.
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Ibrahim et al. [20] conducted a modification of MPEG by converting its terminal
hydroxyl group into a mini hydroxyl group. Subsequently, methacryloyl chloride was
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employed as an acylating agent in the acyl chloride reaction, leading to the modification
of MPEG and the preparation of active monomers featuring double bonds. An infrared
spectrum analysis showed that the bonds of the main and side chains of the product trans-
formed from traditional ester bonds to amide-imide bonds. At the same ionic strength, this
copolymer also exhibited a larger hydrodynamic diameter with a higher water reduction
rate at the same dose.

2.4. Ester Transfer

This method considers the preparation of macromolecular monomers by combining
MMA and polyethylene glycol monomethyl ether under catalyst conditions. To improve
the exchange rate of esters, small molecules generated in methanol and other processes
should be continuously removed due to their reversibility. The reaction is Equation (5),
as follows:
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In the study of Winnefeld et al. [21], ethylene glycol monoethyl ether acetate was
initially synthesized as an intermediate and subjected to an ester exchange reaction with
methacrylic acid. Subsequently, a macromonomer of methacrylic acid polyethylene glycol
monoester was prepared. The optimal reaction conditions encompassed a 7% tetra butyl
titanate catalyst, 0.1% 2,2,6,6-tetramethylpiperidine oxide as an inhibitor, a reaction tem-
perature of 130 ◦C, and a reaction time of 3 h, resulting in a macromolecular monomer
conversion rate of up to 88.7%.
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In infrared spectroscopy, the C=O bond of a 1717 cm−1 carboxyl group, the C-O-C
bond of 1107 cm−1, and the C=C bond of 1636 cm−1 are easily discovered, indicating the
presence of C=C double bonds and long polyoxyethylene chains in the product.

In the ester exchange study conducted by Flatt et al. [22], MMA and MPEG were
employed as precursor materials, with phenothiazine serving as an inhibitor and sodium
hydroxide as a catalyst. Methanol removal was conducted under reduced pressure at
50 ◦C, with a reaction duration of 3 h, resulting in an exceptional conversion rate of 99%.
In the infrared spectrum, the emergence of the carboxyl group absorption peak, coupled
with the disappearance of the hydroxyl group absorption peak, attests to a notably high
esterification rate of the synthesized product.

Similarly, in the work by Gupta et al. [23], utilizing MMA and methoxy polyoxyethy-
lene ether (MPEO, n = 23) as raw materials, a transesterification approach was applied.
The optimization of catalysts, inhibitors, and synthesis conditions facilitated the successful
synthesis of the macromonomer methoxy polymethyl methacrylate (MPEOMA), achieving
an exemplary transesterification rate of approximately 98%.
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2.5. Other Methods

Additionally, there is the direct aging method. In practical applications, methacrylic
acid is commonly derived through the hydrolysis of the corresponding nitrile. Hence,
substituting hydroxyl donors with alcohols allows for the direct synthesis of esters. The
reaction is represented by Equation (7), as follows:
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Polymerization uses alcohol and ethylene oxide. Olefin alcohols, instead of ethy-
lene glycol alcohols, can directly polymerize with ethylene oxide to form double-bond
terminated polyethylene glycol. The reaction Equation (8) is as follows:
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3. Synthesis of PCE
3.1. Direct Polymerization

In this method, the side chain of polyether is introduced into the main chain, which
needs a polymerizable reactive macromonomer such as MPGA.

Şahin et al. [24,25] systematically investigated various monomers, ratios of different
monomers, and adjusted reaction processes. A series of polycarboxylate superplasticizers
(PCEs) was synthesized using allyl alcohol-polyethylene glycol (APEG, EO = 45), acrylic
acid (AA), maleic anhydride (MAL), 2-acrylamido-2-methylpropane sulfonic acid (AMPS),
and ammonium persulfate (APS) as raw materials. To determine the optimal process for
PCE, extensive research was conducted on various reaction conditions, including reactant
concentrations, temperatures, and monomer molecular ratios.

Jang et al. [26] fabricated two sets of comb-like copolymer dispersants through direct
polymerization, featuring side chain lengths ranging from 8 to 48. Dessalle et al. [27]
engineered a novel methacrylate polycarboxylate with a polyethylene glycol hydroxyl
side chain at the end, deviating from the conventional methacrylate with a methoxy
side chain. The outcomes indicated that the copolymer exhibited a comb structure and
displayed excellent adaptability in cement, suggesting promising application prospects.
Mastali et al. [28] conducted an analysis on the characteristics of the PEO side chain length
and polymerization degree. The results showed that, under the condition of high w/c,
the influence of the chemical structure on slurry flowability was not significant. Tran
et al. [29] fabricated PCE in an aqueous solution, employing APEG, MAA, MA, and sodium
methacrylate sulfonate (MAS) as monomers, with ammonium persulfate serving as the
initiator. The optimal synthesis conditions were established as follows: maintaining a
specific molar ratio, utilizing an initiator dosage equivalent to 5% of the monomer weight,
and allowing a reaction time of 4 or 5 h. This formulation aimed to introduce anionic polar
groups, such as -COOH and SO3H, into the PCE backbone, creating a hydrophilic structure
characterized by robust hydrogen bonding in aqueous environments. This hydrophilic
backbone is instrumental in forming a stable three-dimensional protective layer, providing
steric hindrance. The modulation of functional group proportions in both the polymer
main chain and side chain is believed to achieve structural balance, thereby enhancing the
water-reducing properties [30].

Plank et al. [31] employed direct polymerization to synthesize a novel PCE, utilizing al-
lyl polyethylene glycol, methyl acrylate, maleic anhydride, and ammonium persulfate in the
polymerization process. The study systematically investigated the influence of monomer
ratios, initiator quantities, reaction time, reaction temperature, and dropwise addition
duration on the dispersion and water retention properties of the PCE. Through orthogonal
experiments, the optimal synthesis conditions were determined. A comparative analysis of
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the performance of the synthesized product was conducted against another widely used
product derived from MAA and MPEG. Yamada et al. [32] innovatively incorporated citric
acid into the polycarboxylic molecule to synthesize an effective PCE, addressing challenges
related to concrete slump loss, bleeding, and segregation. The optimal PCE formulation was
achieved with a specific monomer ratio (n(MA):n(AA):n(SAS):n(PEGAA):n(PEGCM)) =
0.3:0.2:0.05:1:0.1), employing an initiator of 0.8% (NH4)2SO4 by the mass of vinyl monomers,
a reaction time of 2 or 3 h, and a reaction temperature of 80 ◦C. The application results
demonstrated a 32% water-reducing ratio, a five-hour extension in delay time, and concrete
with PCE exhibited remarkable slump retention, absence of segregations.

3.2. Function Aggregation

Functional polymerization is viewed as a modification of the base polymer, typically
involving the esterification of polyether at elevated temperatures and subsequent grafting
into the main chain.

Gharanjig et al. [33] utilized PCE-grafted alkoxyimines as reactants in quantities
ranging from 10% to 20% of -COOH moles. The blend underwent heating at 150 ◦C for
1.5−3 h, followed by the addition of a specific catalyst and cooling at 100–130 ◦C to attain
the desired product. Felekoğlu et al. [34] combined a specific proportion of MAS, water,
and ammonium persulfate in a three-necked flask equipped with a condenser and agitator.
The mixture was heated to 80 ◦C for 3.5 h, yielding a yellow liquid. Subsequently, the
PCE was blended with dimethyl sulfoxide at 110 ◦C and refluxed for 5 h, resulting in a
novel PCE with a solid content of approximately 30%. The infrared spectra revealed peaks
corresponding to -OH, -SO3H, -C=O, and C-O functionalities. The optimal performance of
the graft copolymer was achieved when the molar ratio of polyethylene glycol, sulfonic
acid, and side-chain carboxyl was 0.104:0.354:0.542.

Plank et al. [11] synthesized and tested many PCEs based on the molecular weight,
density, and length of the branched chain. The results showed that the higher molar fraction
was more adsorbed than the lower molecular fraction. In the polymerization of APEG with
MA, Poplar synthesized PCE-1 with AIBA · 2HCl as the initiator. PCE-2 was synthesized
from vinyl ethoxylated methyl ester (TPEG), AA, and methacrylate sulfonate (MAS) [35].
The results showed that the slump retention and compressive strength enhancement of
concrete with PCE were better than those with PCE induced by ammonium persulfate.
Silva et al. [36] prepared PCE from APEG, AA, maleic anhydride acid (MAD), and sodium
methacrylamide (SMAS). PCE has good compatibility with cement. The prepared concrete
had the advantages of a low slump loss and so on. When the content of the solid was 0.3%,
the water reduction rate of concrete was 32.4%.

Masoudi Soltani et al. [37] formulated polycarboxylate superplasticizer (PCE) through
the synthesis of poly (maleic anhydride) utilizing maleic anhydride, sodium methyl
methacrylate sulfonate, and allyl-derived polyethylene glycol (PEG) as source materi-
als, employing ammonium persulfate as the initiating agent. The optimal synthesis process
conditions for polymaleic anhydride PCE were determined through cement paste fluidity
testing. The optimal molar ratio of maleic anhydride, PEG, and sodium methyl methacry-
late sulfonate was 4:1:0.2 and the optimal molecular weight of PEG was 2400. The initiator
point was connected twice and polymerized at 80 ◦C for 5 h. In the exploration conducted
by Ferrari et al. [38], a detailed examination of individual synthesis factors was under-
taken to determine the optimal raw material ratio. This investigation encompassed the
assessment of PCE performance and the characterization of its molecular structure. The
test results attested to the successful incorporation of the targeted functional group into the
structure. The GPC-measured data revealed the weight average number (Wn), molecular
weight (Mw), side chain length (SCL), and main chain length (MCL) values for APEG- and
TPEG-type PCE, demonstrating values of 103,000 g/mol, 14,700 g/mol, and 84,500 g/mol
and 7540 g/mol, 2.5 nm and 1.8 nm, 15.3 nm and 15.3 nm, respectively.

Nevertheless, functional polymerization encounters certain challenges, including
an increased difficulty in adjusting the composition and molecular weight. Along with
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challenges in esterification during practical applications, this remains a concern. Moreover,
the ongoing generation of H2O can induce phase separation during the esterification
reaction. Hence, the pivotal factor lies in the judicious selection of a polyether with the
optimal compatibility.

3.3. Graft Polymerization

This approach primarily aims to address the drawback of functional polymerization,
enabling the controlled regulation of the molecular weight of the polymer backbone to
mitigate the compatibility issues between PCE and polyether. During the polymerization
process, the introduction of side chains into the main chain is facilitated by utilizing
polyether monomers containing -COOH groups. Otherwise, accomplishing this task would
prove exceedingly challenging.

Schmid et al. [39] synthesized a novel PCE with an MMA backbone and a hydroxyl-
terminated side chain. They successfully obtained branched-chain PCE, demonstrating
an excellent adaptability to cement and robust early-stage performance. Uskoković [40]
introduced acrylate monomers, chain transfer agents, and initiators into a solution contain-
ing MPG at 60 ◦C for 45 min. Subsequently, the system was heated to 120 ◦C, dehydrated
under the protection of N2, and the catalyst was added at 165 ◦C and grafted for 1 h. Finally,
he obtained a good dispersion, low slump loss, and low lead gas performance of the new
asphalt. Afroughsabet et al. [41] carried out a series of polymerization experiments in an
attempt to find out the relationship between the synthesis conditions and the dispersion
of cement pastes. The reaction temperature, initiator (APS), and reaction time were 70 ◦C,
0.5%, and 9 h, respectively.

Gautam et al. [42,43] conducted the synthesis of a comb-like PCE using MPEOMA,
AA, MA, and sodium allyl sulfonate (SAS) through aqueous copolymerization initiated
by ammonium persulfate. The findings indicated that the resulting PCE exhibited an
exceptional dispersing ability and favorable compatibility with different types of cements.
When the cement content was 0.3% and the water-cement ratio was 0.26, the fluidity of
cement paste could reach 265 mm. A range of polyether-based PCEs were synthesized
through free radical polymerization in an aqueous solution, utilizing sodium vinyl sulfonate
as monomers, allyl polyethylene glycol (AEO), and maleic anhydride. The effect of synthetic
processes on the properties was studied. The findings indicated that optimal conditions
were achieved with a mass ratio of 3:5 for allyl polyethylene glycol (AEO) to maleic
anhydride, an initiator quantity of 6–7%, and a reaction temperature ranging between 75
and 85 ◦C.

3.4. Free Radical Polymerization

Traditional radical polymerization is uncontrollable because the chain it grows in
has a free radical active center with a strong double-termination trend called coupling
or dissimulation. However, scientists have developed a new method of polymerization
that can be controlled, called reversible addition-fracture transfer (RAFT). In conventional
radical polymerization systems with Azobisisobutyronitrile, Benzoyl peroxide, or ammo-
nium persulfate as initiators, we can add a large amount of chain transfer agent to make it
controllable and obtain PCE with a small molecular weight distribution.

Water-soluble PCE was synthesized in radical polymerization at 75 ◦C by Shawl
et al. [44]. The PCE synthesized for this investigation incorporated extended comb-like side
chains and ionic groups, imparting both spatial effects and electrostatic repulsion. Hirata
et al. used MPEGMA, MAA, and MMA to polymerize at 80 ◦C for 5 h. So, he made PCE
with different molecular weights.

Büyükyağcı et al. [45] synthesized a series of allyl polyethylene glycol-based PCEs via
radical copolymerization in an aqueous solution. GPC was used to measure the molecular
weight of the copolymer and the conversion of allyl polyethylene glycol. The optimal
reaction conditions were as follows: n(APEG2400):n(MA):n(AM) =1.0:4.0:1.5, an initiator
dosage of 3.5% (mol), a reaction concentration of 60% (mas), a reaction temperature of
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65 ◦C, and an acrylamide dropping time of 8 h. The average molecular weight was about
43,800 and the monomer conversion rate was 91.5%. The loss was small. Simultaneously,
its performance in concrete applications was commendable, achieving a water reduction
rate of 30%. In the work of Cho et al. [46], PCE was synthesized through the free radical
copolymerization (FRC) of dendritic-activated macromonomer and AA in water. The
optimized reaction conditions were as follows: hydrogen peroxide and l-ascorbic acid
(1-AA) served as initiators, with 1-AA and chain transfer agent dosages set at 1% and 2%
of the monomer, respectively. The molar ratio of AA to the macromolecule monomer was
maintained at 4:1, and the polymerization concentration was set at 50%.

Polyethylene glycol monomethyl ether methacrylate (MPEGMAA) was prepared by
Güneyisi et al. [47,48] for the synthesis of PCE. The effects of different methods of water
introduction, multi-component inhibitors, and amount of supported catalyst on the esterifi-
cation rate of MPEGMAA were studied, the macromonomer was prepared successfully,
the esterification rate was over 99%, and the storage stability of the macromonomer was
studied. The results showed that, in the redox system, adding 0.25–0.3% pure copolymer,
the w/C was 0.29, the temperature could be reduced to 50–60 ◦C, the water reduction rate
was more than 28%, and the fluidity of slurry was between 250 mm and 260 mm, with a
liquidity retention rate of more than 95%.

Hirata et al. [49] mixed small functional monomers of MA and acrylamide (AM) with
APEG or pentenyl polyoxyethylene ether (TPEG) to synthesize two different types of PCE.
By discussing the factors of polymerization, the optimum technological parameters of
synthesizing PCE were obtained: the optimum molar ratios of synthesizing PCE were
n(APEG):n(MA):n(AM) = 1:1.8:1.2 and n(TPEG):n, respectively. Adams [50] modified
PCE with hydroxypropyl acrylate (HPA) and evaluated the dispersing ability, dispersing
retention ability, and rheological properties of the modified PCE. The results showed that
the carboxyl density was the most important factor affecting the initial dispersion of PCEs.
The higher the concentration of carboxyl, the higher the initial dispersion performance.
When the carboxyl density is greater than 7:1, the initial dispersion performance will not
change significantly.

3.5. Synthetic Conditions

In contrast to the high-temperature synthesis of PCE, the synthesis of PCE-P involves
the direct polymerization of polymerizable monomers. Initially, an oxidizer is introduced
into the system, succeeded by the addition of a reducing substance. This process uti-
lizes the heat and free radicals generated by the redox system to initiate and sustain the
entire polymerization.

3.5.1. Initiating System with Vc as Reducing Agent

Vc, which has a strong reducibility and special structure, is the main reductant in the
synthesis of PCE. With oxidizing substances, it is easy to generate heat and free radicals,
so we can use it to synthesize PCE. In addition, the reaction system consists of Vc and
hydrogen peroxide.

Lee et al. [51] conducted a series of experiments aiming to synthesize PCE, and they
identified the optimal reaction conditions. The redox initiator system with a H2O2:Vc ratio
of 4:1, along with 1.5% hydrogen peroxide (relative to the macromonomer mass), 1.2%
sodium phosphate (relative to the macromonomer mass, serving as a chain transfer agent),
and 6% sodium methallyl sulfonate (SMAS, relative to the macromonomer mass), proved
effective in producing a high concentration (80%) of high-performance PCE. The results
showed that the flowability of paste could reach 285 mm, 288 mm in 60 min, and 282 mm
in 120 min when the dosage of PCE was 0.20%. Simultaneously, the concrete application
performance of this PCE was noteworthy, achieving a water reduction rate of 30%. Gelardi
et al. [52,53] employed FRC of dendritic-activated macromonomer and acrylic acid in water
to synthesize PCE. The optimal reaction conditions involved the use of 1-AA and hydrogen
peroxide as initiators, with the dosage of 1-AA and the chain transfer agent set at 1% and
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2% of the monomer, respectively. The molar ratio of AA to the macromolecule monomer
was 4:1 and the polymerization concentration was maintained at 50%.

The results of GPC showed that the average molecular weight of PCE was 47,500
and the conversion of DAM was about 89.6%. Fu et al. [54] employed 2-dimethylallyl
polyoxyethylene ether (HPEG), AA, and MA as monomers, along with a composite initiator
system comprising ammonium persulfate (APS) and Vc hydrogen peroxide (VC-H2O2).
They introduced a new type of PCE synthesis using thioglycolic acid (TGA) as a chain
transfer agent. The optimum conditions of free radical polymerization were as follows:
a mass ratio of HPEG:AA = 8.5:1.0 and composition of initiator (VC-H2O2):APS = 0.9:1.0,
H2O:Vc = 5.5:1.0. The quantity of MA, the total initiator, and TGA were 1.5%, 1.2%, and
0.4% of the mass of HPEG, respectively. The reaction was carried out at room temperature
(20–40 ◦C) for a duration of 3 h. Outstanding PCE demonstrated a notable water-reducing
ratio of 33.1%, along with effective slump retention and dispersion capabilities. Rymeš
et al. [55,56] similarly employed this initiation system in their patents to synthesize PCE
at room temperature. This method offers several advantages, including the absence of
an external heat source requirement, a high solid content of PCE, and cost-effectiveness
in transportation.

3.5.2. An Initiating System That Uses Other Agents as Reducing Agents

Scientists have explored alternative initiator systems utilizing reagents beyond Vc
as reducing agents. Careful consideration of factors such as the structure of the reducing
substance, its electromotive force, minimum activation energy, and the structure of the free
radical is essential in these systems.

Guan et al. [57] developed a reaction system where the mass ratio of hydrogen peroxide
to formaldehyde was 1:1 and the total content of sulfoxide ester was controlled at 2.5%
of the monomer mass in the novel reaction system. Thus, a high-performance PCE was
obtained. Sahin et al. [10] employed a low-temperature synthesis method (15–20 ◦C) to
produce PCE, yielding properties comparable to those synthesized at 70 ◦C. This approach
not only reduced steam consumption, but also saved energy, contributing to a reduction
in production costs. Wang et al. [58] obtained a new colorless PCE by adding acrylic acid,
sodium methacrylate, and chain transfer agent with ammonium persulfate as an initiator
for 3 h and adjusting the PH to 5. The results showed that the synthesized PCE had a
certain water reduction rate and good slump control ability, with no loss in one hour
and less loss after two hours. Based on orthogonal experiments, Maruyama et al. [59]
conducted the synthesis of PCE through radical polymerization involving allyl alcohol
Polyethylene glycol and other small-molecule monomers at low temperatures. The optimal
polymerization conditions were as follows: the n (MA):n (APEG):n(AM):n(AA) molar
ratio was 1.6:1.5:1.5:4.0 and the initiator dosage was sodium dithionite 4%, H2O2 4%.
The resulting product exhibited a high water reduction rate and excellent slump-holding
capacity, contributing significantly to the strength enhancement of concrete.

4. Application

Limited research has been conducted on the adsorption and dispersion properties
of PC when combined with various polycarboxylate superplasticizers. PCE-P with a
consistent main chain length but varying side chain lengths was synthesized by controlling
the molar ratio of macromonomer to methacrylic acid. At the same time, we selected our
own synthesized ordinary polycarboxylate superplasticizer (O-PCE1 and O-PCE2) and
commercially available polycarboxylate superplasticizer (C-PCE), with molecular structures
shown in Figure 1, to test the surface tension and its effect on the fluidity of cement paste.
The surface tension and its effect on the fluidity of cement paste were also tested, which
provides a theoretical basis for the design, synthesis, and selection of polycarboxylate
superplasticizer. The relevant chemical components of cement (P·I42.5, Changsha Hetian
Baishi Building Materials Co., Ltd., Changsha, China) are shown in Table 1.
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Table 1. Chemical composition of cement (%).

Material SiO2 Al2O3 Fe2O3 CaO MgO SO3 TiO2 K2O Na2O Total Loss

PI 42.5 21.18 4.73 3.41 62.49 2.53 2.83 - - 0.56 97.73 1.76

4.1. Surface Tension

The A-60 automatic surface tension meter (American Cono Industries Co., Ltd., Boston,
MA, USA) is used to measure the surface tension of the PCE in different doses. For the
testing of surface tension between the liquid and solid phases of cement pastes, we used a
beaker containing 50 g of PC and a set water–cement ratio of 0.4. Beakers were employed
to mix PCE with 20 g of water at varying concentrations (0%, 0.1%, 0.2%, 0.3%, 0.4%, and
0.5% of the total mass). First, the liquid was mixed slowly for 2 min, then mixed vigorously
for 1 min. Afterwards, the cement mixture obtained was subjected to centrifugation, and
the surface tension of the resulting supernatant was subsequently measured.

Through experimental analysis [60], we selected the optimal water–cement ratio of 0.4
as the experimental water–cement ratio. Figure 2 below shows the effect of PCE-P on the
surface tension of fresh cement pastes.
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From Figure 1, the incorporation of different PCE types led to a reduction in the
surface tension of the cement paste. The surface tension decreased further with an increase
in PCE content, and the increase in PCE-P was the most obvious. This can be attributed
to the compact and high conversion of monomers, along with the molecular weight dis-
tribution of the PCE-P produced by the REDOX system using hydrogen peroxide and
ammonium persulfate Vc. This led to an outstanding overall performance, characterized
by elongated side chains in comparison to traditional PCE, resulting in enhanced steric
hindrance and dispersion.

Moreover, the concentrations of Ca2+, Na+, and OH- ions in the liquid phase decreased
as a result of the reduced solubility of the mixture following the addition of various PCEs.
In the initial stages of PC hydration, the Si-O bond underwent cleavage within an alkaline
environment. It then bound with hydrated and dissociated ions to create a C-S-H gel. As
a consequence, the concentration of surface-active particles in the Portland cement (PC)
decreased, thereby influencing the surface tension of the liquid phase [61,62].

4.2. Flowability

Based on the GB/T8077-2012 standard [63], the initial flowability, as well as the net
paste flowability at 1 h and 2 h, were assessed using the hollow column model test; the best
material quantity obtained through team experiments was 300 g of PC, a water–cement
ratio fixed at 0.29, and PCE quantity was calculated by total mass [64,65].

The diagram shows that the fluidity of fresh cement pastes changes with the type
and amount of PCE. The initial flowability of cement paste mixed with three kinds of
PCE increased continuously with the increase in content, and the maximum increase was
342.8%. The rise in fluidity could account for the escalation in PC adsorption capacity with
the augmentation of PCE content, thereby reinforcing the system’s free water absorption
capability and fluidity. In addition, the effects of various mineral admixtures (such as silica
fume, fly ash, and mineral powder, etc.) on the adsorption and rheological properties of
cement have been tested in previous studies, with the results showing that an increase in
SCM content will lead to the continuous decline in cement rheological properties [66–71].

4.3. Zeta Potential

The ζ potential of the cement pastes mixed with PCE was studied by varying the level
of the superplasticizer content (0%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%) while maintaining a
constant water–cement ratio of 0.4 [72]. As shown in Figure 3, the introduction of various
PCE types negatively impacted the dispersibility of PC, with a diminishing effect observed
in the order of PCE-P, O-PCE2, O-PCE1, and C-PCE.
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Figure 4 shows the effect of four different water-reducing agents on the potential
of fresh cement, we can see from the picture as the amount of water-reducing agent
increased, the potential gradually decreased. During PC hydration, the surface potential of
particles changes and the potential of the diffusion layer undergoes corresponding changes.
Preserving electrostatic repulsion is crucial for sustaining the ζ potential. The presence of
PCE on cement particles’ surfaces leads to the elongation of the functional agglomerated
formaldehyde chain into the solution. This leads to the establishment of hydrogen bonds
with H2O molecules in pure PC pastes. The creation of solvent hydrate shells induces
lubrication and steric hindrance effects [73,74]. These roles represent the primary functions
of PCEs. Moreover, the mixed PCEs contain numerous anionic groups that influence the
charge distribution of the Stern bipolar layer on the local surface of the PC particles. A
notable distinction exists between the ion concentrations on the surface of the PC particles
and the predominant ion concentrations in the slurry. The accumulation of anions near the
surface layer shields the surface charge, consequently reducing the ζ potential. Hence, the
ζ potential decreases with an increase in PCE-P content.
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Furthermore, the presence of polycarboxylic superplasticizer led to an increase in
the hydration products of tricalcium aluminate (C3A) and tetracalcium aluminoferrite
(C4AF) in the PC. Positively charged particles resulted in a positive ζ potential [20,75]. This
elucidates the alteration in the ζ potential. The hydration products of C3A and C4AF in the
PC increased with an increase in the dosage of polycarboxylic superplasticizers, and the ζ

potential became positive as they become positively charged [76,77]. The main minerals
that made up the PC were found to be negatively charged particles in dicalcium silicate
(C2S) and calcium silicate (C3S) hydrated pastes and positively charged particles in C3A
and C4AF. Silicates are less soluble than aluminates. Thus, the ζ potential showed a positive
value because positively charged hydrate products dominate [78]. Despite the addition
of a specific quantity of anionic polycarboxylic acid-based superplasticizer, there was a
declining trend observed in the ζ potential on the surface of the cement particles.

5. Conclusions

(1) The properties of PCE are significantly influenced by the structural characteristics of
the macromonomer. Therefore, the design and synthesis of PCE should initiate from
the macromonomer, focusing on controlling the molecular weight and adjusting the
proportions of hydrophilic and lipophilic groups. A macromonomer with a reasonable
structure and stable performance should be prepared, and the existing polyether and
polyester should be modified using block and grafting.

(2) The higher the carboxyl content of the PCE main chain, the more suitable the length of
the side chain. The length of the main chain and side chain and molecular weight have
more influence on the dispersion of PCE in cement. Therefore, the longer the length
of the main chain and side chain, the better the dispersion of PCE. The dispersion of
PCE in cement cannot be adequately explained by a singular theory. Multiple factors,
including electrostatic repulsion, steric hindrance, the chain length of the main chain
or side chain, and molecular form, among others, should be taken into consideration
to provide a comprehensive understanding.

(3) In contrast to other polycarboxylate superplasticizer such as sodium bisulfite and
tonalite, polycarboxylate molecules generated through the REDOX system of hy-
drogen peroxide and ammonium persulfate Vc exhibit a compact high monomer
conversion and molecular weight distribution. The outcome is an outstanding overall
performance, characterized by extended side chains in comparison to conventional
PCE, leading to enhanced steric hindrance and dispersion. Under the same experi-
mental conditions, it was found that the dispersibility of polycarboxylate increased
with the increase in the AA/TPEG mole ratio.

(4) With an increase in the content of polycarboxylic superplasticizer, the surface tension
of cement paste decreases. The reduction in surface tension results in a decline in the
stability of cement paste and a decrease in ζ potential.
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