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Abstract: Concrete surface cracks serve as early indicators of potential structural threats. Visual
inspection, a commonly used and versatile concrete condition assessment technique, is employed
to assess concrete degradation by observing signs of damage on the surface level. However, the
method tends to be qualitative and needs to be more comprehensive in providing accurate infor-
mation regarding the extent of damage and its evolution, notwithstanding its time-consuming and
environment-sensitive nature. As such, the integration of image analysis techniques with artificial
intelligence (AI) has been increasingly proven efficient as a tool to capture damage signs on concrete
surfaces. However, to improve the performance of automated crack detection, it is imperative to
intensively train a machine learning model, and questions remain regarding the required image
quality and image collection methodology needed to ensure the model’s accuracy and reliability
in damage quantitative analysis. This study aims to establish a procedure for image acquisition
and processing through the application of an image-based measurement approach to explore the
capabilities of concrete surface damage diagnosis. Digitizing crack intensity measurements were
found to be feasible; however, larger datasets are required. Due to the anisotropic behavior of the
damage, the model’s ability to capture crack directionality was developed, presenting no statistically
significant differences between the observed and predicted values used in this study with correlation
coefficients of 0.79 and 0.82.

Keywords: visual inspection; condition assessment; artificial intelligence; alkali-silica reaction;
concrete surface crack; machine learning; cracking index; total crack length; image analysis; image
processing

1. Introduction

Among the various types of internal swelling reactions (ISR) that may affect concrete’s
performance and serviceability, the alkali–silica reaction (ASR) is the most reported type in
Canada [1–3]. The ASR initiates from the chemical reaction between the alkali hydroxides
(i.e., Na+, K+, and OH−) from the pore solution and some unstable mineral phases (i.e., reac-
tive silica) within the fine/coarse aggregates, generating a gel-like secondary product that
swells upon moisture uptake, leading to expansive pressure within the concrete beyond the
tensile strength, thus cracking the concrete. Cracks begin within the concrete and develop
into macro-cracks on its surface (Figure 1) [3]. ASR-related damage is distinguished by its
map cracking pattern [4] that frequently appears on concrete surfaces and can be readily
visible, serving as an early indicator of potential damage in concrete structures. Monitoring
cracks over time provides critical insights into the progression of damage, as the presence of
the ASR can result in harmful distress to concrete mechanical properties, stiffness, service-
ability, and durability [5]. However, assessing the presence and severity of cracks remains
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an initial step in evaluating the overall condition of the concrete structure [3]. Currently,
the evaluation of concrete elements affected by the ASR starts with the visual inspection
process, aimed at qualitatively examining signs of deterioration on the surface.
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To perform a quantitative analysis of the damage extent to monitor volumetric expan-
sion over time, researchers have introduced a surface crack mapping technique known
as the cracking index (CI). This non-destructive quantitative tool assesses the degree of
damage, estimating concrete expansion by measuring the widths of cracks observed on
the ASR-affected concrete surface [6,7]. However, the CI technique can be subjective and
sensitive to the inspector’s experience, resulting in less accurate and reliable assessments [8],
notwithstanding its time-consuming and environment-sensitive nature (i.e., variability due
to time of day, sunlight position, time of year, weather, overcast), among other challenges
thoroughly described in [9]. Moreover, the method varies internationally; in France, where
delayed ettringite formation (DEF) is one of the leading causes of premature damage, the
CI includes measurements along its diagonal [10]. Nevertheless, this indicates the method’s
transferability to other mechanisms and ability to be easily modified digitally due to the
similarities in procedures and crack patterns [11,12].

As such, image analysis techniques integrated with artificial intelligence (AI) have
proven increasingly efficient as tools to capture patterns on concrete surfaces. However,
many applications have been limited to qualitative assessments, such as crack identifi-
cation without association to ASR-related damage or conducting a quantitative analysis
of the observed damage in general [13,14]. Some research on automated crack detection
models is mainly trained by datasets comprising a sufficient number of small-sized images
(e.g., 336 × 339 pixels, 1 cm × 1 cm) containing partial details of cracks [15–17]. Although
the CI was developed as a practical tool decades ago, new technologies and enhanced reso-
lution obtained with conventional digital cameras allow the development of an automated
procedure to capture the extent of ASR-related damage at the surface of a concrete element.
The CI aims to quantify damage by summarizing crack measurements over a specific area
(e.g., total analyzed area of 0.5 m × 0.5 m) [6]. Nevertheless, there is a shortage of datasets
containing the required images to train machine learning models for quantifying the extent
of cracking (i.e., minimal annotated datasets) [16,17]. Moreover, most of the literature is
focused on the crack detection task [18–32] where images are taken near the surface and
without quantification of the damage. In a condition assessment, a quantitative value is
required to inform the decision regarding the next steps and to monitor the increase in
the damage over time to capture the rate of the damage. Therefore, a rigorous protocol is
essential to transform images into quantifiable features to advance recognition and damage
quantification models.
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2. Scope of This Work

Annotated and quantifiable images for use as datasets presenting damage extents
captured by cracking intensity are lacking. This study aims to develop a flexible image
acquisition and processing protocol to accommodate varying conditions (i.e., digital camera
type and size of the analyzed area) for reliable quantitative evaluation of cracked concrete
surfaces through image analysis. This work can therefore serve as a precursor to training
machine learning models to detect crack patterns with quantified intensities that include an
established image acquisition procedure, ensuring standardized images and data quality.

3. Materials and Methods
3.1. Concrete Specimen Employed for Image Acquisition

The database of this project refers to annotated images capturing crack size at the
concrete surface along with crack tracing to measure both the quantity and length of
cracks. To ensure reliability and quality, images will be analyzed under different light
conditions using different crack-quantifying approaches, and comparative assessments
will be performed between manual and digital evaluations. The data must reflect known
causes and extents of damage; therefore, images were taken from laboratory-made concrete
blocks affected by ASR-induced damage within a controlled environment. These blocks
have reached their optimum expansion level, as detailed in the study by [33]. In this study,
seven concrete blocks (450 mm by 450 mm by 675 mm) were used as image and data
acquisition objects. These blocks had been manufactured in a laboratory environment and
had previously been the subject of investigation in studies [8]. The concrete mixtures of
the blocks included highly reactive coarse (i.e., Springhill) and fine (i.e., Texas) aggregates.
The blocks also featured various reinforcement configurations, which are detailed in the
previous study [34] and shown in Table 1. The concrete blocks were produced following
the ASTM C1293 [35] mixture proportions and stored under conditions of 38 ◦C and
100% relative humidity to expedite the development of ASR. The blocks were kept in the
same conditions until they reached their ultimate expansion, at which point they were
removed for use in this study. These blocks were selected for this study due to their
controlled fabrication and exposure conditions (to minimize variables, such as sunlight and
temperature), known level of damage (measured through expansion since the beginning
of casting by [34]), abundance of cracking at the surface, and surface characteristics (flat,
clean, free of defects, etc.) [6].

Table 1. Description of selected concrete blocks.

Block Title Description
Measured Expansion %

Longitudinal Transverse

B3 Unconfined, SP 0.817 0.818
B5 Unconfined, SP 0.817 0.818

B12 1D-SP 0.817 0.818
B2D21 2D-SP 0.700 0.710
B2D19 2D-SP 0.700 0.710

B25 2D-TX 0.801 0.826
B2D29 2D-TX 0.801 0.826

Note: SP = Reactive Springhill coarse aggregate; TX = Reactive Texas sand; 1D = reinforcements in one direction;
2D = reinforcements in two directions.

3.2. Primary Damage Quantification Assessment Method—Cracking Index (CI)

The cracking index (CI) is a technique for mapping cracks that quantitatively evaluates
the degree of surface cracking in concrete elements. This method includes measuring and
summing the widths of cracks along lines that are drawn as square boundaries on the
concrete surface under examination [4].
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The measured crack widths are then recorded and added together along each line,
resulting in a cumulative crack width value for that specific line. The calculation for the CI
is expressed in Equation (1), which was proposed by [4]:

CI = ∑ Crackopenings
Baselength

(1)

where the crack opening is the sum of all crack width measured along the grid line in
millimeters, and the base length is the length of the grid line with units in meters. Moreover,
the inferred expansion estimation has been adapted for reinforced concrete by [33] and is
described in Equation (2):

ε(%) =
CI
n

(2)

where ε is the inferred expansion calculated, CI is calculated based on field measurements,
and n is the number of cracks encountered in the direction of interest.

To perform the CI measurement, a square frame with four lines is created on the
severely damaged concrete surface. Typically, these lines are drawn parallel and perpen-
dicular to the main restraint(s). A square of 0.5 m by 0.5 m is typically drawn on structure
elements, and the size of the region of interest (ROI) frame can be adjusted for the smaller
damage area. As such, the spacing between the lines may vary depending on the size and
complexity of the concrete element. To obtain a reliable assessment of cracking using the
CI method, it is recommended to create multiple CI reference grids on the surface of the
most severely cracked structural components [6]. These components are typically the ones
exposed to moisture and harsh environmental conditions, as well as areas where the ASR
is expected to have occurred to a significant degree.

As shown in Figure 2a, each CI reference grid should contain a measurable amount of
cracking. These grids serve as visual reference points for quantifying and documenting the
extent of cracking in the concrete structure. To measure the width of cracks on the surface of
the investigated element, a magnifying lens with a plastic crack comparator card is required
for precision. Each line drawn on the surface should be divided by 10 intervals as reference
points and to tabulate the crack amount and width in 10 steps for each side. Figure 2a
illustrates a 25 cm by 25 cm 3D-printed reference frame used in this study since the full grid
size exceeded the block surface. Figure 2b illustrates the ROIs where the concrete block
surfaces were divided into 6 segments, and some overlap is noted due to the limited size of
the surface.
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3.3. Image Acquisition

Image acquisition is a crucial step for the database collection in this work while
ensuring image quality. This section undertakes a comprehensive approach to the image
acquisition procedure, wherein the images selected for analysis must exhibit clear feature
characteristics based on the goal of the analysis. In this study, cracks caused by ASR are
the desired feature and are more specifically used to quantify their characteristics, such
as orientation, length, and width, to highlight their distribution and pattern. The image
acquisition configuration used in this study is described below.

Images are expected to demonstrate the features (i.e., cracks), differentiated pixel-wise,
which allows the edge of each crack to be segmented from the surrounding background
either manually or automatically in subsequent image processing. The following equipment
and software were employed in the image acquisition process of this study:

• Camera: A digital single-lens reflex (DSLR-Canon EOS-T8i EF-S 18–55 mm f/4–5.6 IS
STM, Brampton, ON, Canada) camera was used, capturing images at a resolution of
24.1 megapixels, maximum image size of 6000 × 4000 pixels, and International Organiza-
tion Standard (ISO) sensitivity range of 100–25,600. The camera was equipped with a
versatile lens with a focal length range of 18 mm to 55 mm and up to 1.6× zoom capability.

• Remote shooting software: Commercial software (EOS Utility 3.17.0 included with
the camera) compatible with the camera facilitates the connection of the camera
to a computer for remote shooting and camera control using a USB cable or Wi-Fi
connection. A remote shooting option is preferred during the capturing process since
it minimizes vibrations. The connection also enables real-time review of captured
images on the computer screen, serving as the first stage of the quality validation.

• Lighting: Compact and portable LED light kits (containing 480 LED units, 3360 Lux/m,
color rendering index of ≥96) were used to enhance the visibility of crack features,
with adjustable intensity and color temperature (i.e., 3200 K—yellow/amber) to
5600 K—white/cold). The adjustments are modifiable from the unit itself, which
changes the white balance of the light.

• Reference frames: A 3D printed reference frame (25 cm × 25 cm) and a 3:2 ratio frame
were used for image processing and perspective distortion correction. The frames
were placed on top of the interest area and ensured a consistent camera-to-surface
distance (i.e., not varying zoom ranges and adjusting the reference frame to the picture
frame size), minimizing parameters that could affect image quality.

Each side of the 3D printed square was divided into 10 equally spaced intervals
normally used to record the CI data and used for scaling purposes. The image acquisition
procedure involved setting up the equipment (Figure 3) and capturing images under
different lighting conditions: white (cold, 5600 K), maximum yellow (warm 3200 K), and
white/yellow (daylight, 4800 K). Camera settings and positioning for each image captured
were kept consistent.

It is worth mentioning that the concrete blocks were lifted onto a table to allow for
a comfortable working height, thus minimizing human error. The lights were placed on
either side of the camera, and the camera was brought close to the surface of the concrete
block until only the reference frame was brought into the field of view. The procedure
will ensure that each image captured by the camera captures the ROI with the maximum
quality, where the minimum crack width as per the comparator card is visible in the images.
Furthermore, many images may exhibit perspective distortion, which occurs when the
camera’s imaging frame is not parallel to the target plane during photography, leading to a
trapezoidal shape instead of maintaining the intended square shape, as depicted in Figure 4.
To address perspective distortion, a 3:2 frame was used to aid in adjusting the camera’s
shooting angle and position. Detailed instructions on how to address the perspective are
further illustrated in the following step-by-step procedure for image acquisition.
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Figure 4. (a) Image with perspective distortion, (b) image after perspective correction. The image (a)
has wider left side boarder than right side border, resulting in scale inconsistency for the whole image.

1. Frame attachment: The 3D-printed CI frame and the 3:2 perspective correction frame
were attached to the damaged surface. The purpose of the outer frame was to locate the
ROI, and the inner frame is used to aid the camera to mitigate perspective distortion.

2. Camera setup: A tripod was used to minimize movements and ensure that the
camera is aligned with the center of the segment to prevent tilted or skewed images.
The camera was set to manual focus mode, and the lens zoom was adjusted to the
minimum level (1.0×). The camera’s position was adjusted to ensure the outer frame
overlaps with the camera view’s border. When multiple ROIs need to be collected on
the same surface, the distance between the camera lens and the objective surface was
measured for further reference.

3. Lighting setup: LED lights were placed at the same height as the camera and at
45-degree angles relative to the subject. These LED lights offered the capability to
modify the color temperature within the range of 3200 K to 5600 K, allowing for a
transition from a warm yellowish color to a colder white tone.

4. Remote shooting: Connecting the remote shooting software on the computer to the
camera allowed for full control of the target feature to be captured.

5. Perspective adjustment: The camera lens’ zoom ring was adjusted to view the per-
spective frame (as shown in Figure 5). The height and shooting angle were tuned to
guarantee that all four corners of the frame fit within the camera’s view. After the
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adjustment, the camera’s shooting angle should be corrected to be perpendicular to
the targeted surface.
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perspective frame in the full field of view after zooming in.

6. Enhance image quality: The zoom ring was adjusted to the maximum level (i.e., fully
zoomed-in) until a crack or any other surface feature is in focus. This ensures the
best image quality. The zoom ring was then brought back to its original position, and
the image was captured. The light conditions were then modified, and a new image
was captured.

3.4. Image Processing

Images require further processing for quantified data collection purposes. Other than
perspective distortion, images captured using a DSLR camera can have image distortion
due to the camera’s wide angle lens structure, which arises from aberrations near the image
edges. This type of problem has been introduced by Stankiewicz et al. (2018), where lens
distortion represents a departure from the theoretical projection outlined in the pinhole
camera model [36]. This phenomenon constitutes an optical aberration, causing straight
lines within the scene to appear curved or distorted within the resulting image (Figure 6).
This distortion is generated as a bending or curving effect along the edges of the reference
frame within the image, which may induce inaccuracies when collecting quantitative data
during subsequent post-processing.

To remove image distortion caused by a camera lens, two methods are available:
(1) manually correcting the barrel distortion using an open source or commercial image
processing software or (2) automating the procedure using a camera calibration algorithm,
such as the OpenCV platform [16]. Zhang et al. (2000) developed a camera calibration
algorithm and illustrate the camera calibration process using a mathematic model based
on the OpenCV platform [37]. The pin-hole camera model establishes a mathematical
relationship between the three-dimensional (3D) coordinates in the real world and their
projection onto a two-dimensional (2D) image plane. The calibration process typically
involves capturing a set of calibration images, estimating camera parameters, and applying
distortion correction to subsequent images. The following is a general overview of the
steps involved:

1. Capture calibration images: A series of images (around 20–30) of a calibration pattern
were taken from different angles and distances within the camera’s field of view,
ensuring that the calibration pattern covered a significant portion of each image. The
study from Zhang et al. (2000) indicated that the chessboard/checkerboard pattern is
commonly used as a calibration target, which includes a grid that has distinct corner
geometry allowing for precise calibration calculations [37]. In this study, an aluminum
board was used for rigidity and durability, and the pattern was printed by a local
photography shop.
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2. Detect calibration pattern corners: Detecting the corners of the calibration pattern
was accomplished by inputting the calibration image set into a Python code named
“calibration” [37] executed within the PyCharm 2023.2.5 software, an integrated
development environment (IDE). This code can identify the corners of the calibration
pattern in each image by detecting substantial changes in color in a pixel-wise manner.

3. Calculate camera parameters: Calculating camera parameters involves utilizing the
calibration algorithm to estimate intrinsic camera parameters (such as focal length,
distortion coefficients, and principal points) as well as extrinsic parameters (compris-
ing rotation and translation vectors). These estimations are derived from the identified
corners within the calibration images.

4. Undistort images: Another code named “undistortion” [37] is employed to fix the
image barrel distortion within the assigned folder with the camera parameters (in-
trinsic and extrinsic matrix) input calculated using the “calibration” code from step 2.
This code processes all subsequent images, utilizing the intrinsic camera parameters
as input. This operation entails applying inverse distortion equations to each pixel,
effectively eliminating the distortion effect.
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Once the distortion parameters are applied to the images, the previously displaced
pixels within the image will be restored to their original positions. The precision of the
“undistortion” process is influenced by the quantity of calibration images captured with the
specific camera. The camera matrix and distortion coefficients obtained from the calibration
can be stored using write functions in NumPy [38], allowing them to be readily accessed
for future applications.

After addressing the distortion issue, the subsequent step involves cropping the
images to fit within the confines of the reference frame, ensuring they adopt a square shape,
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and resizing them to a uniform resolution of 3000 × 3000 pixels. The scale variation was
managed by resizing the images in alignment with the reference frame and served as a
practical approach since the distance within the reference frame is known (i.e., 25 cm).

To produce the quantification result, this study relies on an image analysis soft-
ware [39]. The crack widths were measured digitally along the cropped images, and
a new parameter referred to as total crack length (TCL) was employed. The TCL is deter-
mined by dividing the total crack length by the surface area, and it is a measurement that
cannot be feasibly performed manually on-site.

In this study, a series of images featuring cracks are manually annotated using an image
processing software (provided compatibility with the device used during the annotations)
and a tablet with pen by tracing the cracks using the pencil function with a known pixel
width (Figure 7). The annotation setup was selected due to availability; however, the
process is not limited to this type of setup.
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Figure 7. A traced image with its mask layer. The red lines represent the annotations that were
manually traced.

The mask layer was then extracted, converted to an 8-bit image, and analyzed to
determine the total number of traced pixels using the Particle Analyze function.

The results exported contain the crack lengths to which the calculation for the TCL can
be applied (i.e., total crack length over analyzed area). The results are not limited to lengths
but can also describe preferential crack orientation. Figure 8 summarizes the essential steps
used in this study. Nevertheless, this study’s methodology aims to enhance the accuracy of
crack assessment through image analysis as opposed to manual measurement.
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4. Results
4.1. ASR Damage Measured Using the Cracking Index (CI)

The cracking index (CI) outcomes for seven concrete blocks were manually recorded
by two operators and calculated as per Equation (1). Figure 9 illustrates the measured
expansion as a function of CI, which exhibits an overlap between different types of blocks,
yet some clustering is observed. The calculated expansion (Equation (2)) of 2D-TX blocks
(reinforced in two directions and made with reactive Texas sand) can spread between 0.25%
and 0.86%, and the CI can range from 0.35 mm/m to 14.50 mm/m. Furthermore, 2D-SP
blocks (reinforced in two directions and made with reactive Springhill coarse aggregate)
have a narrower range of expansion compared to 2D-TX blocks, but the CI can vary from
5.25 mm/m to 12.56 mm/m when the expansion level is around 0.65%. In contrast, the
unreinforced type of block has a more concentrated CI value (2.9 mm/m to 5.9 mm/m) and
expansion level (0.23% to 0.50%). Moreover, the 1D-SP blocks (reinforced in one direction
and made with reactive Springhill coarse aggregate) show the narrowest ranges between
2 and 5 mm/m for expansions of 0.25–0.33%. Overall, a good correlation was found at a R2

value of 0.72.
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4.2. Operator Sensitivity to Damage Quantification

Two operators participated in the manual CI measurement to quantify the variability
between them. To assess the statistical significance and relevance of the results obtained
from various factors, paired t-test results of CI measurements of 66 square segments by
2 operators are presented in Table 2. A strong positive correlation with a Pearson correlation
coefficient of 0.95 was observed between the two variables. The average CI values obtained
from the two operators were 5.74 and 5.88 with variances of 7.51 and 7.08, respectively.
The calculated p-value was 0.37, which exceeds the significance level of 0.05. As a result,
the null hypothesis cannot be rejected, suggesting that there is no statistically significant
difference between the pairs of CI measurements manually measured by 2 operators.

Table 2. Results from t-test comparisons between 2 operators’ manual CI measurements.

Operator 1 Operator 2

Mean 5.74 5.88
Variance 7.51 7.08

Observations 66 66
Pearson Correlation 0.95

Hypothesized Mean Difference 0
df 65

t Stat −1.46
p (T ≤ t) one-tail 0.37
t Critical one-tail 1.66

4.3. Effect of Light Temperature on the Image Analysis Result

A comparative analysis of CI and the novel measurement of total crack length (TCL—length
over area, mm/cm2) results was conducted over 72 digitized images under three distinct lighting
conditions, including warm light (yellow—3200 K), daylight (white/yellow—4800 K), and cold
light (white—5600 K), as depicted in Figure 10. Four out of the 7 blocks were selected for this
portion of the study, representing various components with different reinforcement settings:
unconfined, reinforced in one direction (1D-SP), reinforced in two directions with reactive coarse
Springhill aggregate (2D-SP), or reactive Texas fine aggregate (2D-TX). A similarity in the results
can be observed for each light condition, where overlapping results are observed, yet the overall
trend is conserved. The highest CI value is captured with daylight (white/yellow) at 12.4 mm/m.
The corresponding CI value for cold (white) light is 10.9 mm/m, and that for warm (yellow)
light is 8.8 mm/m Figure 10a). Meanwhile, the largest difference can be observed with a CI value
of 3.6 mm/m. As for the TCL, similar trends are observed, where the results are comparable to
CI yet smaller variations are obtained from the TCL (Figure 10b).
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Due to the varied extent of damage in the concrete blocks, the CI results range from
3.9 mm/m to 12.4 mm/m, reflecting some degree of variance within the group. However,
ANOVA analysis (Table 3a) across the four different types of blocks under various lighting
conditions indicates that varying lighting conditions does not significantly affect the CI
results obtained from image analysis. Statistically, Table 3 presents a p-value exceeding the
significance threshold of 0.05, indicating insufficient evidence to reject the null hypothesis
(i.e., no significant difference in results among different lighting conditions). This conclusion
is further supported by the fact that none of the “F values” exceed its corresponding
“F-critical” value. Similar findings apply to the TCL image analysis results (Table 3b).
TCL values range from 2.6 mm/cm2 to 4.7 mm/cm2. ANOVA analysis reveals a p-value
higher than the significance level of 0.05, and the tabulated F value is below the F-critical
value, reinforcing the absence of significant differences among the three sets of light
condition results.
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Figure 10. Comparison for 3 light conditions among 24 image segments from 4 types of blocks
using (a) cracking index (mm/m) and (b) total crack length (mm/cm2). White bars = cold light
(white—5600 K); striped white and yellow bars = daylight (white/yellow—4800 K); and solid yellow
bars = warm light (yellow—3200 K).

Table 3. ANOVA results for (a) cracking index and (b) total crack length.

(a) ANOVA of the Cracking Index under Different Light Conditions

Block type F p-Value F-Critical

2D-SP 0.54 0.59 3.68
2D-TX 1.86 0.19 3.68
1D-SP 0.51 0.61 3.68

Unreinforced 0.67 0.53 3.68
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Table 3. Cont.

(b) ANOVA of Total Crack Length under Different Light Conditions

Block type F p-Value F-Critical

2D-SP 1.95 0.18 3.68
2D-TX 0.12 0.89 3.68
1D-SP 0.46 0.64 3.68

Unreinforced 1.86 0.19 3.68

Based on the comparison, it can be concluded that the light conditions have an influ-
ence on the results, but the effect is minimal and can be considered negligible.

4.4. Digital Cracking Index

The digital image-based analysis is a different approach to collecting the measurement
of cracks using pixel-wise annotations on images. Figure 11 illustrates the digital CI
results from four selected blocks (one from each configuration as previously mentioned).
Compared with the manual CI results, digital CI represents a more distinctive CI and
expansion level for different types of blocks. CI values for unreinforced blocks ranged from
0.25 mm/m to 2.50 mm/m, with a calculated expansion level ranging from 0.22% to 0.55%.
Both types of blocks reinforced in 2 directions (2D) exhibit more severe damage, and their
expansion level similarly ranges from 0.50% to 0.78%. Interestingly, the digital CI results
for the two types of 2D blocks show a significant difference (ranging from 6.3 mm/m
to 11 mm/m for 2D-SP blocks and from 9.38 mm/m to 12.5 mm/m for 2D-TX blocks).
Interestingly, more prominent clustering is observed using the digital CI when compared
to the CI performed manually as observed in Figure 11a. Digitizing the CI was found to be
effective as observed in Figure 11b where datapoints cluster along the 1:1 line.
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4.5. Total Crack Length (TCL)

The total crack length (TCL) was measured through image analysis and calculated
using a unit in mm/cm2. Figure 12 illustrates the calculated expansion from the digitally
recorded crack widths as a function of the TCL over 24 segments under artificial light in
daylight conditions (4800 K). The data points exhibit a broad distribution while generally
clustering into distinct groups. The TCL values within all types of blocks range widely,
ranging from 2.3 mm/cm2 to 4.6 mm/cm2. Notably, Block B5 (i.e., unreinforced, SP)
displays the most modest expansion level (0.23–0.37%, computed based on CI values
derived from image analysis) among the four types of blocks.
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4.6. Crack Orientation

Through image analysis, the crack orientation can be obtained as an output that can be
further illustrated using histograms to depict the most frequently observed crack directions.
Figure 13 presents the histograms for a reinforced block and an unreinforced block. The
distribution in the reinforced block histogram (Figure 13a) shows a preference for the
0-degree region (horizontal) and a lesser tendency towards the 90-degree region (vertical).
This suggests that more cracks are oriented horizontally rather than vertically. In contrast,
the unreinforced block exhibits an orientation angle that does not concentrate in any range
of direction (Figure 13b). Table 4 presents the results for all blocks where the 2D reinforced
blocks show average orientation angles of 35.37 and 33.12 degrees. These values are slightly
less than that of the 1D reinforced block at 38.20 degrees followed by the unreinforced block
at 45.46 degrees.
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Table 4. Mean value summary of average crack orientation angles from 5 concrete surfaces (unit in
degrees).

Block Label 1 2 3 4 5 6 Average

1D-SP 36.99 35.91 30.38 44.74 43.35 37.83 38.20
2D-SP 33.32 40.23 25.17 34.82 43.70 35.00 35.37
2D-TX 40.22 26.09 34.34 33.93 30.34 33.77 33.12

Unreinforced 44.60 44.51 56.42 38.39 42.82 45.99 45.46

5. Discussion
5.1. Capturing Damage with Crack Directionality in Reinforced Concrete

The expansion calculated using Equation (2) from the data collected in this study was
compared to measured expansion (from Table 1), and the data are presented in Table 5
where non-negligeable differences are observed from 23% to 65%. From Figure 9, a wide
range of expansion values was obtained; however, some degree of clustering was observed,
indicating that crack directionality due to reinforcements may influence the CI measure-
ments. It is to be noted that although the CI calculates cracks in two directions, its final
output is a one-dimensional value such that crack widths are measured along a line. In
addition, in practice, the CI is performed in the center of a concrete surface to minimize the
edge effect thus, influencing the representation of damage throughout the concrete. It is to
be noted that in this study, images taken from the entire surfaces of the blocks were used to
optimize the dataset therefore introducing such large differences.

Table 5. Comparison between measured and calculated expansions (average).

Description
Expansion %

Difference %
Average Measured Calculated

Unconfined, SP 0.818 0.333 59
1D-SP 0.818 0.289 65
2D-SP 0.705 0.541 23
2D-TX 0.814 0.431 47

Considering the apparent observable crack directionality, the CI was divided into
two directions to capture horizontal cracking and vertical cracking. Figure 14 presents
the average directional CI results from both operators plotted along a 1:1 line; this plot
indicates that cracking is more significant in the horizontal direction. Note that the x-axis
represents the crack CI measurement from cracks aligned in the horizontal direction, and
vice versa.

By evaluating the data clusters where different types of blocks were grouped to assess
the impact of reinforcement on crack patterns, it can be observed that all data points
from blocks without reinforcement cluster closely around the 1:1 line, with the highest CI
value of 4.20 mm/m for vertical cracking and 5.10 mm/m for horizontal cracking. This
suggests that their horizontal CI values closely align with their vertical CI values since
these blocks can expand in all directions without restraint. In contrast, all reinforced blocks
exhibit CI values in horizontal cracks that are much greater than those in vertical cracks.
The block is reinforced in one direction and has an average CI value of 2.43 mm/m for
horizontal cracking and 0.81 mm/m for vertical cracking, which are lower than the value
observed for blocks reinforced in 2 directions in both vertical and horizontal cracking
directions. For blocks reinforced in 2 directions, 2D-SP has an average CI of 3.86 mm/m for
horizontal cracking and 1.39 mm/m for vertical cracking, while 2D-TX has an even larger
crack width open with values of 7.458 mm/m for horizontal and 1.439 mm/m for vertical
cracking directions.
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In contrast, when measuring cracks in the vertical direction (Figure 15b), the values tend 
to cluster within a certain range for each block. This observation reveals that the pres-
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along the reinforced direction. Corroborating the existing literature [8,14,33], the expan-
sion measurements performed on various surfaces of the reinforced blocks revealed that 
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Figure 14. Plot of CI measurement collection for vertical vs. horizontal measurements in mm/m
manually collected from 7 blocks with marker shape differentiated by concrete reinforcement configu-
ration: (1) reinforced in two directions (2D) with reactive coarse (SP—blue square) or fine (TX—green
square) aggregate, reinforced in one direction (1D) with SP coarse aggregate (triangle), and unrein-
forced with SP coarse aggregate (circle). Values are shown along the 1:1 red line.

Figure 15 displays the expansion level calculated using Equation (2) against the CI
value for horizontal and vertical cracking directions, separately. Based on 132 observations,
it is evident that the calculated expansion levels as measured based on the horizontal
cracking direction exhibit a larger mean range of expansion (0.2% to 1.6%) compared to
the vertical cracking direction (0.2% to 0.8%), especially for reinforced concrete blocks. It is
apparent that both CI and expansion values plotted for 1D-SP, 2D-TX, and 2D-SP types of
blocks are notably higher than those for unreinforced blocks (Figure 15a). In contrast, when
measuring cracks in the vertical direction (Figure 15b), the values tend to cluster within a
certain range for each block. This observation reveals that the presence of reinforcement has
no effect and leads to increased crack openings and expansion along the reinforced direction.
Corroborating the existing literature [8,14,33], the expansion measurements performed
on various surfaces of the reinforced blocks revealed that the propagation of induced
expansion transfers from reinforced directions to directions with lower or no reinforcement
and results in more expansion in the direction with the least amount of reinforcement
(perpendicular to the main reinforcing bars). This observation suggests that ASR-induced
expansion occurred to a greater degree in the direction where the reinforced blocks faced
less or no restraint. For instance, 2D-SP blocks were formed by reactive coarse aggregate
(Springhill-SP) and non-reactive natural sand, with reinforcement in the transverse and
longitudinal direction. The average result for 2D-SP blocks exhibited an average horizontal
CI of 4.05 mm/m compared to a vertical CI of 1.45 mm/m. This disparity indicates that the
average expansion in the horizontal direction (0.38%) was constrained, leading to a more
pronounced expansion in the vertical direction (0.83%) that experienced no restraints.

Clustering in Figure 15 shows that the calculated expansion as a function CI for
horizontal cracking is more distinct when compared to that observed in Figure 9 (i.e.,
undivided CI). Likewise, through the cracking orientation analysis, preferential cracking
directions are observed with respect to the reinforcements. Therefore, in cases of reinforced
concrete presenting cracking directionality, quantifying the cracking orientation may help
to refine models used to calculate the expansion from the CI.
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lected from 7 blocks with marker shape differentiated based on concrete reinforcement settings:
circle—unreinforced, SP; triangle—1D-P; square—2D-SP; diamond—2D-TX. (b) Calculated expan-
sion level vs. average CI result from manual measurements.

5.2. Variability to Consider When Digitizing

It is expected that the highest degrees of variability will be observed during manual
operations as more factors can influence the variability as opposed to measurements
obtained using digitized images. This reasoning stems from the variables often encountered
when performing manual operations on-site or in a laboratory in which human error is
more prominent. Therefore, concerns about operator variability and the use of artificial
light have often been raised due to the nature of the conducted on-site visual inspections.
Through validation in this study, the CI obtained on-site (called “manual CI” in this study)
was not deemed sensitive to operator variability when both operators work alongside each
other under the same conditions. Operator variability remained at 0.2 mm/m, which is
considered negligible. As such, the operators’ variability is lower than that of the range
used to indicate the volumetric changes around 1.85 mm/m per year [34]. Meanwhile, it
was previously stated that artificial light conditions had a negligible effect on the outcomes.
However, when digitizing the CI, variability may be observed due to image resolution;
thus, a set of t-test results were obtained (Table 6). The CI was further divided into two
directions. The average value for manual CI is 3.55 mm/m, whereas that for digital CI is
3.90 mm/m. The difference between these averages yields a p-value of 0.051, which is just
on the border of the significance level of 0.05. Similarly, a p-value of 0.051 was found in the
vertical CI results from both measurement approaches. Since both p-values are very close
to reaching statistical significance, it suggests that there is a small chance of observing a
significant difference in all measurements. Obtaining more convincing results may require
a larger sample size.

The conditions affecting the results during each operation are indeed different such
that digital CI measurements can be influenced by image quality provided by the camera
itself or the computer/tablet screen used to measure the cracks. It is expected that lower
image quality will provide a higher variability, while a better image quality will provide
less variability as the crack features will be more resemblant to what is observed by the eye.
A parametric study using various image qualities would help to further define the ranges
of uncertainty. Furthermore, this correlation is for the observed surfaces used in this study,
which do not include lower degrees of damage or different types of damage other than
ASR and represent laboratory-made and exposed concrete. Further images following the
proposed standard protocol in this study are required to refine these correlations and the
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dataset. Nevertheless, the CI served as an efficient tool to measure the ability to transition
from manual to digital measurements of cracking on the concrete surface.

Table 6. Results from t-tests of comparisons between digital and manual CI methods.

Horizontal Direction Manual Digital Vertical Direction Manual Digital

Mean (mm/m) 3.55 3.90 Mean (mm/m) 1.25 1.29
Variance ((mm/m)2) 3.01 3.50 Variance ((mm/m)2) 0.56 0.56

Observations 24.00 24.00 Observations 24.00 24.00
Pearson Correlation 0.92 Pearson Correlation 0.91

Hypothesized Mean Difference 0.00 Hypothesized Mean Difference 0.00
df 23.00 df 23.00

t Stat −2.30 t Stat −0.67
p (T ≤ t) two-tail 0.05 p (T ≤ t) two-tail 0.05
t Critical two-tail 2.07 t Critical two-tail 2.07

5.3. Image Analysis for Damage Evaluation

A new metric was considered to quantify the intensity of cracking similar to the
total crack length (TCL), which considers the length of cracks (in one dimension) over an
area (2 dimensions). The TCL alone cannot measure crack directionality; therefore, it was
compared against the vertical and horizontal CIs, as illustrated in Figure 16. By comparing
the slope of the trendline, the TCL may not be able to represent a good correlation with
either the vertical or horizontal CI value. As the TCL increases, the value of CI between
the two directions shows a significant difference, indicating the TCL may not be capable
of representing the damage extent in either direction. Moreover, the correlations show
an R2 of 0.39 for horizontal cracking and 0.06 for vertical cracking, which is considered a
poor correlation.
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The orientation angle of cracks can therefore serve as potential indicators. As previ-
ously mentioned, the configuration of reinforcement in certain blocks may contribute to an
increased prevalence of surface cracks in the horizontal direction. The results of crack ori-
entation are displayed in Table 4 and describe the overall crack propagation direction, thus
providing a potential solution to convert TCL to a directional CI by assigning coefficients
according to the angle within a certain range corresponding to the direction. In this study,
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Equations (3) and (4) are defined through linear regression using the image analysis results
obtained in this work.

CIv = 3.271av × CD − 0.8698 (3)

CIh = 1.7653ah × CD − 0.3718 (4)

where av and ah are the total percentages of crack orientation from 0◦ to 30◦ and 60◦ to
90◦, respectively, representing cracks propagating in horizontal and vertical directions,
respectively. The CD is the TCL in mm/cm2, and CIv and CIh are the predicted CI results
for the vertical and horizontal directions, respectively.

The two plots presented in Figure 17 compare the predicted CI results vs. manual
CI in both directions to better determine the regression performance visually. The per-
formance of the regression model can be assessed through residual analysis, as depicted
in Figure 18. The residual values range from −2.0 mm/m to +2.3 mm/m for the vertical
direction and from −1.0 mm/m to +1.0 mm/m for the horizontal direction, and a trend of
heteroscedasticity is not observed. Notably, the histograms of the residual values in both
directions closely approximate a normal distribution. This suggests that the prediction
model (Equations (3) and (4)) has good regression with ground truth values.
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Figure 17. CI values predicted using the CD-orientation model in the (a) horizontal and (b) verti-
cal directions.

The CI, CD, and crack orientation angle represent three distinct parameters that do
not exhibit a direct relationship. Nevertheless, when considering CD and crack orienta-
tion collectively, they can jointly characterize crack behavior in terms of distribution and
quantity. Their combined analysis can reasonably describe the cracking intensity in their
respective directions, akin to the role CI plays. Additional findings presented in Table 7
provide compelling evidence to assess the model’s predictive capability. Based on the
results of paired t-tests, the predictive outcomes of CI closely align with manual CI results
of horizontal cracking, yielding an average p-value of 0.96 and a correlation coefficient of
0.82. These results suggest that there is no significant difference between the predicted and
observed values. Similarly, in the vertical direction, the p-value is 0.90 with a correlation
coefficient of 0.79, supporting a similar conclusion of a positive result.



Materials 2024, 17, 813 21 of 24

Materials 2024, 17, x FOR PEER REVIEW 22 of 26 
 

 

and observed values. Similarly, in the vertical direction, the p-value is 0.90 with a correla-
tion coefficient of 0.79, supporting a similar conclusion of a positive result. 

Table 7. The t-test results for comparisons between predicted CI and manual CI results. 

Horizontal Direction Predicted Manual Vertical Direction Predicted Manual 
Mean (mm/m) 3.90 3.90 Mean (mm/m) 1.24 1.23 

Variance ((mm/m)2) 3.50 2.24 Variance ((mm/m)2) 0.50 0.20 
Observations 24.00 24.00 Observations 24.00 24.00 

Pearson Correlation 0.80  Pearson Correlation 0.74  
Hypothesized Mean Difference 0.00  Hypothesized Mean Difference 0.00  

df 23.00  df 23.00  
t Stat 0.00  t Stat 0.07  

p (T ≤ t) two-tail 0.96  p (T ≤ t) two-tail 0.94  
t Critical two-tail 2.07  t Critical two-tail 2.07  

 

  
(a) (b) 

Figure 17. CI values predicted using the CD-orientation model in the (a) horizontal and (b) vertical 
directions. 

  
(a) (b) 

Materials 2024, 17, x FOR PEER REVIEW 23 of 26 
 

 

  
(c) (d) 

Figure 18. Residual analysis for CI prediction using CD and crack orientation: (a) horizontal resid-
ual plot, (b) horizontal residual histogram, (c) vertical residual plot, and (d) vertical residual histo-
gram. 

Through the analysis presented above, the combination of total crack length and 
crack orientation has proven ability to summarize damage extent results similar to the 
output of CI. Since ASR development involves anisotropic propagation in reinforced 
concrete samples, accurately extracting damage from randomly distributed crack pat-
terns can be challenging. However, the model introduced in this work successfully inte-
grates crack quantity and crack propagation direction across the entire area of interest to 
correlate with an already established metric, the CI, for evaluating crack damage in two 
directions across the damaged surface. 

Further refinement of this model is however necessary, especially when incorporat-
ing images from real structures in the field exposed to harsh climates. In addition, in-
creasing the dataset of images of ASR surface cracking with known levels of internal 
damage can provide a more accurate and reliable approximation of the expansion levels 
(%). Moreover, the CI is normally performed in the center of a concrete surface to reduce 
the edge effect where less representative cracking is observed. 

6. Conclusions 
Digitization of visual inspections is becoming the standard practice in many appli-

cations, such as assessing the cracking of concrete surfaces. Among the mechanisms that 
cause concrete to crack, the alkali–silica reaction (ASR) causes a distinct map cracking 
pattern in which its intensity is quantified to evaluate the overall level of deterioration 
and its rate. The cracking index (CI) was initially developed to measure this cracking in-
tensity in a practical manner on the field. Since its development, the availability and ac-
cessibility of high-resolution digital cameras have transformed visual inspections such 
that the assessment could be performed on a computer as opposed to at the site, thus re-
ducing some of the variables encountered through such operations. 
• Variability in the CI computation between two operators was evaluated and was 

found to be negligible. Among other variable parameters that could be controlled in 
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Figure 18. Residual analysis for CI prediction using CD and crack orientation: (a) horizontal residual
plot, (b) horizontal residual histogram, (c) vertical residual plot, and (d) vertical residual histogram.

Table 7. The t-test results for comparisons between predicted CI and manual CI results.

Horizontal Direction Predicted Manual Vertical Direction Predicted Manual

Mean (mm/m) 3.90 3.90 Mean (mm/m) 1.24 1.23
Variance ((mm/m)2) 3.50 2.24 Variance ((mm/m)2) 0.50 0.20

Observations 24.00 24.00 Observations 24.00 24.00
Pearson Correlation 0.80 Pearson Correlation 0.74

Hypothesized Mean Difference 0.00 Hypothesized Mean Difference 0.00
df 23.00 df 23.00

t Stat 0.00 t Stat 0.07
p (T ≤ t) two-tail 0.96 p (T ≤ t) two-tail 0.94
t Critical two-tail 2.07 t Critical two-tail 2.07

Through the analysis presented above, the combination of total crack length and crack
orientation has proven ability to summarize damage extent results similar to the output
of CI. Since ASR development involves anisotropic propagation in reinforced concrete
samples, accurately extracting damage from randomly distributed crack patterns can be
challenging. However, the model introduced in this work successfully integrates crack
quantity and crack propagation direction across the entire area of interest to correlate with
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an already established metric, the CI, for evaluating crack damage in two directions across
the damaged surface.

Further refinement of this model is however necessary, especially when incorporating
images from real structures in the field exposed to harsh climates. In addition, increasing
the dataset of images of ASR surface cracking with known levels of internal damage can
provide a more accurate and reliable approximation of the expansion levels (%). Moreover,
the CI is normally performed in the center of a concrete surface to reduce the edge effect
where less representative cracking is observed.

6. Conclusions

Digitization of visual inspections is becoming the standard practice in many appli-
cations, such as assessing the cracking of concrete surfaces. Among the mechanisms that
cause concrete to crack, the alkali–silica reaction (ASR) causes a distinct map cracking
pattern in which its intensity is quantified to evaluate the overall level of deterioration
and its rate. The cracking index (CI) was initially developed to measure this cracking
intensity in a practical manner on the field. Since its development, the availability and
accessibility of high-resolution digital cameras have transformed visual inspections such
that the assessment could be performed on a computer as opposed to at the site, thus
reducing some of the variables encountered through such operations.

• Variability in the CI computation between two operators was evaluated and was
found to be negligible. Among other variable parameters that could be controlled
in this study, artificial lighting was the most significant factor. All other variables
were kept constant, such as the distance between the camera lens and the block
surface, the camera zoom set to its minimal value, the position in the laboratory, angles
adjusted for perspective distortions, and the area of analysis. Using three different
light settings (all set to their maximum intensity to further reduce variability), image
analysis was performed using the digital cracking index (where crack widths were
measured on images) and the total crack length (where cracks were annotated/traced
on images). It was thus revealed that the lighting conditions did not significantly
influence the outcomes. Furthermore, converting the cracking index into a digital
technique displayed a strong correlation, thereby validating the digitization process.

• A thorough protocol for image acquisition, processing, and analysis was developed in
this project to facilitate the creation of similar datasets. Datasets of quantifiable features
of concrete cracking are non-existent and crucial for machine learning development.
The application of the protocol can lend itself beyond cracks in concrete caused by
the ASR. This protocol therefore can serve as an established method to produce
standardized images, ensuring data quality for further model development.

• By evaluating the expansion as a function of the CI, a linear trend was observed;
however, the distinction between the various reinforcement configurations was not
apparent when compared to the use of digitally measured crack widths to calculate
the CI and the total crack length. The division of the CI into two directions, horizontal
and vertical, helped to understand the role of crack directionality in the CI prediction
using image analysis based on the total crack length. This enabled the development
of two models for which horizontal and vertical cracking are treated separately as a
function of their proportions, thus outputting a CI in both directions.

• Research is currently ongoing to validate the methodology when applied to real
structures in the field subject to Canadian climate conditions where the level of ASR-
induced internal damage is already known. This will help to establish the correlations
between internal damage and corresponding external cracking due to the ASR. More-
over, the current study focused exclusively on ASR cracking; thus, further work is
necessary when combined mechanisms are involved, such as mechanical cracking,
shrinkage, and other internal swelling reactions.
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18. Akgül, İ. Mobile-DenseNet: Detection of Building Concrete Surface Cracks Using a New Fusion Technique Based on Deep
Learning. Heliyon 2023, 9, e21097. [CrossRef]

https://doi.org/10.1016/j.cscm.2021.e00563
https://doi.org/10.1016/j.conbuildmat.2019.117554
https://doi.org/10.1016/j.conbuildmat.2022.126549
https://doi.org/10.1016/j.ndteint.2010.04.007
https://doi.org/10.1002/stc.2381
https://doi.org/10.1016/j.engstruct.2021.113725
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000918
https://doi.org/10.1016/j.aej.2017.01.020
https://doi.org/10.3390/infrastructures6080115
https://doi.org/10.1016/j.heliyon.2023.e21097


Materials 2024, 17, 813 24 of 24

19. Bai, Y.; Sezen, H.; Yilmaz, A. End-to-End Deep Learning Methods for Automated Damage Detection in Extreme Events at Various
Scales. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021;
pp. 6640–6647.

20. Billah, U.H.; Tavakkoli, A.; La, H.M. Concrete Crack Pixel Classification Using an Encoder Decoder Based Deep Learning
Architecture. In Advances in Visual Computing; Lecture Notes in Computer Science, Bebis, G., Boyle, R., Parvin, B., Koracin, D.,
Ushizima, D., Chai, S., Sueda, S., Lin, X., Lu, A., Thalmann, D., et al., Eds.; Springer International Publishing: Cham, Switzerland,
2019; Volume 11844, pp. 593–604. ISBN 978-3-030-33719-3.

21. Chakurkar, P.S.; Vora, D.; Patil, S.; Mishra, S.; Kotecha, K. Data-Driven Approach for AI-Based Crack Detection: Techniques,
Challenges, and Future Scope. Front. Sustain. Cities 2023, 5, 1253627. [CrossRef]

22. Chen, Y.; Zhu, Z.; Lin, Z.; Zhou, Y. Building Surface Crack Detection Using Deep Learning Technology. Buildings 2023, 13, 1814.
[CrossRef]

23. Golding, V.P.; Gharineiat, Z.; Munawar, H.S.; Ullah, F. Crack Detection in Concrete Structures Using Deep Learning. Sustainability
2022, 14, 8117. [CrossRef]

24. Islam, M.M.; Hossain, M.B.; Akhtar, M.N.; Moni, M.A.; Hasan, K.F. CNN Based on Transfer Learning Models Using Data
Augmentation and Transformation for Detection of Concrete Crack. Algorithms 2022, 15, 287. [CrossRef]

25. Katsigiannis, S.; Seyedzadeh, S.; Agapiou, A.; Ramzan, N. Deep Learning for Crack Detection on Masonry Façades Using Limited
Data and Transfer Learning. J. Build. Eng. 2023, 76, 107105. [CrossRef]

26. Kim, J.-H.; Lee, J. Efficient Dataset Collection for Concrete Crack Detection With Spatial-Adaptive Data Augmentation. IEEE
Access 2023, 11, 121902–121913. [CrossRef]

27. Meng, X. Concrete Crack Detection Algorithm Based on Deep Residual Neural Networks. Sci. Program. 2021, 2021, 3137083.
[CrossRef]

28. Padsumbiya, M.; Brahmbhatt, V.; Thakkar, S. Automatic Crack Detection Using Convolutional Neural Network. J. Soft Comput.
Civ. Eng. 2022, 6, 1–17. [CrossRef]
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