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Abstract: One fascinating concept for enhancing the durability and lifespan of concrete buildings
involves the use of self-healing concrete. This study focuses on the effect of crystalline admixtures and
coatings on various properties of self-healing concrete and provides a comparison with traditional
concrete. Four different concrete mixtures were prepared to assess their effectiveness in bridging crack
openings, their flexural and compressive strengths, and water absorption. Various testing methods,
including destructive, semi-destructive, and non-destructive tests, were used in this research. The
capacity of the mixes to repair themselves was assessed on the destroyed and semi-destroyed test
specimens using crack-healing and microstructure testing. Additionally, all mixtures were also
subjected to the slump cone test and air content test in order to investigate the characteristics of
the concrete in its fresh state. The findings demonstrate that crystalline coating and admixture
combinations have significant potential for healing concrete. The compressive and bending strengths
of self-healing concrete mixtures were shown to be slightly higher compared to traditional concrete
when the additive dose was increased. Self-healing concrete mixtures also exhibited much lower
water absorption, a tightly packed and improved microstructure, and signs of healed gaps, all of
which indicate greater durability.

Keywords: self-healing concrete; fresh properties; hardened properties; crystalline admixture; durability

1. Introduction

Concrete is widely utilized in the construction industry owing to its readily accessible
nature, economical price, and favorable mechanical properties. The advent of reinforced
concrete has brought about substantial changes in the course of architectural and engineer-
ing progress due to its inherent durability and the integration of steel reinforcement.

Nevertheless, emerging environmental problems and climate change, have raised
significant issues about the manufacturing and utilization of concrete. The large-scale
manufacturing and application of concrete results in significant carbon dioxide emissions,
water pollution, waste generation, and the depletion of natural resources. When cement
factories calcinate raw materials, such as clay and limestone, they emit large amounts
of carbon dioxide into the atmosphere. Other associated processes, such as burning and
grinding clinker, and the transportation of raw materials and finished products, also
contribute to climate change.

The generation and proper disposal of concrete debris following the demolition of a
structure also pose significant ecological challenges. Construction and demolition activities
account for a significant proportion of the EU’s waste, which includes a wide range of
materials such as concrete, plastic, wood, glass, and metals, etc. The amount of this waste
is believed to be between twenty-five and thirty percent of the total waste disposed of in
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Europe. While the recycling of construction and demolition waste may appear feasible in
theory, its widespread implementation is hindered by practical challenges.

The importance of implementing environmentally friendly policies in the construction
industry is underscored by the variety of challenges posed by the increased carbon dioxide
emissions that lead to climate change, water pollution, and waste generation. Nevertheless,
the environmental repercussions of concrete go beyond its production and disposal. De-
fects, such as cracks and fractures in the structure of a building, can have serious social and
economic consequences, in addition to environmental impacts. In addition to compromis-
ing concrete’s structural integrity, cracking increases the demand for either the construction
of new structures or restoration, both of which have significant environmental, as well as
social and financial, costs.

Cement-based mixtures typically exhibit shrinkage cracks [1,2]. Concrete is a mixture
of materials: a cement matrix plus coarse and fine aggregates. Theoretically and empirically,
it has been established that the shrinking of concrete results in the emergence of a network
of small and large fractures surrounding both fibers, as well as aggregates [1,2]. The major
causes of the fractures in concrete are a relatively weak tensile strength, temperature and
shrinkage distortions, ingression of harmful chemicals, freeze–thaw cycles, foundation
imperfections, and settlement [3,4].

Since cracks permit detrimental fluids to flow through the fissures, they decrease the
building material’s durability over time [5]. Tiny cracks in concrete can initiate deterioration,
and liquid seeping through the building material may further affect reinforcement steel [6].
Hence, it is vital that these fractures are quickly repaired. The ability of concrete structures
to heal from fractures increases their long-term viability and durability and makes them
more sustainable [7].

Concrete’s inherent self-healing abilities have made it a renowned and a widely recog-
nized construction material [5–8]. Attempts to develop autonomous self-healing concrete
have been ongoing since the 1990s [6–8]. Henk Jonkers, a microbiology researcher from
Delft University of Technology in the Netherlands, developed self-healing concrete, an en-
tirely innovative form of concrete, in around 2006 [8,9]. Self-healing concrete encompasses
a unique mechanism which is frequently referred to as the concrete’s capacity to repair itself
or to autonomously heal after cracking. Another name for this material is self-repairing
concrete [10–15]. Self-repairing mimics the human’s inherent capacity to restore itself by
secreting a specific type of fluid [7–11].

Recently, a number of self-healing techniques have been introduced [4–8], such as the
incorporation of crystalline additives [12–16], microencapsulating repair agents [17–23],
and bacteria [24–30]. When cracks develop, these substances become active and react or
release fluids to fill the gaps [8]. Self-repairing in cementitious materials, based on methods
derived from self-repairing polymers, can be divided into three groups: intrinsic healing,
capsule-based healing, and vascular healing [7,31]. Autogenous repair is recognized as
one of the most extensively researched methods for the intrinsic repair of cracks in cement-
based products [32–37]. Two processes are primarily responsible for autogenous fracture
healing [7,8]: (1) hydration of unhydrated cement molecules, and (2) the dissolution and
associated carbonation of Ca(OH)2 [7,9,38]. Young concrete is known to have the highest
self-repair capability [4].

Different metrics can be employed to evaluate the effectiveness of self-repair mecha-
nisms: visible crack closure assessment, identification of the responsible repair ingredients,
enhanced durability, as well as the restoration of strength capabilities [39,40]. However,
concrete’s ability to rebuild its strength throughout the self-repair phase is often mini-
mized [41,42]. As a result, self-treatment activity tends to be apparent when visible crack
closure is observed and durability improvements are achieved, as demonstrated by dura-
bility tests and microstructural analyses [43].

There is an increased interest in self-repairing materials, particularly those with self-
healing qualities in ecologically friendly and sustainable construction materials, with
a focus on diverse approaches offered by several research works over the past 20 years.
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However, it is difficult to choose the most effective testing technique since every experiment
uses a different set of testing procedures to gauge how well the repairs work. Concrete
that can mend itself has the capacity to regenerate, which lessens the need to locate and
correct internal flaws (like gaps) without outside intervention. Consequently, cost decreases,
durability increases, and corrosion of the concrete, and reinforcement, are also limited.

In addressing the adverse environmental impacts and associated challenges inherent
in the use of conventional concrete, this study focuses on the potential of self-healing
concrete. The primary objective is to examine the effectiveness of crystalline admixtures
in enhancing the self-healing properties of concrete, with the further goal of mitigating
the environmental impacts of construction materials and supporting initiatives to promote
sustainability in the industry.

The goal of this research is to conduct a series of experiments on four different mixes,
involving three varieties of self-healing concrete and typical ordinary concrete, in order
to evaluate how efficiently they perform in terms of a number of fresh and hardened
properties, including slump, air content, rebound value, water absorption, compressive
strength, flexural strength, etc. The crack width, crack depth and the microstructure of
the hardened concrete specimens are also analyzed. By comparing the outcomes of these
distinct mixes and the ingredients that compose them, this study aims to shed light on
the effectiveness of crystalline admixtures (CA) and coatings in self-healing concrete and
provide guidance regarding the future advancement and implementation of this innovation
in the building industry.

2. Materials and Methods
2.1. General

The goal of this work is to determine how crystalline admixtures and coatings affect the
capacity for self-healing in concrete. For the study, four separate mixtures were formulated,
including a standard mixture and three self-healing mixtures, manufactured with differing
concentrations of Penetron crystalline admixture and coating (Figure 1). In the fourth mix,
the crystalline coating is applied over concrete specimens made using the conventional
mix. A range of destructive, non-destructive, and semi-destructive testing methods were
used to evaluate the performance of the mixes, including compressive strength, flexural
strength, durability, and microstructure investigations (Figure 2). The features associated
with fresh concrete, including slump and air content, were also investigated. Measure-
ments of the depth and width of cracks were used to gauge the self-healing ability of the
different combinations.
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Figure 2. Tests on concrete.

2.2. Mix Design

Standard OPC CEM I 42.5 N was used as the binder, along with potable water in the
mix. For Mix 4, the crystalline coating was prepared by adding water to the crystalline
admixture (water to admixture ratio = 0.4) that was applied on the damp surface of concrete
in two coats, 6 h apart and 28 days after curing. The four mixtures are presented in Table 1:

Table 1. Summary of mix designs.

Composition kg/m3 Mix 01 Mix 02 Mix 03 Mix 04

Cement 360.0 360.0 360.0 360.0
FA (0–4 mm) 725.0 725.0 725.0 725.0
CA (4–8 mm) 484.0 484.0 484.0 484.0

CA (8–16 mm) 641.0 641.0 641.0 641.0
Crystalline Admixture No 3.6 9.0 No

Crystalline Coating No No No Yes
Water 176.4 176.4 176.4 176.4

Six 15 cm cubes were cast for each mixture; three of these cubes were used for testing
compressive strength and three for testing durability. Additionally, two prismatic beams
measuring 15 cm × 15 cm × 60 cm were cast and tested for flexural strength. Each sample
underwent a curing process for 28 days before testing.

2.3. Tests on Concrete
2.3.1. Tests on Fresh Concrete

The slump test and the air content test were carried out in accordance with standard
testing practices (see Figure 3a,b) in order to assess the workability and air content of the
fresh concrete.
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(f) crack depth measurement.

2.3.2. Tests on Hardened Concrete

• Compressive Strength Tests

Both destructive and non-destructive tests were employed to evaluate the specimens’
compressive strengths. First, each sample was subjected to the non-destructive rebound
hammer test (Refer Figure 3d) to determine its compressive strength. A typical destructive
test was then conducted. For destructive compressive strength testing, the cubes were
loaded at a rate of 3000 N/s, gradually and constantly until they failed, as shown in Figure 3c;

• Flexural Strength Test

Flexural testing on beam samples with dimensions of 15 cm by 15 cm by 60 cm was
conducted using a 4-point bending system. The supporting span (Lo) was maintained at
45 cm, while the loading span was maintained at 15 cm. A loading rate of 150 N/s was
applied until the first crack appeared, with a 1 mm opening (visually regulated). Following
the preliminary bending test, Mix 4 specimens were coated with the crystalline admixture
and all specimens were kept in water for 12 days. The modulus of rupture was estimated
using the following expression:

MR =
PL
bd2 ; (1)
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• Water Absorption Test

As the durability of concrete structures depends largely on their ability to absorb wa-
ter, a water absorption test was conducted to analyze this durability-related characteristic
of all mixes. The test cube samples were placed in the oven and heated to a controlled
temperature of 120 ◦C for 24 h, as part of the standard methodology for this test, after
which they were cooled for 24 h in an airtight container. The specimens were then im-
mersed in water for at least 2 days, then removed from the water tank and wiped using
a cloth. Weight measurements were taken every 24 h until there was no change in the
recorded measurements;

• Crack Width and Depth Tests

The dimensions of cracks (i.e., crack width and crack depth) were measured after
performing the destructive tests on cubes and beams (i.e., compressive strength tests and
flexural strength tests), respectively. For each specimen, several points were marked at crack
openings to measure the crack width at the same points before and after the self-healing
of the specimens. A special type of high-resolution camera was used to take the photos,
as shown in Figure 3e, which were then analyzed using the software “Portable Capture
Plus (v3.1)” to precisely measure the width of the cracks. An ultrasonic test was employed
solely on beam specimens to evaluate the crack depths at comparable spots (Figure 3f);

• Microstructure Test

After carrying out the destructive and non-destructive testing on all specimens, tiny
samples smaller than 5 mm were retrieved from each sample. A scanning electron micro-
scope (SEM) was then used to investigate the samples to examine the microstructure’s
topography. To study and discover more about the self-healing process of the various
mixtures, elemental analysis was also carried out.

3. Results and Discussion

The findings and discussion resulting from the tests done on the four different concrete
mixtures, both containing and excluding crystalline admixtures, are presented in this
section and include the concrete’s slump, air content, compressive strength, bending
strength, absorption of water, and self-repairing properties. The results offer new insights
into the application of crystalline admixtures and coatings in developing long-lasting,
environmentally friendly concrete with self-healing capabilities.

The slump test findings on fresh concrete indicate that Mix 2, with a 1% (by weight of
cement) crystalline admixture, has the highest slump values, compared to Mix 3, with a 2.5%
(by weight of cement) admixture, which exhibits a mild slump. Due to the fact that both
mixes are identical in their plastic condition, Mixes 1 and 4 show similar readings and the
lowest levels of slump. The initial findings indicate that the crystalline additive enhances
the workability of fresh concrete, although more research should be done to establish the
ideal dose and establish a link between the dosage amount and concrete workability.

3.1. Tests on Fresh-Concrete
3.1.1. Slump Cone Test

A slump test was performed on the fresh concrete, and the findings reveal that Mix 2,
with a 1% crystalline admixture has the highest slump values, whereas Mix 3, with a
2.5% crystalline admixture, has a moderate slump (see Table 2). Mixes 1 and 4 showed
equal measurements and had the lowest values for slump because both concrete mixtures
were comparable in their plastic state. The initial results demonstrate that the crystalline
addition improves the workability of fresh concrete, although to determine the appropriate
dose and establish a connection between dosage quantity and concrete workability, further
research is needed.
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Table 2. Slump cone test results.

Mix Slump Type Slump 01 (cm) Slump 02 (cm) Slump 03 (cm) Average
Slump (cm)

Mix 01 True 13.7 14.1 15.2 14.3
Mix 02 True 17.2 16.2 16.8 16.7
Mix 03 True 15.6 16.1 14.9 15.5
Mix 04 True 14.8 14.3 13.9 14.3

3.1.2. Air Content Test

The concrete’s air content is raised by the crystalline admixture in a manner compara-
ble to that shown in the slump test, which followed a similar pattern (see Table 3). The least
quantity of air is detected in Concrete Mix 1, whereas the greatest amount is detected in
Concrete Mix 2, which contains a 1% crystalline admixture. The results of concrete Mix 3,
with a 2.5 percent crystalline admixture, show moderate air content values, suggesting that
an ideal admixture dose might be determined.

Table 3. Air content test results.

Mix Air Content 01
(%)

Air Content 02
(%)

Air Content 03
(%)

Average Air
Content (%)

Mix 01 1.0 1.3 0.7 1.0
Mix 02 1.8 1.9 1.7 1.8
Mix 03 1.4 1.5 1.6 1.5
Mix 04 0.8 1.0 1.2 1.0

3.2. Tests on Hardened Concrete
3.2.1. Compressive Strength Tests

The compressive strength of each cube specimen is first determined using a non-
destructive approach, the rebound hammer test (see Table 4, Figure 4a); a destructive
method was subsequently used (see Table 5, Figure 4b). The findings show that destructive
testing demonstrated greater strength when compared with non-destructive tests, with an
average strength variation of 5 MPa between the two techniques.

Table 4. Non-destructive compressive strength test results.

Mix
Compressive

Strength 1
(MPa)

Compressive
Strength 2

(MPa)

Compressive
Strength 3

(MPa)

Mean Compressive
Strength

(MPa)

Mix 01 21.15 26.70 24.10 23.98
Mix 02 24.10 24.90 30.15 26.38
Mix 03 33.47 31.85 30.66 31.99
Mix 04 29.10 23.60 22.17 24.96
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Table 5. Destructive compressive strength test results.

Mix

C.
Force

P1
(kN)

C.
Force

P2
(kN)

C.
Force

P3
(kN)

Mean
C. Force

(kN)

X-Sectional
Area

(mm2)

Mean
C.

Strength
(MPa)

Percentage Increase in
Comparision to Mix 01

(%)

Mix 01 564.75 715.50 666.10 648.78 22,500.00 28.83 -
Mix 02 643.05 676.50 801.50 707.02 22,500.00 31.42 8.98%
Mix 03 870.08 827.00 801.70 832.93 22,500.00 37.02 28.38%
Mix 04 760.90 640.40 594.80 665.37 22,500.00 29.57 2.56%

The maximum compressive strength was found in Mix 3, followed by Mixes 2, 4, and 1,
demonstrating that self-repairing concrete possesses higher compressive strengths than reg-
ular concrete. Interestingly, Mix 3 indicates a significant increase in strength (28.38%
higher than Mix 1), whereas Mixes 2 and 4 show only small increases of 8.98% and
2.56%, respectively.

The observed enhancement in compressive strength can be attributed to the intro-
duction of a crystalline element into the cement matrix. This introduction prompts the
formation of crystals, which subsequently leads to the creation of a denser microstructure
and a consequent increase in compressive strength.

3.2.2. Flexural Strength Test

According to the results of the flexural tests mentioned below in Table 6 and Figure 5,
the bending strength of the concrete specimens is improved when more of the crystalline
admixture is utilized. Crystalline-coated specimens also demonstrate greater strength than
uncoated specimens. Mix 3 outperforms regular concrete in terms of flexural strength,
increasing it by 31.17%, while Mix 2 and Mix 4 outperform regular concrete in terms of
bending strength, increasing it by 24.73% and 17.72%, respectively.

Table 6. Flexural strength test results.

Mix
Flexural Force

P1
(kN)

Flexural Force
P2

(kN)

Mean
Flexural

Force
(kN)

Mean
Flexural Strength

(MPa)

Percentage Increase in
Comparision to Mix 01

(%)

Mix 01 26.66 28.86 27.76 3.70 -
Mix 02 34.41 34.85 34.63 4.62 24.73%
Mix 03 36.54 36.29 36.42 4.86 31.17%
Mix 04 32.45 32.92 32.68 4.36 17.72%
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3.2.3. Water Absorption Test

The outcomes of the water absorption tests are displayed in Table 7, demonstrating that
Mix 1 (conventional concrete) has the most water absorption, while Mix 3 (self-repairing
concrete with crystalline admixture (2.5%)) has the lowest water absorption. Mix 2 and
Mix 4 show intermediate results. The water absorption tests confirm that the crystalline
additive has an effect on microstructure compaction in concrete by drastically decreasing
water absorption. This suggests that self-repairing concrete tends to be less porous and
more resilient than conventional concrete.

Table 7. Water absorption test results.

Mix
ODM

1
(kg)

ODM
2

(kg)

ODM
3

(kg)

Average
ODM
(kg)

SSDM
1

(kg)

SSDM
2

(kg)

SSDM
3

(kg)

Average
SSDM

(kg)

Water
Absorption

(%)

Mix 01 7.32 7.32 7.34 7.33 7.70 7.68 7.70 7.69 5.00%
Mix 02 7.92 7.76 7.84 7.84 8.10 7.96 8.02 8.03 2.38%
Mix 03 8.16 8.00 8.16 8.11 8.32 8.16 8.32 8.27 1.97%
Mix 04 7.70 7.74 7.66 7.70 7.96 7.94 7.88 7.93 2.94%

3.2.4. Crack Width and Depth Test

An analysis of crack width (see Table 8) and crack depth (see Table 9), shows that Mix 1
does not exhibit any signs of self-healing. Mixes 2, 3 and 4 all demonstrate self-healing
properties, with Mix 3 exhibiting the most prominent crack repair characteristics.

Table 8. Crack width test results.

Mix Average Initial
Crack Width (mm)

Average Final
Crack Width (mm)

Average Crack
Healing (mm)

Average Crack
Healing (%)

Mix 01 0.952 0.952 0.000 0.00
Mix 02 0.703 0.657 0.047 6.62
Mix 03 0.813 0.728 0.085 10.45
Mix 04 0.387 0.362 0.025 6.55

Table 9. Crack depth test results.

Mix Average Final
Crack Depth (mm)

Average Final
Crack Depth (mm)

Average Crack
Healing (mm)

Average Crack
Healing (%)

Mix 01 134 134 0 0.000
Mix 02 130 127 3 2.31
Mix 03 123 116 7 5.69
Mix 04 126 123 3 2.38

The lack of self-healing in Mix 1 may be attributed to two potential factors: delayed
crystallization processes or a lower concentration of unhydrated cement in the mixture. In
contrast, Mixtures 2, 3, and 4 contain crystalline additives with hydrophilic characteristics.
The presence of water causes these crystalline additives to undergo a chemical reaction,
which in turn causes the formation of stationary deposits. This effectively seals off any gaps
or cracks. The calcium silicate hydrate (CSH) level is significantly increased, and water
penetration is effectively hindered by this technique. The incorporation of a crystalline
admixture into Mixes 2, 3, and 4 facilitates the formation of insoluble-in-water deposits,
thereby increasing their capacity for self-repairing.
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3.2.5. Microstructure Test

The specimens were examined using a scanning electron microscope (SEM) at three
specific levels of magnification: 200×, 800×, and 1000×. The images obtained at a mag-
nification of 1000× exhibited significantly enhanced clarity and readability and played
a large role in achieving our research objectives. The higher magnification level made
the enhanced visualization of crystal structures and coatings possible, thereby enabling a
comprehensive investigation.

The distributions of hydrated materials and hexagonal-shaped calcium compound
crystals are more compact and consistent in the self-healing concrete with crystalline
admixtures and coatings. A more in-depth examination using SEM showed that the
cracks in the self-healing concrete have effectively closed up after the healing process. The
crack in Mix 1, however, was only minimally repaired, as seen in the electron microscope
photographs (refer to Figure 6). The observed disparity in crack closure behavior indicates
that the utilization of CA in this research facilitated the accelerated production of healing
chemicals in cracks, thereby enhancing the crack closure process. In addition, larger calcium
amounts are observed in the SEM-based elemental analyses of self-repairing concrete
compared to ordinary concrete, as indicated in Table 10. This indicates that the crystalline
admixtures and coatings improve the concrete’s microstructure, hydration process, and the
formation of a cementitious matrix.
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Table 10. Elemental analysis test results.

Element Mix 01 Mix 02 Mix 03 Mix 04

O 60% 61.0% 52.3% 64.0%
Na 0.4% 0.0% 0.0% 0.0%
Mg 0.5% 0.0% 0.6% 1.5%
Al 1.8% 0.0% 1.0% 0.5%
Si 10.5% 7.2% 2.7% 0.4%
K 0.4% 0.8% 0.0% 0.0%
Ca 24.7% 31.0% 39.6% 33.6%
Fe 1.1% 0.0% 3.8% 0.0%

The scanning electron microscope images also confirm the presence of self-repairing
crystals (see Figure 7). These crystals are evenly distributed throughout the matrix, con-
firming their potential role in the bridging and healing of cracks. Ordinary concrete, in
contrast, has a less favorable arrangement of hydrated particles and a noticeably looser
microstructure, as shown in the electron microscope images.

The SEM investigation supports earlier findings about the improved healing capa-
bility of self-repairing concrete employing crystalline admixtures and coatings. A richer
microstructure and the presence of a crystalline structure indicates a higher likelihood of
self-healed cracks and the emergence of self-healing processes.
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4. Conclusions and Recommendations

This study provided valuable insights into the efficacy of self-healing concrete by
conducting a comparative analysis of four distinct concrete compositions: one conventional
mixture and three variations of self-healing concrete.

Distinct patterns in the performance of various combinations were observed through
various experiments conducted on both fresh and hardened concrete. The most unfavorable
results were observed in traditional concrete, highlighting the insufficiencies of standard
combinations in addressing concerns such as crack formation and durability. In contrast,
Mix 3, which had a 2.5% concentration of crystalline admixture, demonstrated outstand-
ing performance in all assessed parameters. Mix 4, with the crystalline admix coatings,
performed adequately, ranking between the regular mix and the best-performing Mix 3.
The discovery implies that the presence of crystalline admixtures and crystalline coatings
significantly influences the overall characteristics of self-healing concrete.

In the slump cone and air content testing, concrete Mix 2 performed best, whereas
Mix 1 performed the worst. Evidence from this study points to the possibility that crys-
talline admixtures can enhance the properties of freshly mixed concrete and find practical
utility in many contexts. The results of the bending and compressive tests showed that
concrete Mix 3 had the highest overall strength values, whereas concrete Mix 1 had the
lowest strength. This shows that the strength of concrete is related to the amount of crys-
talline additive added. The observed enhancement in strength can be attributed to the
introduction of a crystalline element into the cement matrix, which prompts the formation
of crystals, leading to the creation of a denser microstructure and a consequent increase
in strength.

The results of the water absorption test showed that regular concrete absorbed the most
water, whereas concrete Mix 3 absorbed the least. It was also discovered that crystalline
admixture-added and crystalline admixture-coated concrete have slightly higher weight
densities than conventional concrete. The aforementioned findings show that crystalline
admixtures can substantially decrease water absorption and increase concrete density,
boosting the overall durability and longevity of a structure.

The capabilities and advantages of self-healing concrete over conventional concrete
were shown by measurements of crack width, crack depth, and microstructure results for
Mixes 2, 3, and 4. As a result, it can be said that self-healing concrete mixes outperform
typical concrete mixes in terms of both fresh and hardened properties. This suggests that
they may have a significant impact on the building sector in the future.

These results not only indicate positive prospects for future construction, but also
showcase the practicality of integrating self-healing concrete with crystalline coatings into
existing buildings. By implementing this dual application, we are adopting a practical and
adaptable strategy to improving the strength and durability of concrete structures.

In conclusion, there are promising possibilities for the development of self-healing
concrete that involve the use of crystalline admixtures, either as internal components of
the concrete mix or added as external layers. In addition to paving the way for future
research and advancements in self-healing concrete technology, these discoveries signifi-
cantly contribute to the continuous search for more resilient and environmentally friendly
building materials.

To understand more about the use of crystalline admixtures as an additive and coating
in self-repairing concrete, further study is required. Comparing the cost and environmental
impact of this approach to conventional concrete is necessary to see whether it can be
employed on a larger scale. The creation of self-repairing concrete with reinforcement using
crystalline admixtures and coatings must also be taken into consideration, since concrete
is brittle. It will undoubtedly have a quicker and favorable impact on the construction
sector. It may be also possible to speed up the adoption of this breakthrough approach by
developing standards and guidelines that regulate how self-repairing concrete should be
used in specific conditions.
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