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Abstract: The main issue in this work is to study the limit functions necessary for the reliability
assessment of structural steel with the use of the relative entropy apparatus. This will be done using
a few different mathematical theories relevant to this relative entropy, namely those proposed by
Bhattacharyya, Kullback–Leibler, Jeffreys, and Hellinger. Probabilistic analysis in the presence of
uncertainty in material characteristics will be delivered using three different numerical strategies—
Monte Carlo simulation, the stochastic perturbation method, as well as the semi-analytical approach.
All of these methods are based on the weighted least squares method approximations of the structural
response functions versus the given uncertainty source, and they allow efficient determination of
the first two probabilistic moments of the structural responses including stresses, displacements,
and strains. The entire computational implementation will be delivered using the finite element
method system ABAQUS and computer algebra program MAPLE, where relative entropies, as well
as polynomial response functions, will be determined. This study demonstrates that the relative
entropies may be efficiently used in reliability assessment close to the widely engaged first-order
reliability method (FORM). The relative entropy concept enables us to study the probabilistic distance
of any two distributions, so that structural resistance and extreme effort in elastoplastic behavior
need not be restricted to Gaussian distributions.

Keywords: stochastic finite element method; Ramberg–Osgood material model; stochastic perturba-
tion technique; Monte Carlo simulation; semi-analytical method; least squares method

1. Introduction

Structural materials and engineering structures exhibit various uncertainty sources
ranging from environmental actions (as mechanical and/or thermal loadings) to material
statistical imperfections, as well as some initial or manufacturing inaccuracies resulting in
the necessity of reliability assessment [1]. This can be achieved on either a structural level or
on the given material level, which is especially remarkable in the composite materials area
but occurs also in classical civil engineering materials like structural steels. The situation is
complex in the case of metallic materials due to their apparent nonlinearity under mechanical
loads and the exploitation temperature variations on the one hand, and the need for the
cross-section optimization on the other. This leads to the frequent application of nonlinear
constitutive laws like Ramberg–Osgood having numerous applications [2–12], which can
also be applicable in soil engineering [13]. Alternatively, one may employ Johnson–Cook,
especially convenient for higher temperatures (traditional and modified formulations) [14],
or Gurson–Tvergaard–Needleman [15] (including porosity in metal microstructures) in the
modern finite element method (FEM) [16] simulations calibrated to the experimental data.
Some more advanced modern theories include fractional plasticity models [17].

The major benefit of the Ramberg–Osgood model is the fact that it has a single param-
eter needing experimental verification, so its usage seems to be very efficient, not only in
the field of steel structures but also in geotechnical applications. Such a nonlinear analysis
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becomes very complex where any uncertainty sources appear in the model—they can
follow material micro, nano, or molecular scales defects, but also more classical statistical
discrepancies in structural elements lengths, the location of the openings, holes, welds, or
some inclusions [18,19]. Mechanical properties’ randomness in structural steel elements
experimentation is most frequently noticed in the Young modulus and yield strength, which
directly follow the unidirectional extension of the series of specimens. The standard devia-
tions obtained for the brand-new elements are remarkably smaller than for the specimens
cut from the extensively exploited structural elements under supervision, where additional
corrosion processes may destroy both the geometry and material structure.

It is well known that several mathematical and numerical methods have been estab-
lished in engineering mechanics to model the aforementioned phenomena and to predict
their structural impacts. Close to the analytical calculus of the basic probabilistic param-
eters [20], Bayesian approach [21], and Monte Carlo simulations family [22], one may
find Karhunen–Loeve or polynomial chaos expansions [23], some semi-analytical tech-
niques [20], as well as the group of stochastic perturbation methods [20,24]. The latter is
formulated using various orders’ approaches as the first, the second, the third, or general
order Taylor expansions leading to the determination of the first two, three, or four basic
statistics of structural behavior. A general limitation of all of these techniques mentioned
above resulting in the response statistics is a necessity of discussion of many parameters
at the same time, which can be difficult and misleading. The alternative way is to directly
investigate a failure danger by its probability, which remains less useful in practical en-
gineering reliability assessment; one solution to this problem may be the determination
of probabilistic entropy, whose fluctuations in mechanical problems enable uncertainty
propagation discussion. More popular models include the Shannon [25], Renyi [26], and
Tsallis [27] models together with their further modifications and improvements.

Quite a similar situation takes place in reliability and durability studies, where the
moment methods prevail [28]. The first-order reliability method (FORM) [29] convenient
mostly for linear limit functions has been replaced over time by the second-order method-
ology (SORM) [30], and even by the first-order [31] or the second-order third moment
(SOTM) technique [32]. The main limitation of both FORM and SORM is that they may
be efficient in all of these situations, where the basic probabilistic moments are represen-
tative of the entire probability distribution of structural resistance or its extreme effort.
Otherwise, Monte Carlo simulation or some alternative approach based on the probability
density functions needs to be applied. The very interesting opportunity in this context is
the so-called probabilistic divergence (relative entropy) [33], which enables quantifying
with some single real value a distance in-between two random distributions while having
their probability distributions or the basic probabilistic characteristics [34]. Various entropy
measures for the uncertainty quantification of stochastic processes have been discussed
in [35].

Unfortunately, a comparison between FORM and SORM and relative entropies appara-
tus is rather scarce in the literature, which mainly follows the remarkable number of totally
different mathematical concepts in that area. Nevertheless, relative entropy application
seems to be more adequate because the final formula is sensitive to the probability distribu-
tion type of both structural resistance and effort inherent in the limit function unlike in the
FORM or SORM.

This study aims to achieve reliability assessment in the well-known tension test of
the structural steel specimen, which is numerically simulated using the Ramberg–Osgood
stress–strain relationship implemented in the FEM system ABAQUS. Probabilistic analysis
has been carried out here using polynomial functions relating extreme deformations and
von Mises reduced stresses with the Young modulus of the given steel type recovered
numerically from several FEM tests with varying values of this parameter. Then, three dif-
ferent probabilistic methods, namely the stochastic perturbation technique, semi-analytical
method, as well as the Monte Carlo simulation scheme, have been engaged to determine
the first four probabilistic coefficients of the structural response. Finally, the first two of
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them have been used to calculate the reliability indices according to the FORM technique,
and also alternatively—thanks to the application of the Bhattacharyya [36], Hellinger [37],
Jeffreys [38,39], and Kullback–Leibler [40,41] relative entropies. As has been documented,
classical FORM analysis may find its efficient alternatives in the modern computer-aided
engineering of steel details and structures. The results obtained here for Gaussian input
uncertainty may also be extended towards non-Gaussian distributions [42] with minor
modifications of the numerical apparatus.

2. Theoretical Background
Governing Equations

The following incremental boundary value problem is considered in a certain solid
body domain Ω having a continuous and sufficiently smooth boundary ∂Ω [43]:

∆σkl,l + ρ∆ fk = 0; x ∈ Ω (1)

∆σ̃kl = Cklmn∆εmn; x ∈ Ω (2)

∆εkl =
1
2
{

∆uk,l + ∆ul,k + ui,k∆ui,l + ∆ui,kui,l + ∆ui,k∆ui,l
}

; x ∈ Ω (3)

for i, j, k, l = 1, 2, 3 with the following boundary conditions:

∆σklnl = ∆tk; x ∈ ∂ Ωσ, k = 1, 2, 3 (4)

∆uk̂ = ∆ûk̂; x ∈ ∂ Ωu, k̂ = 1, 2, 3 (5)

This problem is solved for the displacement vector uk(x), the strain tensor εkl(x), and
the stress tensor σkl(x), the symbol ∆ denotes their increments, while the fourth-rank tensor
Cklmn denotes here a constitutive tensor. This solution is achieved using the appropriate
incremental version of the potential energy functional, and their minimization with respect
to the displacement vector. Classical FEM discretization for nonlinear problems has been
proposed with many numerical illustrations [44]. The entire probabilistic approach is
based upon deterministic series of solutions of the iterative deterministic FEM equation as
follows [45]

K(m)∆q(m) = ∆Q(m) (6)

where K denotes the stiffness matrix and ∆Q is the nodal loads’ increments vector, whereas
∆q stands for the displacements vector increments; m indices here represent a current FEM
test number necessary for the response function method recovery of polynomial bases.
These bases are approximated via the least squares method (LSM) [46] from the series of
the FEM experiments with some input parameters varying throughout their fluctuations
ranges, which have been assumed a priori.

A phenomenological constitutive model is analyzed here and it is known in the
literature as the Ramberg–Osgood equation. It connects the unidirectional strain ε with the
tensile stress σ using the following well-known formula:

ε =
σ

E
+ α

(
σ

fy

)1/n
(7)

where fy denotes the yield strength of the given material, E is its Young modulus, α
corresponds to the yield effect, and n is the non-dimensional strain hardening coefficient.
Quite naturally, E and/or fy may be perceived as some uncertainty sources because their
mean values and other statistics result from strength experiments with well-documented
statistics. However, derivation of any of the probabilistic analytical constitutive formulas
would be rather difficult in this context as the uncertainty sources appear independently
(or commonly) in the denominator of the aforementioned equation.
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Visualization of the Ramberg–Osgood equation in its deterministic version is proposed
below in Figure 1. This figure includes two graphs—the left one contains the stress–strain
curves for three different structural sheets of steel, namely S235, S355, and S460, plotted for
the material coefficients α = 0.002, which is a normative plastic strain according to Eurocode
3-1-1 and also with n = 0.1090 (adopted experimentally). The right graph is adjacent to
the elastoplastic behavior of the weakest steel, S235, while modifying the strain hardening
coefficient only. It is seen that the importance of this second parameter is more remarkable,
especially in the early stages of deformation. The influence of the yield strength is generally
smaller but is kept at almost the same level until the specimen failure.
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Figure 1. Stress–strain curves according to the Ramberg–Osgood law for different structural steels
(left) and sensitivity of S235 to the strain hardening coefficient (right).

Generally, the elastoplastic analysis may lead to structural failure; therefore, reliability
assessment gains a paramount importance. It engages the limit function relating the
structural resistance R and extreme structural response E in the range of given boundary
conditions. Further numerical analysis takes into account the serviceability limit state (SLS)
function based upon the extreme and admissible displacements in the given specimen,
and also the ultimate limit state (ULS) reduced von Mises stress and the corresponding
yield strength of the structural steel under consideration. One may recall a definition of the
reliability index due to the Cornell first-order theory [31]

β(R, E) =
E[R]− E[E]√

Var(R) + Var(E)− 2Cov(R, E))
, (8)

which uses the first two probabilistic moments of both R and E, namely their expectations
E[.] and variances Var(.). The determination of the expectations and variances of extreme
displacements and extreme reduced stresses is conducted through a series of FEM experi-
ments enabling the polynomial representation of these state functions concerning the given
uncertainty sources. Such a polynomial basis is sought using the least squares method
and enables further triple probabilistic calculus, where (i) its analytical integration with a
probability kernel is the basis for the semi-analytical method, (ii) its Taylor series expansion
leads to the stochastic perturbation scheme, and also (iii) random number generation and
sequential processing of this polynomial statistical estimators.

It is well-known that the FORM methodology has its limitations, so an alternative is
frequently sought. Probabilistic divergence (entropy) between two different probability
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distributions may apply for this purpose, and Bhattacharyya theory contains the following
to quantify the distance from E to R [34]:

HB(R, E) =
1
4
(E[R]− E[E])2

σ2(R) + σ2(E)
+

1
2

ln
(

σ2(R) + σ2(E)
2σ(R)σ(E)

)
(9)

A comparison of these last two formulas exemplifies a need and suggests a way of
upscaling the entropy H(R,E) to the FORM reliability index fluctuations level. There holds

β = 2

√
1
4
(E[R]− E[E])2

σ2(R) + σ2(E)
+

1
2

ln
(

σ2(R) + σ2(E)
2σ(R)σ(E)

)
(10)

It is seen that the entropy-based approach reduces to the FORM one when both
uncertainty levels in R and E are equal to each other. This particular entropic approach
follows a general formula given for two probability distributions of the variables R and E:

HB(p(R), p(E)) =
+∞∫

−∞

{p(R)(x)p(E)(x)}
1
2 dx (11)

This model has been found useful in some previous reliability assessments for struc-
tural elasto-static and elasto-dynamic designing problems, but some referential models
proposed by Kullback and Leibler [40], Jeffreys [39], and Hellinger [37] have been con-
trasted here.

HKL(p(R), p(E)) = −
+∞∫

−∞

p(R)(x) log(p(E)(x))dx +

+∞∫
−∞

p(E)(x) log(p(R)(x))dx (12)

HJ(p(R), p(E)) = HKL(p(R)(x), p(E)(x)) + HKL(p(R)(x), p(E)(x)) (13)

HSH(p(R), p(E)) =
1
2

+∞∫
−∞

(√
p(R)(x)−

√
p(E)(x)

)2
dx = 1 −

+∞∫
−∞

√
p(R)(x)p(E)(x)dx (14)

Similarly to the Shannon entropy definitions, these entropies have been introduced for
the non-truncated Gaussian distribution, which may result in some small modeling error
in some engineering problems, where structural parameters exhibit truncated character.
Moreover, it can be demonstrated that these entropies in the case of two given different
Gaussian probability distributions p(R) ≡ N(E[R], σ(R)) p(E) ≡ N(E[E], σ(E)) can be
expressed in the following way (using their first two probabilistic moments only):

(i) Kullback–Leibler and Jeffreys’ relative entropies

HKL(p(R), p(E)) = log
(

σ(E)
σ(R)

)
+

σ2(R) + (E[R]− E[E])2

2σ2(E)
− 1

2
, (15)

HJ(p(R), p(E)) = log
(

σ(E)
σ(R)

)
+ σ2(R)+(E[R]−E[E])2

2σ2(E) − 1+

log
(

σ(R)
σ(E)

)
+ σ2(E)+(E[E]−E[R])2

2σ2(R) ≡ symm(HKL(p(R), p(E)))
(16)

(ii) the squared Hellinger relative entropy

HH(p(R), p(E)) = 1 −

√
2σ(R)σ(E)

σ2(R) + σ2(E)
exp

(
−1

4
(E[R]− E[E])2

σ2(R) + σ2(E)

)
(17)

Bhattacharyya entropy reduces in this case to Equation (9) given above.
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3. Numerical Simulation of Uniform Extension of the Steel Cylinder

A standard tensile test was carried out. Figure 2 shows the geometry of the specimen.
Because of the axisymmetric cross-section of the round bar, only one plain section of it
was conducted. To ensure necking appears, a small notch was made—this is a procedure
well known from the literature [47]. In total, there are 844 quadrilateral FEM elements
known in the ABAQUS system as CAX4R (4-node bilinear axisymmetric element). Reduced
integration has been used in this case. As can be seen, the bottom part of the specimen
was discretized with smaller FEM elements. The side of the brick element is 0.5 mm. The
top part of the sample is divided using finite elements with different sizes. Close to the
rounding in the middle of the height, the basic finite element size is 1.0 × 1.0 mm and is
elongated to 1.0 × 2.0 mm on the top. It should be mentioned that some FEM studies are
based on a combination of triangular (close to the necking) and quadrilateral elements (the
remaining parts of the specimen) [15,16].
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Figure 2. Geometry, boundary conditions, and meshing of the specimen.

Figure 2 shows kinematic boundary conditions applied to the material specimen.
The vertical displacements of the bottom edge are equal to zero (u2 = 0), whereas the
horizontal displacements u1 = 0 for the left edge are the symmetry axes. The kinematic
boundary conditions of the top edge have been provided as the extending load and are
introduced here as u2 = 5.0 mm. The full Newton incremental method has been proposed
to model incremental behavior in this case, and for this purpose, the initial increment
size was assumed to be 0.001, the minimum equal to 0.0001, and the maximum allowed
increment size was 1. Large displacements have been allowed in this case study. All
numerical experiments with ABAQUS have been carried out in the Polish national network
PL-Grid, and the approximate time consumption of the single incremental solution was
about 5.0 min.

Figure 3 presents the resulting von Mises stress distribution in a few selected stages
of the analysis (beginning, in the middle, and at its end). After 20% of the analysis (left
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drawing), the bottom part of the specimen has a stress close to the ultimate strength
fu = 360 MPa here. After 50–60 percent of the analysis (middle drawing), necking occurs
and the reduced stress reaches maximum values of 360 MPa. At the end of the analysis,
necking is fully developed and the maximum stress is concentrated in the vicinity of this
cross-section.
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Figure 3. Resulting von Mises stress [MPa] distribution for 20, 60, and 100% of the analysis progress.

A further part of the numerical simulation has been delivered in the computer algebra
system MAPLE, where the LSM approximation together with the three chosen probabilistic
methods have been programmed. Additionally, the final part of the FORM and relative
entropy computations have also been prepared in the same system by the script developed
by the authors. Most of the results have been presented below as the functions of increasing
uncertainty introduced in the model so that deterministic solutions are obtained as the
lower bounds for all of these characteristics, and the largest scattering is the upper bound
on the windows containing up to the fourth-order characteristics and entropies.

Figure 4 presents the response function polynomials of displacements (left one) de-
pendent on Young modulus values in the range of 190, . . ., 210, . . ., 230 GPa. Such a
relatively small dispersion causes displacements that are independent of the Young mod-
ulus. Moreover, the displacements are concentrated around its mean values. The right
part of Figure 4 shows response function method polynomials through the entire Young
modulus dispersion; whereas shortly after about 30% of the analysis progress, the resulting
stress reaches maximum values of 360 MPa. All the resulting polynomials are independent
of the Young modulus. Further, this parameter is adopted as the main uncertainty source
in our specimen, which follows several experimental works in civil engineering. Its mean
value of 210 GPa has been further considered as the expected value, while the standard
deviation has been adopted as 10% of this value, which agrees with many laboratory
verifications. The second motivation for this choice is that this parameter is inherent in
most civil engineering reliability studies as the design parameter, so it can be decisive for
designing the most advanced structures that need more attention.
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Figure 4. Response function polynomials of displacements and reduced stress as a function of the
Young modulus E.

Figure 5 presents the distribution of the expectations of the extreme horizontal dis-
placements as a function of the Young modulus E, and these displacements follow the
range of the necking. The perturbation method (PM), semi-analytical method (SAM), and
Monte Carlo simulation (MCS) have been compared. At the beginning of the analysis, each
method provides the same values of the necking concentrated around the mean values.
After about 70–80% of the process, some fluctuations can be observed. It can be identified
with necking rapid expansion.

Materials 2024, 17, x FOR PEER REVIEW 9 of 19 
 

 

  

Figure 4. Response function polynomials of displacements and reduced stress as a function of the 
Young modulus E. 

Figure 5 presents the distribution of the expectations of the extreme horizontal dis-
placements as a function of the Young modulus E, and these displacements follow the 
range of the necking. The perturbation method (PM), semi-analytical method (SAM), and 
Monte Carlo simulation (MCS) have been compared. At the beginning of the analysis, each 
method provides the same values of the necking concentrated around the mean values. 
After about 70–80% of the process, some fluctuations can be observed. It can be identified 
with necking rapid expansion.  

 
Figure 5. Expectations of the extreme displacements E[u1] for the specimen. 

Figure 6 shows the coefficients of the variation of the maximum horizontal displace-
ments. Numerical values of this coefficient remain close to the input value throughout the 
entire analysis except for the extreme input uncertainty, which results in enormously large 
displacements of statistical scattering (even close to four, which never happens in elastic-
ity). This extreme coefficient of variation is noticed for about 70–80%—the absolute ex-
treme has been noticed while using the semi-analytical method, and a slightly smaller 
value has been detected with the use of the Monte Carlo simulation, whereas the pertur-
bation method results in the minimum extreme value here. 

Figure 5. Expectations of the extreme displacements E[u1] for the specimen.

Figure 6 shows the coefficients of the variation of the maximum horizontal displace-
ments. Numerical values of this coefficient remain close to the input value throughout the
entire analysis except for the extreme input uncertainty, which results in enormously large
displacements of statistical scattering (even close to four, which never happens in elasticity).
This extreme coefficient of variation is noticed for about 70–80%—the absolute extreme has
been noticed while using the semi-analytical method, and a slightly smaller value has been
detected with the use of the Monte Carlo simulation, whereas the perturbation method
results in the minimum extreme value here.
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Figure 6. Coefficients of variation of the extreme displacements α[u1)] for the specimen.

Figure 7 presents the distribution of the skewness values throughout the entire nu-
merical experiment. At the beginning of this analysis, it takes values close to zero which
tells us about the symmetry of the distribution of this state function. The skewness takes
both positive and negative values for all three methods but most of them are positive.
This tells us about the left-skewed distribution of the displacement state function. The
skewness according to the perturbation method is close to zero if we narrow the input CoV
α(E) < 0.15.
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Figure 7. Skewness of the extreme displacements S[u1] for the specimen.

The kurtosis of the horizontal displacements of the specimen (Figure 8) takes positive
values according to all three methods. The perturbation method brings the values of the
kurtosis closest to zero. The semi-analytical method and Monte Carlo simulation take
positive values of more than 2000 in the middle part of the analysis if α(E) > 0.05. The
biggest positive values that the kurtosis takes for the Monte Carlo simulation are for
α(E) = 0.05.

Figure 9 shows expectations of the von Mises reduced stress for the specimen. It can
be seen that all three methods bring the same values which are very close to their means in
the whole range of the input CoV α(E) = [0.05,. . .,0.20].

The coefficient of variation of the reduced stress (Figure 10) is extremely close to zero
based on all three methods. This means that the expectations reflect the mean values, and
this fact can be seen in Figure 9. Practically no uncertainty is observed in the reduced
stresses here while contrasting these results with the series from Figure 6.
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Figure 10. Coefficient of variation of the extreme reduced stress α[σred] for the specimen.

The skewness contained in Figure 11 dominantly takes values close to zero if we limit
the input coefficient of variation CoV to the values α(E) < 0.10. The semi-analytical method
and Monte Carlo simulation bring values larger than 20 for the input CoV values 0.15 and
0.20. Positive values of the skewness tell us that the distribution of von Mises reduced
stress is left-skewed and should not be modeled using Gaussian PDF.
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Figure 11. Skewness of the extreme reduced stress S[σred] for the specimen.

The kurtosis of the extreme reduced stress (Figure 12) takes positive values throughout
the entire extension process. The semi-analytical method and Monte Carlo simulation bring
the values of the kurtosis into the range of 2000–4000 for α(E) > 0.10. This tells us that the
von Mises reduced stress distribution has long tails and peaks. If one bounds the input CoV
with α(E) ≤ 0.05 (Figure 13), then the distribution could be approximated by the Gaussian
distribution with a relatively small modeling error.
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Figure 12. Kurtosis of the extreme reduced stress κ[σred] for the specimen.

Figure 13 focuses on the kurtosis distribution if α(E) < 0.05. The perturbation method
and semi-analytical technique bring values close to zero. Monte Carlo simulation provides
a kurtosis close to three.

Figure 14 shows the reliability index distribution regarding displacements (left) and
stress state (right). The red line is a safety level for normal, typical constructions. The
reliability index βu(E) takes the same values in a whole range of the input CoV. In total,
90% of the specimen width has been taken as a limit state for displacements. This is just
an assumption because there is a complete lack of guidelines on how to calculate the limit
value. It can be observed that the specimen reaches the failure region pretty fast (after 10%
of the analysis progress). But it relates to the expected values of the reduced stress (Figure 9).
Values equal to the ultimate strength 360 MPa can be noticed at the beginning of the process
(after 30–40%). The stress of 360 MPa persists to the end of the analysis. The specimen is
close to the breaking point, and that is the reason why the reliability index takes values
below the red line. We can see that the reliability index depends on the input CoV α(E). The
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bigger dispersion of this value leads to smaller values of the index β(σred(E)). Fluctuations
in the reliability index of the reduced stress can be caused by RMS error according to the
least squares method. Table 1 shows RMS error values, and one notices that the root mean
square error dispersion is up to 100 times larger.
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Figure 14. FORM reliability index of the displacements βu) (left graph) and extreme reduced stress
β(σred) (right graph) for the specimen.

Figure 15 shows the relative entropy distribution for the horizontal displacements. The
input CoV has been taken from the range α = [0,. . .,0.20]. Bhattacharyya, Kullback–Leibler,
and Hellinger’s methods have been compared. During the whole analysis time, the first
two methods bring similar results. In the beginning, the entropy reaches values over 2500
for α < 0.02. Then, it decreases to minimum values at the end of the analysis. It has to be
underlined that Hellinger equations provide smaller values of the relative entropy.

Figure 16 presents the reliability index distribution for the displacements calculated
based on relative entropy values. The nature of the curves is similar to Figure 15 but the
values are proportionally smaller. Compared with Figure 14 (left), it can be observed that
the reliability index takes values 4–5 times bigger.
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Table 1. RMS errors comparison.

Analysis Progress [%] RMS Error

10 0.00129528

20 0.000244397

30 0.00147109

40 0.0000566029

50 0.0000711416

60 0.0000900214

70 0.00223297

80 0.00420256

90 0.00127888

100 0.000428241
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graph) of the analysis progress.

The distribution of the relative entropy for the reduced stress Hσ(E) after 20 and 80%
of the analysis progress is presented in Figure 17. The most popular methods have been
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compared. As was observed for the displacements, Bhattacharyya and Kullback–Leibler
methods bring similar character to the graphs; a larger input CoV causes a remarkable
reduction of the entropy values. Hellinger’s method leads to values close to zero throughout
the entire analysis.
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Figure 18 shows the reliability index distribution for the reduced stress. It is based on
the relative entropy course. All curves are similar to the relative entropy distribution with
the note that the reliability index takes smaller values by 10–15 times.
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4. Concluding Remarks

First, it has been demonstrated that the stochastic finite element method may be ef-
ficiently used in the determination of probabilistic characteristics up to the fourth-order
of the structural response in computer simulation of nonlinear deformations governed by
the Ramberg–Osgood material model. It can also be successively used in the reliability
assessment when commonly applied with the first-order reliability method (FORM) or
some alternative relative-entropy-based approach [48]. Secondly, the first four probabilistic
moments of both extreme displacements and reduced stresses have been computed using
three different methodologies, namely the generalized iterative stochastic perturbation
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technique, Monte Carlo simulation, and the semi-analytical method. The almost perfect
agreement of all three methods for the first two probabilistic moments confirms the useful-
ness of this approach, guarantees the high quality of the results, and enables the alternative
usage of all of these techniques when nonlinear problems with uncertainty are modeled.
Common usage of the FEM system ABAQUS and computer algebra software MAPLE is
recommended for such a hybrid computer analysis. The following conclusions can be
formulated based on the presented example and its numerical results:

• Statistical dispersion of the input uncertainty on the level of 5% enables for treating
structural responses inherent in the ULS and SLS as Gaussian, which may further
simplify both the uncertainty analysis and the reliability assessment;

• The distribution of the reliability index β based on the relative entropy and relative
entropy H have similar characters but their values differ by 10–20 times;

• The reliability index based on relative entropy according to the Bhattacharyya and
Kullback–Leiber method for reduced stress brings numerical values quite close to the
reliability index based on the FORM method;

• The Jeffreys and Hellinger’s approximation cannot be directly used for safety assessment.

Further work based on different steel structures is recommended to calibrate the relia-
bility index while using the relative-entropy-based methodology to the limits proposed for
the FORM index. It would also be interesting to apply the presented probabilistic appara-
tus in the numerical simulation of the reliability indices of the thermo-elasto-plasticity of
structural steels, specifically in the context of dynamical loadings applied to the structure
under consideration.
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10. Basan, R.; Fralunović, M.; Prebil, I.; Kunc, R. Study on Ramberg-Osgood and Chaboche models for 42CrMo4 steel and some
approximations. J. Constr. Steel Res. 2017, 136, 65–74. [CrossRef]

11. Kaldjiian, M.J. Moment-Curvature of Beams as Ramberg-Osgood Functions. J. Struct. Div. 1967, 93, 53–65. [CrossRef]
12. Mostaghel, N.; Byrd, R.A. Inversion of Ramberg–Osgood equation and description of hysteresis loops. Int. J. Non-Linear Mech.

2002, 37, 1319–1335. [CrossRef]
13. Papadimitriou, A.G.; Buckovalas, G.D. Plasticity model for sand under small and large cyclic strains: A multiaxial formulation.

Soil Dyn. Earthq. Eng. 2002, 22, 191–204. [CrossRef]
14. Wang, X.; Shi, J. Validation of Johnson-Cook plasticity and damage model using impact experiment. Int. J. Impact Eng. 2013, 60,

67–75. [CrossRef]
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