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Abstract: The material undergoes high temperature and high strain rate deformation process during
the cutting process, which may induce the dynamic recrystallization behavior and result in the
evolution of dynamic mechanical properties of the material to be machined. In this paper, the modified
Johnson-Cook (J-C) model for nickel-based powder metallurgy superalloy considering dynamic
recrystallization behavior in high strain rate and temperature is proposed. The dynamic mechanical
properties of the material under different strain rates and temperature conditions are obtained
by quasi-static compression test and split Hopkinson pressure bar (SHPB) test. The coefficients
of the modified J-C model are obtained by the linear regression method. The modified model is
verified by comparison with experimental and model prediction results. The results show that
the modified J-C model proposed in this paper can accurately describe the mechanical properties
of nickel-based powder metallurgy superalloys at high temperatures and high strain rates. This
provides help for studying the cutting mechanism and finite element simulation of nickel-based
powder metallurgy superalloy.

Keywords: dynamic mechanical properties; constitutive model; dynamic recrystallization; powder
metallurgy superalloy

1. Introduction

Compared with cast and wrought superalloy, the powder metallurgy (PM) superalloy
has been widely used in advanced aero-engine turbine disks [1,2] due to its homogeneous
microstructure, fine grains, higher yield strength and no mace segregation [3,4], etc. Al-
though PM is a near-forming process, machining is still a necessary process to meet the
final accuracy requirements. However, due to low thermal conductivity and low elastic
modulus, PM superalloys are deemed very difficult to machining materials [5,6]. Among
them, FGH96 is a typical γ’-phase strengthened nickel-based powder superalloy, which
often works at a high temperature of about 750 ◦C. Since FGH96 has a series of characteris-
tics of PM superalloys, there are some challenges in studying the mechanical properties of
FGH96 during the cutting process.

The external power is converted into deformation energy in the cutting process. At
the same time, the heat is not easy to release, causing the tool and workpiece material
temperature rise, resulting in material softening [7]. On the other hand, with the increase
in strain, the material work hardening occurs. The interaction between the two makes the
material strength not only a function of strain, but also a function of strain rate and defor-
mation temperature, which is called the constitutive relation equation [8,9]. Establishing
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the accurate constitutive relationship of the workpiece material in the cutting deformation
zone is the key to studying the cutting deformation mechanism.

The constitutive equation for the cutting process is mainly divided into two categories,
namely, phenomenological models and physical models [10]. Compared with physical
models, phenomenological models have become widely used due to their simple form and
wide applicability [11]. As the most widely used phenomenological model, the Johnson-
Cook (J-C) model [12] is given in the form of a three-part product, representing strain
hardening, strain rate hardening, and thermal softening, respectively. However, the above
three items of the J-C model are considered to be independent of each other, and the effects
of the microstructure of the material itself and the adiabatic temperature rise on the flow
stress are not considered [13–15].

The occurrence of dynamic recrystallization in the cutting process has been confirmed
by researchers [16,17]. Dynamic recrystallization not only refines the grain size of the
workpiece material, but also produces a softening phenomenon that cannot be ignored in
the flow stress of the material during the deformation process.

A constitutive equation that can accurately describe the microscopic deformation
process is still to be realized. Calamaz M et al. [18] established a JC-TANH modified model
to describe the phenomenon of soft flow caused by dynamic recrystallization of cutting
titanium alloy materials and applied it to the finite element software. This model was
verified by Ulutan [18] in finite element simulation. Other similar corrections to the J-C
constitutive equation can be found in the literature [19,20].

However, the above modified models only use the temperature (Tm/2) condition
as the critical condition for recrystallization. According to the modified J-C model of
Denguir et al. [21], the recrystallization strain threshold was proposed. This critical condi-
tion considers the combined effects of temperature and strain rate.

The cutting process is a strong coupling process of transient high strain, high strain
rate, and temperature. The occurrence of recrystallization is very important to the dynamic
mechanical properties of PM superalloy. However, the current research on the modified
constitutive equation considering recrystallization for difficult-to-machine materials focuses
on titanium alloys. Research on the dynamic mechanical properties of PM superalloy at high
temperatures and high strain rates, especially the influence of dynamic recrystallization, is
still very scarce.

This paper analyzed the dynamic mechanical properties of powder metallurgy super-
alloy by quasi-static test and SHPB test. A modified constitutive model considering the
dynamic recrystallization behavior of the cutting process is established. The parameters
of the modified model are obtained by linear fitting of the experimental data. Finally, it is
verified that the model has good accuracy.

2. Experimental
2.1. Specimen Preparation

The FGH96 superalloy used in this study is prepared by hot isostatic pressing (HIP)
and its composition is shown in Table 1. The experiment method consists of two parts,
which are quasi-static state compression tests and SHPB tests.

Table 1. Chemical composition of FGH96 superalloy.

Element C Al Ti Cr Co Nb Mo W Ni

Wt. (%) 0.03 2.2 3.7 16 13 0.8 4 4 Bal

The sample sizes for quasi-static state compression tests and SHPB tests are φ3 mm × 3 mm
and φ2 mm × 2 mm, respectively. By grinding the end face and outer surface of the sample
obtained by wire cutting, the sample has higher dimensional accuracy and lower surface rough-
ness (Ra ≤ 0.8 mm). In addition, it is necessary to ensure that the parallelism of the two ends is
less than 0.01 mm, to reduce the experimental error caused by the sample.
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2.2. Quasi-Static State Compression Tests

The quasi-static compression test of the FGH96 superalloy is carried out in the electric
universal testing machine. Figure 1 is the test device and schematic diagram. All the
experiments are carried out at room temperature. All pieces were subjected to unidirec-
tional compression.
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Figure 1. Schematic diagram of quasi-static compression test device.

The strain rate of the quasi-static compression test is set to 0.001 s−1 and the compres-
sion rate can be obtained as 0.18 mm/min according to Equation (1). The compressive force
F and displacement ∆L are obtained by the pressure transducer and displacement trans-
ducer, and the true stress σr and true strain εr of the material in the process of compression
deformation can be obtained according to the size of the sample. To ensure the reliability of
the data, three repeated tests were carried out for each specimen, and the average value
was obtained.

.
ε =

dε

dt
=

v
h

(1)

2.3. SHPB Tests

The SHPB equipment system is schematically illustrated in Figure 2. To obtain a higher
strain rate, the diameter of the incident bar and the transmitted bar is reduced to 5 mm. By
adding different air pressures to the gas bar to change the speed of the strike bar, different
strain rate conditions are achieved. Considering the softening effect of high temperature
on the material, the same strain rate can be achieved by appropriately reducing the air
pressure. Different loading temperatures are controlled by the thermocouple. To make the
sample fully heated, it is necessary to carry out heat preservation treatment. In addition, the
error caused by the friction between the specimen and the compression bar is reduced by
uniformly applying a high-temperature-resistant lubricant on the contact surface between
the sample and the rod.
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The wave velocity of the incident rod is recorded by the velocimeter, and the incident,
transmitted, and reflected pulses are recorded by the strain gauge. According to the one-
dimensional stress wave theory, the engineering strain εeng, engineering stress σeng, and
strain rate

.
εeng sample can be calculated by Equations (2)–(4).

εeng(t) = −2c0

l0

∫ t

0
εr(t)dt (2)

σeng =
AEεt

A0
(3)

.
εeng = −2c0εr

l0
(4)

where c0 is the wave speed in the incident bar, E and A are Young’s modulus and the
cross-sectional area of the bars. A0 and l0 are the cross-sectional area and the length of the
cylindrical specimen. εr and εt are the reflected and transmitted strains, respectively, when
the reflected and transmitted waves propagate independently.

Under the condition that the material is incompressible, the true strain εT, and true
stress σT of the specimen can be obtained, by Equations (5) and (6).

εT(t) = − ln
(
1 − εeng

)
(5)

σT = σeng
(
1 − εeng

)
(6)

Considering the strain rate and temperature in the actual cutting process and the
applicable conditions of the experimental device, the experimental conditions of SHPB
tests are shown in Table 2. To ensure the accuracy of the experimental data, three repeated
experiments were carried out under the same conditions, and the holding time and air
pressure of each group of repeated experiments were controlled to be consistent.

Table 2. Experimental conditions of SHPB tests.

Variable Values

Strain rate
.
ε (s−1) 4000, 6000, 10,000, 12,000

Temperature T (◦C) 25, 200, 400, 600, 700, 800

3. Modified Constitutive Model

The modified model proposed in this paper considers the coupling effect of strain,
strain rate, and temperature and the influence of microstructure transformation based on
the J-C model, as shown in Equation (7).

σ = (A + Bεn)(1 + C ln
.
ε
.
ε0
)

[
1 −

(
T − T0

Tm − T0

)m]
H(ε,

.
ε, T) (7)

where A represents the yield stress, B and n represent the material strain hardening co-
efficients, ε represents the true strain, C represents the viscosity coefficient, represents
the strain rate, ε0 represents the reference strain rate, T represents the temperature, Tm
represents the material melting temperature, T0 represents the room temperature, and m
represents the thermal softening coefficient. The effect of dynamic recrystallization on
flow stress is characterized by adding a correction item H(ε,

.
ε, T) to the J-C model. The

mathematical expressions of H(ε,
.
ε, T) are shown in Equations (8)–(10). Considering that

the recrystallization threshold is affected by both temperature and strain rate, it is expressed
by Equation (11).

H(ε,
.
ε, T) =

1
1 − h(ε,

.
ε) · u(

.
ε, T)

(8)
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u(
.
ε, T) =

{
0, ε < εr
1, ε ≥ εr

(9)

h(ε,
.
ε) =

h0

ε
+ h1 − (

h0

ε
+ h2) ln

( .
ε
.
ε0

)
(10)

εr = r0 + r1Tr2 + r3
.
ε

r4 + r5Tr2
.
ε

r4 (11)

where hi (i = 0, 1, 2) and ri (i = 0, 1. . .5) are material constants, εr is the critical strain for the
occurrence of dynamic recrystallization, which is expressed by Equation (11).

4. Results and Discussion
4.1. Dynamic Mechanical Properties
4.1.1. Characteristics of the Stress–Strain Curve

The stress–strain curve of the FGH96 superalloy obtained by the quasi-static compres-
sion test is shown in Figure 3. According to Figure 3, in the first stage of the compression
process (OA), the material undergoes elastic deformation with the stress increases linearly
with the increase in strain. When the strain reaches point A, the growth rate of stress slows
down with the increase in strain, indicating that the material enters the plastic deformation
stage (AB), showing a clear work hardening phenomenon. When the strain exceeds the
strain at point B, the material enters the damage deformation stage which is marked by the
decrease in stress with the increase in strain.
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Figure 3. Stress–strain curve of FGH96 superalloy in the quasi-static compression test.

According to the above analysis, there is no clear yield phenomenon in the quasi-
static compression process of the FGH96 superalloy. The yield stress of bulk samples
was measured by 0.2% strain shift method, namely, the stress value when 0.2% plastic
deformation occurs is taken as its yield strength (point A in Figure 3). The yield strength of
the FGH96 superalloy is σ0.2 = 773 MPa.

The effect of strain rate on the stress–strain curve of FGH96 superalloy obtained by
SHPB tests at different temperatures (25 ◦C, 200 ◦C, 400 ◦C, 600 ◦C, 700 ◦C, 800 ◦C) is shown
in Figure 4. According to Figure 4a, when the temperature is 25 ◦C, the maximum strains
in the plastic deformation stage corresponding to the strain rates of 4000 s−1, 6000 s−1,
10,000 s−1, and 12,000 s−1 are 0.35, 0.42, 0.61, and 0.72, respectively. It can be concluded
that under the same compression test device conditions, the plastic deformation stage
at room temperature increases significantly with the increase in strain rate. According
to Figure 4b–f, under high-temperature deformation conditions (200 ◦C, 400 ◦C, 600 ◦C,
700 ◦C, 800 ◦C), compared with the lower strain rate level, the plastic deformation stage of
the material under high strain rate conditions also increases significantly. In summary, the
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PM superalloy has a clear plasticizing effect in the deformation process over a wide range
of strain rates.
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The effect of temperature on the stress–strain curve of FGH96 superalloy at different
strain rates (4000 s−1, 6000 s−1, 10,000 s−1, 12,000 s−1) is shown in Figure 5. According to
Figure 5a–d, at the same strain rate, the stress in the plastic deformation stage decreases
with the increase in temperature, showing a clear temperature softening effect.
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Table 3 shows the yield stress at different temperatures and strain rates under SPHB
test conditions. Compared with the yield stress (773 MPa) obtained by the quasi-static
compression test at room temperature, the yield stress obtained by SPHB tests at high
temperatures and high strain rates increases significantly. When the strain rate is 12,000 s−1,
the yield strength reaches 1616 MPa. According to Table 3, when the temperature is 200 ◦C,
400 ◦C, 600 ◦C, 700 ◦C, and 800 ◦C, the yield strength increases with the increase in strain
rate. It is worth noting that the flow stress of the material also increases with the increase in
strain rate (Figure 3), which indicates that the PM superalloy material exhibits a significant
strain rate hardening effect.

Table 3. Yield strength at different temperatures and strain rates (MPa).

Strain Rate (s−1)
Temperature, T (◦C)

25 200 400 600 700 800

4000 1315 1305 1234 1097 903 883
6000 1359 1318 1280 1142 1001 926

10,000 1544 1487 1322 1227 1182 994
12,000 1616 1588 1355 1271 1205 1043

In addition, under the same strain rate loading conditions, the yield strength of the
PM superalloy decreases with the increase in temperature. Combined with Figure 4, the
flow stress and yield strength decrease with the increase in temperature, which further
confirms the temperature softening effect of the PM superalloy.

4.1.2. Strain Hardening

To quantitatively analyze the strain hardening phenomenon of PM superalloy, the
strain hardening rate Q is calculated by Equation (12).

Qi =
∂σ

∂ε
=

σi − σi−1

εi − εi−1
(12)

where εi and represent the strain and the stress of the ith experiment, respectively. εi−1 and
σi−1 represent the strain and the stress of the (i − 1)th experiment.

Based on the quasi-static compression experimental data, the strain hardening rate-
strain curve of the PM superalloy obtained according to Equation (12) is shown in Figure 6.
According to Figure 6, in the elastic deformation stage (OA), the strain hardening rate Q of
the material increases briefly with the increase in strain and then decreases sharply. In the
plastic deformation stage (AB), the decrease in the strain hardening rate slows down, and at
point B, it decreases to 0 (it is no longer in the hardening state). In the damage deformation
stage, the strain hardening rate is less than 0, and the material is damaged and deformed.
Therefore, it can be concluded that during the quasi-static compression test, the strain
hardening phenomenon of the FGH96 superalloy is significant, and with the continuous
increase in strain, the strain hardening effect gradually weakens and reaches equilibrium at
point B. This is because in the process of quasi-static compression deformation, with the
increase in strain, thermal softening occurs inside the material [22].

When the temperature is 700 ◦C, the strain hardening rate–strain curve of the PM
superalloy at different strain rates is shown in Figure 7. According to Figure 7, the PM
superalloy still exhibits clear strain hardening under high temperature and high strain rate
conditions. However, it is worth noting that in the plastic deformation stage, the strain
hardening rate Q of the material at the strain rate of 4000 s−1 always remains positive.
In contrast, the Q of the material at the strain rate of 6000 s−1 continues to decrease and
reaches a negative state after reaching zero. This is because the material not only has the
thermal softening effect, but also superimposes the recrystallization softening effect, so
that the hardening effect in the plastic deformation stage is greatly weakened, and the flow
softening phenomenon appears [23].
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4.1.3. Adiabatic Induced Increase in Temperature

According to Section 4.1.1, the PM superalloy has a clear plasticizing effect during high
temperature and high strain rate deformation. Researchers have found that the adiabatic
temperature rise during material deformation is one of the important factors that cannot be
ignored in the plasticizing effect [24]. In addition, the adiabatic temperature rise makes the
actual temperature inside the material higher than the experimental loading temperature,
which reduces the dislocation slip resistance and strengthens the internal softening of the
material. Under the experimental conditions in this paper, the adiabatic temperature rise
∆T in the process of material deformation can be obtained by Equation (13).

∆T =
η

ρCp

∫ ε

0
σdε (13)

where η is the plastic work–heat conversion coefficient, for the experimental deformation
conditions in this paper, it takes 0.9 [25]; ρ is the material density; Cp is the specific heat
capacity at atmospheric pressure. The specific heat capacity Cp of the FGH96 superalloy at
different temperatures is shown in Table 4.

Table 4. Specific heat capacity of FGH96 superalloy at different temperatures.

Temperature, T (◦C) 25 200 400 600 700 800

Cp (kJ/(kg·◦C)) 0.391 0.422 0.455 0.487 0.503 0.525
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Figure 8 shows the influence of loading temperature on adiabatic temperature rise of
FGH96 superalloy under different strain rates. According to Figure 9, at the same strain
rate, the adiabatic temperature rise decreases with the increase in temperature. For example,
at the strain rate of 12,000 s−1, as the loading temperature increases from 25 ◦C to 800 ◦C,
the adiabatic temperature rise decreases from 98 ◦C to 33 ◦C (reduced by 66%). At the same
time, when the strain rate is 4000 s−1, the adiabatic temperature rise decreases from 35 ◦C
to 15 ◦C with the increase in loading temperature (reduced by 60%). It can be seen that
with the decrease in strain rate, the rate of adiabatic temperature rise decreases when the
increase in loading temperature is reduced. From the above, with the decrease in strain rate,
the reduction rate of adiabatic temperature rise decreases significantly with the increase
in loading temperature. At the same loading temperature, the higher the strain rate, the
higher the adiabatic temperature rise. For example, at 200 ◦C, the corresponding adiabatic
temperature rises at strain rates of 4000 s−1, 6000 s−1, 10,000 s−1, and 12,000 s−1 are 30 ◦C,
40 ◦C, 65 ◦C, and 70 ◦C, respectively. At the same time, compared with the temperatures of
25 ◦C, 200 ◦C, and 400 ◦C, the adiabatic temperature rises at 600 ◦C, 700 ◦C, and 800 ◦C
decrease significantly with the increase in strain rate.
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4.1.4. The Strain Rate Sensitivity

According to Section 4.1.1, the FGH96 superalloy exhibits a strain rate strengthening
effect in the plastic deformation stage. To describe the degree of strain rate strengthening of
the material, the strain rate sensitivity coefficient q is introduced, as shown in Equation (14).
The larger the strain rate sensitivity coefficient q, the stronger the strain rate sensitivity of
the material.
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q =
∂ ln σ

∂ ln
.
ε

(14)

Figure 9 shows the influence of strain on the strain rate sensitivity coefficient of FGH96
superalloy at different temperatures. According to Figure 9, the strain rate sensitivity coef-
ficient decreases with the increase in strain under the experimental temperature conditions.
For example, when the temperature is 600 ◦C, the strain rate sensitivity coefficient decreases
from 0.11 to 0.09 with the increase in strain (from 0.1 to 0.4). It is worth noting that the
influence of temperature on the strain rate sensitivity coefficient is not clear. For example,
for the temperature conditions of 200 ◦C and 400 ◦C, the strain rate sensitivity coefficient is
lower than the strain rate sensitivity coefficient of 25 ◦C. However, when the temperature
is greater than 600 ◦C, the strain rate sensitivity coefficient becomes larger and increases
with the increase in temperature. At the same time, when the temperature is 800 ◦C and
the strain is 0.1, the largest strain rate sensitivity coefficient is 0.155 (less than 0.2), which
shows that FGH96 superalloy exhibits weak strain rate sensitivity.

4.1.5. The Temperature Sensitivity

According to Section 4.1.1, the FGH96 superalloy shows a strong temperature soft-
ening effect in the plastic deformation stage. To quantitatively describe the temperature
sensitivity of the material, the temperature sensitivity coefficient s is introduced, as shown
in Equation (15). The greater the temperature sensitivity coefficient s, the stronger the
temperature sensitivity of the material.

s =
∣∣∣∣ ∂ ln σ

∂ ln T

∣∣∣∣ (15)

The variation of the temperature sensitivity coefficient of FGH96 superalloy with
temperature at different strain rates calculated by Equation (15) is shown in Figure 10.
According to Figure 10, the temperature sensitivity coefficient increases significantly with
the increase in temperature under the same strain rate. When the strain rate is 4000 s−1, the
temperature sensitivity coefficient is 0.1 at 200 ◦C and reaches 1.2 at 800 ◦C. At the same time,
the temperature sensitivity coefficient decreases with the increase in strain rate. When the
temperature is 800 ◦C, the temperature sensitivity coefficient is 1.3 at 4000 s−1 and decreases
to 0.9 at 12,000 s−1. From the above, the temperature sensitivity of the PM superalloy
increases significantly with the increase in temperature and decreases with the decrease in
strain rate. In summary, FGH96 superalloy exhibits strong temperature sensitivity.
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4.2. Construction of Constitutive Model
4.2.1. Recrystallization Critical Condition

The effect of dynamic recrystallization on the stress–strain curve of the material is
shown in Figure 11. If there is no dynamic recrystallization during the deformation process,
the flow stress of the material increases slowly with the increase in strain, as shown in
the black solid line in Figure 11. When the strain reaches the critical strain of dynamic
recrystallization, the flow stress decreases, which is manifested as the recrystallization
softening effect as shown in the red line in Figure 10. However, when the strain reaches a
certain value (critical strain εr), the material undergoes dynamic recrystallization. At this
time, the flow stress shows a significant downward trend, as shown in the red solid line in
Figure 11, which is the flow softening phenomenon. Therefore, the determination of the
critical condition of dynamic recrystallization, namely, the critical strain, is the key to the
study of dynamic recrystallization flow softening.
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The dynamic recrystallization critical strain of the PM superalloy obtained under the
experimental conditions in this paper is shown in Table 5. It can be seen from the data in
Table 5 that the critical strain of dynamic recrystallization of FGH96 is not only related to
the deformation temperature but also to the strain rate, which verifies the conclusion of
Denguir [21]. The critical strain decreases with the increase in temperature and decreases
with the increase in strain rate.

Table 5. Critical strain εr under different temperature and strain rate conditions.

Strain Rate (s−1)
Temperature, T (◦C)

200 400 600 700 800

6000 0.4233 0.3621 0.3211
10,000 0.4033 0.3640 0.3199 0.3144 0.2911
12,000 0.3999 0.3443 0.3091 0.3051 0.2698

Based on the data in Table 3, the fitting surface of the critical strain is obtained by
polynomial fitting (Equation (11)), as shown in Figure 12.

The equation for calculating the critical strain of dynamic recrystallization of FGH96
under experimental conditions in this paper is shown in Equation (16).

εr = 1.445 − 5.85 × 10−5T1.415 − 0.139
.
ε

0.215
+ 6.45 × 10−6T1.415 .

ε
0.215 (16)
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4.2.2. Identification of Constitutive Model’s Coefficients

(1) Linear Regression Method

The modified J-C constitutive model (Equation (7)) represents the strain hardening
effect, strain rate strengthening effect, thermal softening effect, and recrystallization soften-
ing effect from left to right. According to the linear regression parameter solving method,
A, B, C, n, m, and Hi are the parameters to be fitted, ε0, T0, and Tm are 0.001 s−1, 25 ◦C, and
1350 ◦C, respectively.

The strain hardening coefficient can be obtained by processing the quasi-static com-
pression test data at room temperature. The proposed constitutive model is simplified as
shown in Equation (17). The quasi-static compression tests permitted to determine the
yield stress are represented by coefficient A (Figure 13a). Equation (18) was obtained by
taking the logarithm on both sides of the Equation (17). The solution of the coefficients n
and B can be obtained by a slope and an intercept of a fitting straight line (Figure 13b). As
shown in Figure 12, A = σ0.2 = 773 MPa, n = 0.667, B = 1271 MPa.

σ = A + Bεn (17)

ln(σ − A) = n ln ε + ln B (18)
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Figure 13. Solution of coefficients A, B, and n.

The strain rate sensitivity coefficient C, the thermal softening index m, and the recrys-
tallization softening correction coefficient Hi in the modified J-C constitutive model were
obtained from the result of SHPB tests.

According to SHPB tests at room temperature for different strain rates, the constitutive
equation is simplified to Equation (19). The stress–strain curves of materials at different
strain rates at room temperature in this paper are shown in Figure 14. The mean value of
multiple sets of test results is taken as the final result (C = 0.031).
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σ = (A + Bεn) · (1 + C ln
.
ε
.
ε0
) (19)
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The thermal softening coefficient m is determined according to Equation (20). The
data of the SHPB tests under high-temperature conditions were used. Finally, the fitting
relationship between m and strain rate is obtained as shown in Figure 15.

m ln(
T − T0

Tm − T0
) = ln

1 − σ

(A + B · εn) ·
(

1 + C · ln
.
ε.
ε0

)
 (20)
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The coefficients hi (i = 0, 1, 2) related to the dynamic recrystallization can be obtained
according to Equation (21). The ratio of the actual flow stress after recrystallization to the
predicted stress of the J-C model can be obtained by taking the above parameters into account.
The value of parameter hi (i = 0, 1, 2) can be obtained by fitting the experimental results.

σ

f (ε) f (
.
ε) f (T)

=
1

1 − ( h0
ε + h1) + ( h0

ε + h2) ln(
.
ε.
ε0
)

(21)
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In summary, the modified constitutive model obtained by the linear regression method
is shown in Table 6.

Table 6. Constitutive model coefficients of linear regression method.

Coefficients Value

A (MPa) 773
B (MPa) 1271

C 0.031
n 0.667
m 8.05 × 10−5 .

ε + 1.66
h0 −0.015
h1 −0.015
h2 0.046
εr 1.445 − 5.85 × 10−5T1.415 − 0.139

.
ε
0.215

+ 6.45 × 10−6T1.415 .
ε
0.215

(2) Function iteration method

According to the function iteration method [26,27], the proposed model is shown in
Equation (22). The iterative function method determines the coefficients of the prediction
model by continuously iterating the function through the optimization algorithm.

σ = f (ε) · f (
.
ε) · f (T) · f (Hi) (22)

The stress values corresponding to the room temperature T0 and the reference strain
rate ε0 conditions are selected as the initial values. The quasi-static compression test data at
room temperature are selected for polynomial fitting to obtain the results of f (ε), which are
shown in Figure 16a. Then, according to the relationship between measured stress in the
SHPB test at room temperature and f (ε), the relationship between stress and strain rate is
obtained by iteration, which is f (

.
ε) as shown in Figure 16b. Finally, the results of f (T) and

f (Hi) can be obtained according to the high-temperature SHPB experimental data by the
iteration process, as shown in Figures 16c and 16d, respectively.
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In the iterative process, the error R2 is used to judge the accuracy of the results. When
the result meets Equation (23), the result is considered to be accepted.∣∣∣R2

k − R2
k−1

∣∣∣ ≤ 10−3 (23)

where R2
k is the error of determination of the ith iterated function,R2

k−1 is the error of
determination of the (i − 1)th iterated function.

Finally, the constitutive model constructed by the function iteration method is ob-
tained. The constitutive model after reaching the critical strain of recrystallization is shown
in Equation (24).

σ = (427.05 + 4856.82ε − 7502.10ε2 + 4053.41ε3 − 381.92ε4)

×(0.969 + 0.042ln(
.
ε.
ε0
))× (0.924 − ( T−T0

Tm−T0
)

3.768
)

×
[
(1 − (−0.008/ε + 7.094) + (−0.008/ε + 0.479) ln(

.
ε.
ε0
)
]−1

(24)

(3) Comparison of different methods

To optimize the solution method of the parameters, the stress–strain curves obtained
by the constitutive equations solved by the two methods described in the previous section
are compared with the experimental results. Under the condition of strain rate is 10,000 s−1

and the temperature is 25 ◦C, 200 ◦C, 400 ◦C, 600 ◦C, 700 ◦C, 800 ◦C, the comparison
results of stress–strain curves are shown in Figure 17. Figure 17a,b are the experimental
comparison results of the linear regression solving method and functional iteration solving
method, respectively. According to Figure 16, both of the equations obtained by the linear
regression solving method and functional iteration method can describe the trend of stress
in the plastic deformation stage.
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.
ε = 10, 000s−1).

To quantitatively evaluate the overall error of the two methods, the scatter plot is used
to calculate the correlation value. The results of the correlation between the calculated
stress and the experimental stress obtained by the two methods are shown in Figure 18.
Figure 18a,b are the results of the linear regression solving method and functional iteration
solving method, respectively. Compared with Figure 18b (R2 = 0.889), the data correlation
index in Figure 18a is higher (R2 = 0.985), namely, the data concentration is higher.

The maximum relative error θ between the measured and predicted stress is also
calculated to evaluate prediction accuracy, as shown in Equation (25).

θ = max

(∣∣σp − σm
∣∣

σm
× 100%

)
(25)

where σp is the predicted stress, σm is the measured stress.
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solving methods.

The maximum relative error of the constitutive model obtained by the linear fitting
method and the function iteration method are shown in Table 7. According to Table 7, the
accuracy of the model obtained by the linear regression method (11.21%) is much higher
than that obtained by the function iteration method (4.74%) in the plastic deformation of
the non-dynamic recrystallization stage. Correspondingly, in the recrystallization stage, the
accuracy of the model obtained by the function iteration method is improved (4.11%), which
is very small compared with the accuracy of the model obtained by the linear regression
method (5.11%). By calculating the average value of the maximum error θ before and after
dynamic recrystallization, the model accuracy obtained by the linear regression method is
greater than the model obtained by the functional regression method in the whole plastic
deformation stage.

Table 7. Comparison of the maximum relative errors of two different methods.

Maximum Relative Errors Linear Regression Method Function Iteration Method

θ1(ε < εr) 4.74% 11.21%
θ2(ε ≥ εr) 5.11% 4.11%

θ 4.93% 7.66%

In summary, the modified J-C constitutive equation considering the recrystallization
softening effect proposed in this paper is solved by the linear regression method, and the
results are shown in Equation (26).

σ = (773 + 1271ε0.667)× (1 + 0.031ln(
.
ε.
ε0
))×

(
1 − ( T−T0

Tm−T0
)

1.66+8.05×10−5 .
ε
)

×
[
(1 − (−0.015/ε − 0.015) + (−0.015/ε + 0.046) ln(

.
ε.
ε0
)
]−1 (26)

4.3. Validation of Modified J-C Constitutive Model

Temperature-dependent J-C model [28,29] is also widely used to predict the flow stress
behavior of materials in the cutting process, which is shown in Equation (27).

σ = (A + Bεn)(1 + C ln
.
ε
.
ε0
)

[
1 −

(
T − T0

Tm − T0

)m]( 1
1 − (a − bε)

)
(27)

where a and b are the coefficients related to flow softening caused by dynamic recrystal-
lization. According to the stress–strain data of the plastic deformation stage of the FGH96
under the experimental conditions in this paper, the temperature-dependent J-C model for
the plastic deformation stage after reaching the recrystallization critical strain is shown
in Equation (28).
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σ = (773 + 1271ε0.667)(1 + 0.031 ln
.
ε
.
ε0
)

(
1 −

(
T−T0

Tm−T0

)1.66+8.05×10−5 .
ε
)(

1
1−(0.274−1.234ε)

)
(28)

The comparison between the predicted stress and the experimental stress of the two
modified models at the 10,000 s−1 strain rate is shown in Figure 19. Figure 19a,b are the
comparison results of the model proposed in this paper and the temperature-dependent
J-C model, respectively. The temperature-dependent J-C model can also predict the flow
stress in the plastic deformation stage.
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J-C model, respectively. The temperature-dependent J-C model can also predict the flow 
stress in the plastic deformation stage. 

 
Figure 19. Comparison of correlation between predicted stress and measured stress by two models.

The results of the correlation analysis between the calculated stress and the experimen-
tal stress obtained by the two models are shown in Figure 20. Figure 20a,b are the correlation
analysis results of the model proposed in this paper and the temperature-dependent J-
C model, respectively. Compared with Figure 20b (R2 = 0.956), the data correlation index in
Figure 20a is higher (R2 = 0.985), namely, the data concentration is higher.
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According to Equation (25), the average values of the maximum relative error of the
two models were calculated. The average value of the maximum relative errors of flow
stress predicted by the modified J-C model in this paper and the temperature-dependent
J-C model is 5.11% and 8.14%, respectively. Therefore, the constitutive model proposed in
this paper can accurately predict the flow stress of FGH96 in the plastic deformation stage
under the influence of recrystallization softening.
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5. Conclusions

In this work, the dynamic mechanical properties of nickel-based PM superalloy
FGH96 are analyzed by quasi-static compression tests and SHPB tests at strain rates of
4000 s−1~12,000 s−1 and temperatures of 25 ◦C~800 ◦C. A J-C constitutive model consider-
ing the dynamic recrystallization softening effect is proposed. The following conclusions
can be drawn in this paper.

(1) Dynamic mechanical properties of nickel-based PM superalloy were obtained by ex-
periments. The PM superalloy has a clear plasticizing effect in the deformation process
over a wide range of strain rates. The PM superalloy material exhibits a significant
strain rate hardening effect and temperature softening effect. During the compression
test, the strain hardening phenomenon of PM superalloy is significant and the strain
hardening effect gradually weakens with the continuous increase in strain. FGH96
superalloy exhibits weak strain rate sensitivity and strong temperature sensitivity.

(2) Considering the influence of temperature and strain rate, the formula for the flow
stress softening term H(ε,

.
ε, T) and critical strain εr of dynamic recrystallization were

obtained. On this basis, the modified J-C constitutive model of PM superalloy consider-
ing dynamic recrystallization behavior in a wide range of strain rates and temperature
is proposed.

(3) The coefficients of the modified constitutive equation established in this paper were
obtained by linear fitting and function iteration, respectively. Through correlation
analysis and maximum error analysis, the modified constitutive model solved by
the linear fitting method has higher accuracy in predicting flow stress in the plastic
deformation stage.

(4) Compared with the temperature-dependent constitutive model, it is found that the
modified constitutive model established in this paper is more suitable to describe the
recrystallization softening linearity of flow stress at high temperature and high strain
rate in the plastic deformation stage of powder metallurgy superalloy.
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