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Abstract: In this study, AA1050/AA6061 laminated composites were prepared by three-cycle
accumulative roll bonding (ARB) and subsequent rolling. The effects of the rolling process on the mi-
crostructure evolution and mechanical properties of AA1050/AA6061 laminated composites were
systematically investigated. The results indicate that the mechanical properties of the laminated
composites can be effectively improved by cryorolling compared with room-temperature rolling.
The microstructure analysis reveals that cryorolling can suppress the necking of the hard layer
to obtain a flat lamellar structure. Moreover, the microstructure characterized by transmission
electron microscopy shows that cryorolling can inhibit the dynamic recovery and significantly
refine the grain size of the constituent layers. Meanwhile, the tensile fracture surface illustrates
that AA1050/AA6061 laminated composites have the optimal interfacial bonding quality after
cryorolling. Therefore, the laminated composites obtain excellent mechanical properties with the
contribution of these factors.

Keywords: AA1050/AA6061 laminated composites; accumulative roll bonding; cryorolling;
microstructure; mechanical properties

1. Introduction

With the rapid development of technology and industry, the diversified demand for
material properties is increasing. Composites have been extensively considered for their
excellent properties. Among them, laminated metal composites (LMCs) composed of
two or more metals are widely used in aerospace, automotive, mechanical electronics,
petrochemical, and other fields due to their outstanding fracture toughness, fatigue life,
corrosion resistance, and damping ability [1–4]. The selection of component metals is
crucial for the final performance of LMCs. Similarly, factors such as interlayer strain
coordination, interface structural state, thickness ratio of component metals, and mi-
crostructure evolution can also have a great impact on the comprehensive properties of
LMCs [5–7]. In contrast to most LMCs consisting of dissimilar metals, aluminum lami-
nated composites do not introduce unnecessary influencing factors such as intermetallic
compounds at the interface [8]. Moreover, aluminum alloy has the advantages of high
specific strength, good electrical and thermal conductivity, light weight, corrosion resis-
tance, and low price, making it one of the most commonly used metals [9,10]. In practical
production, aluminum laminated composites have a wider application prospect owing
to their preparation process being simpler compared to that of other LMCs, ensuring
high interfacial bonding strength [11].
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Many methods have been used to fabricate LMCs, such as explosive bonding, extru-
sion bonding, diffusion bonding, rolling bonding, and so on [12–15]. The accumulative roll
bonding (ARB) process in rolling bonding is considered a promising method for prepar-
ing aluminum laminated composites because of its high production efficiency, simple
equipment operation, and wide application range [16,17]. The ARB process has obvious
advantages in the preparation of LMCs. It can break the limitation of the conventional
rolling deformation reduction ratio, introduce large strain into the component metals,
and obtain good plate shape with almost no change in geometry. At the same time, with
the increase in strain, the grain size can be significantly refined and the strength of the
material can be improved. Degner et al. [18] produced AA1050/AA7075 laminated com-
posites through ARB and further improved their formability via short-term heat treatment.
The results showed that these aluminum laminated composites not only had sufficient
strength but also had good formability and corrosion resistance, which can be used to
process structural components such as automotive body panels. Yuan et al. [19] prepared
AA6082/AA7204 laminated composites using ARB and analyzed the relationship between
grain orientation and corrosion behavior. The study found that, compared with those with
R cube texture and brass texture, the grains near S texture had poor corrosion resistance.
However, with the increase in the rolling reduction ratio, more grains in the AA7204 layer
near the bonding interface rotated into brass texture, improving their corrosion resistance.
Kümmel et al. [20] fabricated AA2024/AA5005 laminated composites by ARB and studied
their fatigue life. The results indicated that, compared with single materials with coarse and
ultrafine grains, the fatigue life of AA2024/AA5005 laminated composites was significantly
improved. Although the ARB process can obviously refine the grain size and improve the
mechanical properties of aluminum laminated composites, the enhancement effect is rela-
tively limited due to plastic instability. Therefore, the preparation of LMCs through various
rolling processes has become a current research hotspot, for example, using cryorolling
as a subsequent deformation treatment method. The low-temperature condition in the
cryorolling process is maintained by liquid nitrogen, which can suppress dynamic recovery
and achieve higher accumulated dislocation density. These dislocations will promote the
formation of a large number of nucleation positions, thereby forming subgrain or ultrafine
grain materials. However, research reports on further strengthening aluminum laminated
composites by combining cryorolling are relatively finite. Compared with other processes
for preparing LMCs, we not only use ARB in the severe plastic deformation methods to
obtain aluminum laminated composites but also improve their comprehensive proper-
ties through subsequent cryorolling, mainly utilizing the characteristics of cryorolling to
suppress dynamic recovery and overcome limited grain refinement.

In the present investigation, the AA1050/AA6061 laminated composites were fabricated
by the ARB process. The effects of subsequent room-temperature rolling and cryorolling on
the microstructure and mechanical properties of AA1050/AA6061 laminated composites
were studied. The mechanism of cryorolling in enhancing mechanical properties was
elaborated, and its influence on the interfacial bonding quality and microstructure evolution
was analyzed.

2. Materials and Methods

The experimental materials used in this work were annealed AA1050 and solution-
treated AA6061 (provided by Guangdong Hongwang New Materials Technology Co., Ltd.,
Shenzhen, China) with sizes of 230 × 75 × 1 mm3. The AA1050/AA6061 laminated compos-
ites were processed through ARB and subsequent rolling. The corresponding preparation
process is shown in Figure 1. Firstly, the eight-layer laminated composites were prepared
by three-cycle ARB. The main purposes were to ensure the coordinated deformation be-
tween the component metals as much as possible, restrain the plastic instability of the hard
layer, and obtain AA1050/AA6061 laminated composites with a flat lamellar structure and
excellent properties. The detailed process flow was as follows: The acetone and alcohol
were used to clear greasy dirt and impurities attached to the surface of the materials, and
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then the oxide film was removed using wire brushing. The sheets were stacked and then
fixed with iron wire at the corners to avoid relative slip during rolling. Subsequently, the
first-cycle ARB was performed at room temperature, resulting in a 50% reduction in the
thickness of the laminated composites. The purpose of conducting ARB at room temper-
ature is to improve the tensile strength of the laminated composite as much as possible
while ensuring good deformation coordination. The obtained AA1050/AA6061 laminated
composites were then cut in half, cleaned, and stacked again, and the rolling continued at
a 50% reduction in thickness. This preparation process was repeated three times to acquire
eight-layer laminated composites. Secondly, after three-cycle ARB, the AA1050/AA6061
laminated composites were subjected to room-temperature rolling (RTR) and cryorolling
(CR), respectively, with a final thickness of 0.25 mm. Samples to be cryorolled were soaked
in liquid nitrogen for 30 min before rolling. The laminated composites prepared by different
rolling processes are defined as A1 sample (one-cycle ARB), A2 sample (two-cycle ARB),
A3 sample (three-cycle ARB), A3 + RTR sample (three-cycle ARB + RTR), A3 + CR sample
(three-cycle ARB + CR).
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Figure 1. Schematic illustration of ARB and subsequent rolling processes.

The tensile properties of AA1050/AA6061 laminated composites were determined
through a Shimadzu AGS-X 10-kN tensile machine (Shimadzu, Kyoto, Japan) with a tensile
rate of 1 × 10−3 s−1. Dog-bone-shaped tensile samples were machined to have a parallel
length of 13 mm and a width of 2.5 mm along the rolling direction. The microhardness
was measured by the Vicker’s hardness tester HXD-2000TMC/LCD 181101X (Shanghai
Taiming Optical Instrument Co., Ltd., Shanghai, China) with a load of 100 g and a holding
time of 15 s. The lamellar structure distribution of the rolling direction–normal direction
cross-section was observed by optical microscopy (OM, Mshot MJ42, Mingmei Optoelec-
tronic Technology Co., Ltd., Guangzhou, China). Field Emission Gun Transmission Electron
Microscopy (FEG-TEM, Philips Electron Optics, Eindhoven, The Netherlands) was adopted
to analyze the microstructure evolution of the AA1050/AA6061 matrix and bonding inter-
face, and the equipment operated at 200 kV. The tensile fracture morphologies of the initial
and rolled samples were examined through scanning electron microscopy (SEM, TESCAN
MIRA3 LMU, Zeiss Sigma 300, Shanghai, China).

3. Results and Discussion
3.1. Mechanical Properties of AA1050/AA6061 Laminated Composites

Figure 2 shows the trend of microhardness changes in the AA1050 and AA6061 layers
under different states. It can be observed from Figure 2a that the Vicker’s hardness value
of the initial annealed-state AA1050 was 26.6 ± 0.2 HV, and the Vicker’s hardness value
of AA6061 after solution treatment was 56.6 ± 1.0 HV. The right side of the dashed line in
the figure shows the microhardness of the two constituent layers of the A3, A3 + RTR, and
A3 + CR samples. Compared with the initial state, the microhardness values of the AA1050
and AA6061 layers showed a significant increasing trend after severe plastic deformation.
Many studies have shown that microhardness is mainly influenced by several factors [21],
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such as: (1) the generation of dislocations in the material and its work hardening behavior,
(2) the size, distribution, and quantity of particles in the matrix, such as the second phases
and precipitates, (3) the rearrangement and annihilation of dislocations (work softening), etc.
The first two factors increase the microhardness, while the latter factor leads to a decrease
in the microhardness. For the AA1050/AA6061 laminated composites, the microhardness
increased with the increase in rolling deformation, but the AA6061 layer had a faster growth
rate and a more obvious change in hardness value, as shown in Figure 2b. According to the
performance characteristics of the material, the difference in the microhardness growth rate
between the two constituent layers is closely related to its cold working rate.
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In order to further understand the microhardness changes of AA1050/AA6061 lami-
nated composites after ARB, Vicker’s hardness testing was carried out in the layer thick-
ness direction. The experimental results are shown in Figure 3. It can be seen that the
microhardness of the AA6061 layer was always higher than that of the AA1050 layer, and,
as the ARB process continued, the microhardness in the layer thickness direction increased
gradually. This can indicate that the hardness of both component metals increased due to
work hardening caused by rolling. Similarly, the growth amplitude of the microhardness
of the AA6061 layer was greater than that of the AA1050 layer in the layer thickness
direction, which is related to the higher strain hardening rate of the AA6061 layer. By
observing Figure 3, it can be found that there is a significant jump in the hardness values
at the bonding interface of the first three-cycle ARB, but they still remain between the
two constituent layers. A similar conclusion can be drawn according to Table 1. For the
A1 sample, the average hardness at the interface was 65.7 ± 2.0 HV, while that of the
constituent layers AA1050 and AA6061 was 44.6 ± 0.8 HV and 107.1 ± 3.8 HV, respectively.
Then, the average hardness gradually increased with the continuation of ARB. When it
came to the A3 sample, this increased to 71.2 ± 1.5 HV, 48.1 ± 1.0 HV, and 122.6 ± 1.5 HV,
respectively. Some studies suggest that the change in microhardness at the interface of
the LMCs can indicate that the constituent layers are directly bonded during the rolling
process without forming intermetallic compounds [22]. The increase in microhardness
throughout the plastic deformation process is mainly attributed to work hardening, the
accumulation of dislocation, and the dispersion distribution of the second-phase particles
in the AA6061 layer [23].

Table 1. Vicker’s hardness (HV) in the layer thickness direction of A1, A2, and A3 samples.

As-Rolled AA1050 AA1050/AA6061 AA6061

A1 44.64 ± 0.81 65.67 ± 1.96 107.14 ± 3.81
A2 47.43 ± 2.84 70.77 ± 1.05 119.28 ± 2.35
A3 48.05 ± 0.99 71.24 ± 1.51 122.60 ± 1.47
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Figure 4 illustrates the tensile properties of the initial materials and the rolled AA1050/
AA6061 laminated composites. The true stress–strain curves of annealed AA1050 and
solution-treated AA6061, as well as A3 + RTR and A3 + CR samples, are shown in Figure 4a.
The results indicate that, after severe plastic deformation, the true stress of the laminated
composites significantly increased while the true strain decreased, which is related to the
work hardening generated during the deformation process. At the same time, it can be
found that the tensile properties of the A3 + CR sample were better than those of the
A3 + RTR sample, which means that, compared with RTR, CR can obviously enhance the
performance of AA1050/AA6061 laminated composites. The variation in the ultimate
tensile strength (UTS) and elongation of the samples under different deformation states
are shown in Figure 4b. It can be seen from the figure that the UTS continuously increased
with the increase in deformation amount and reached 236 ± 1 MPa after three-cycle ARB.
Then, the RTR and CR were carried out, and the UTS of the samples was 298 ± 2 MPa and
310 ± 1 MPa, respectively, which increased by 26% and 31% compared to three-cycle ARB.
The elongation decreased throughout the entire plastic processing, which is consistent with
other reports on the preparation of LMCs using severe plastic deformation processes [24,25].
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Figure 5 displays the tensile properties of AA1050/AA6061 laminated composites
under two rolling processes and their variations with deformation states. According to
the changes in the UTS and elongation after three-cycle ARB and RTR in Figure 5a,b, it
can be seen that the growth ratio of the UTS decreased with the increase in ARB cycle
(16.81%→10.17%). After RTR, the growth ratio of the UTS showed an upward trend, which
is due to the shift in the rolling process from severe plastic deformation to conventional
plastic processing, resulting in a change in the performance trend of the laminated com-
posites. The variation of elongation in Figure 5b is also similar, but, contrary to the UTS
growth ratio, the elongation continuously decreased with the increase in deformation, and
the decline ratio became faster after shifting the rolling process. This is related to the strain
hardening effect and dislocation density accumulation during plastic deformation [26]. The
tensile properties and their change regulation of the laminated composites after three-cycle
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ARB and CR are shown in Figure 5c,d. It can be found that the overall trend of the UTS
and elongation was similar to that under RTR. However, the analysis results showed that
the UTS growth ratio of the laminated composites was higher after CR, while the elonga-
tion decline ratio was lower. This demonstrates that, compared with RTR, the laminated
composites after CR had better mechanical properties, which can be attributed to the char-
acteristics of CR. During this deformation process, the dynamic recovery of the component
metals was inhibited, resulting in the accumulation of higher dislocation density [27], so
that the UTS was significantly improved.
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3.2. Microstructure Analysis of AA1050/AA6061 Laminated Composites

Figure 6 shows the lamellar structure morphologies of AA1050/AA6061 laminated
composites after rolling deformation. The structural evolution of each constituent layer of
the laminated composites under different rolling states was examined by OM. Based on
the experimental results and combined with the different deformation capabilities of the
component metals during rolling processing, it can be inferred that the brighter layer was
AA6061, while the corresponding layer was AA1050. From Figure 6a to Figure 6b, it can
be observed that the two component metals can maintain relatively uniform deformation
in the first three-cycle ARB. The lamellar structure showed a flat morphology. More-
over, no obvious pores or defects were found at the bonding interface, indicating that
the AA1050/AA6061 interface introduced in each cycle had achieved a relatively good
bonding. However, as the rolling deformation continued, the local necking phenomenon
occurred in the hard layer (AA6061 layer) of the laminated composites after RTR and CR,
and some lamellar structures exhibited curved morphologies (as shown in Figure 6c,d).
According to the literature research, due to the differences in mechanical properties of
each component metal, it is difficult for LMCs to coordinate deformation during rolling,
which can easily lead to plastic instability of the hard layer [28]. However, in this study,
the AA6061 layer did not fracture under large deformation, and the overall lamellar
structure was relatively stable. Therefore, the strengthening effect of subsequent rolling
on the laminated composites was still significant, which was reflected in the continu-
ous improvement of the UTS in tensile properties, and the UTS of the A3 + CR sample
was higher. Many studies have shown that CR can make the accumulated dislocation
density reach a higher steady-state level by inhibiting the dynamic recovery, and these
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dislocations will serve as the driving force to initiate a large number of nucleation sites,
ultimately achieving the effect of refining grains and improving the tensile strength of
materials [29,30]. By observing and analyzing the evolution of the lamellar structure of
AA1050/AA6061 laminated composites under different rolling states, it can be found
that there is no obvious plastic instability, and the constituent layers always maintain
a continuous distribution, which has a good corresponding relationship with the changes
in their mechanical properties.
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The microstructure of A3, A3 + RTR, and A3 + CR samples characterized by TEM
is shown in Figure 7. Obviously, the laminated composites under different rolling states
exhibited sharp bonding interfaces. Meanwhile, the bonding interface of A3 + RTR and
A3 + CR samples is compared and analyzed. It is observed that the interface morphology
can be improved by CR to obtain the laminated composites with the flat interface (as
shown in Figure 7d,g). In addition, Figure 7 also shows the microstructure evolution
of the AA1050 and AA6061 layers. The AA6061 layer of the A3 sample included many
refined, elongated grains containing high-density dislocation, while the AA1050 layer still
displayed relatively coarse grains with low-density dislocation, as shown in Figure 7b,c.
As the deformation continued, the grain size of the two constituent layers decreased after
RTR and CR, and the grain refinement effect of the AA1050 layer in the cryorolled sample
is more evident than that of the RTR sample in the comparison of Figure 7e,h. Although the
introduction of more high-energy grain boundaries through grain refinement is effective
in hindering dislocation movement and improving strength, their ability to accommo-
date plastic deformation is also compromised by reduced ductility and toughness [31].
Therefore, the AA1050/AA6061 laminated composites prepared by combining multiple
rolling processes (ARB, RTR, and CR) revealed excellent UTS and lower elongation (as
shown in the tensile properties in Figures 4 and 5). Among them, the UTS of the cryorolled
sample increased most significantly, which is mainly related to improving the interface
morphology, inhibiting dynamic recovery, accumulating high dislocation density, and
further refining grain size.
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(a–c) A3 sample, (d–f) A3 + RTR sample, (g–i) A3 + CR sample.

Figure 8 illustrates the tensile fracture morphologies of the initial samples, including
annealed AA1050 and solution-treated AA6061. The significant necking of AA1050 during
the tensile process can be observed from Figure 8a, indicating that the material had excellent
ductility. The morphology of the dimples (large and deep dimples) in Figure 8b also
confirms this view. Compared with AA1050, the elongation of AA6061 after solution
treatment had decreased, which was due to the presence of more alloying elements in
AA6061. Based on Figure 8c,d, no obvious necking can be found before its tensile fracture,
and the dimples on the fracture surface became smaller and shallower, which can explain
the lower elongation compared to AA1050. There are studies indicating that aluminum
alloys have two macroscopic fracture modes, namely, shear fracture mode and dimple
fracture mode [32,33]. From the perspective of the microscopic mechanism, shear fracture
is caused by the cracking and aggregation of microscopic shear planes within the material.
Ductile fracture is the nucleation, growth, and aggregation of voids induced by inclusions or
second-phase particles in the material until they connect with macroscopic cracks, resulting
in ductile crack propagation and material failure. According to the characteristics of the
dimples in the fracture surface, it can be determined that the failure mechanism of both
initial materials is a ductile fracture.
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Figure 9 characterizes the fracture morphologies of tensile samples under different
rolling states. Figure 9a,b shows the tensile fracture of AA1050/AA6061 laminated com-
posites prepared by one-cycle ARB at low and high magnification. The delamination
phenomenon can be clearly observed from the fracture surface, indicating that the compo-
nent metals were not well bonded during initial rolling. This is because of the significant
difference in hardness between the AA1050 and AA6061 layers, which makes it difficult
to bond them together during coordinated deformation, and they are prone to debonding
after the tensile test. In addition, the AA1050 layer exhibited a more evident necking than
the AA6061 layer, which means that the AA1050 layer contributed more to the elongation
of the laminated composites during the deformation process. It can be found that the
size and number of dimples decreased visibly compared to the initial materials at high
magnification, showing that the ductility of the A1 sample was greatly reduced, which was
consistent with the tensile test results. The fracture surface of the A3 sample is shown in
Figure 9c,d, and the interface delamination can still be observed in the sample. Especially
for the interface introduced by the third-cycle ARB, its bonding strength was relatively
weak, so the delamination phenomenon was also quite obvious. Comparing the tensile
fracture surface of the laminated composites fabricated by the RTR and CR (Figure 9e–h),
some weak bonding positions at the fracture surface can be noticed after RTR. However, the
interfacial bonding quality had been greatly improved through CR, and no delamination
occurred on the fracture surface. This means that the AA1050/AA6061 laminated compos-
ites produced by CR have excellent mechanical properties, which can be confirmed by the
tensile test results in Figure 4. According to the fracture morphologies of the AA1050 and
AA6061 layers under different rolling states, most of the fracture surfaces had a gray-fiber
appearance with hemispherical dimples, which was the result of the formation and aggre-
gation of micropores. It is worth mentioning that the dimples at the fracture surface of some
LMCs that have undergone ARB exhibit morphological characteristics of being stretched
in a specific direction, which is considered unique to shear dimples. Research has shown
that the generation of shear dimples is mainly due to two reasons [34]. Firstly, the shear
stress inside the material during tensile testing can lead to the formation of micropores
and stretching in specific directions. The second reason is that severe and non-uniform
deformation during the ARB process results in the occurrence of shear bands in the material.
Under the action of stress, the metal flows in the direction of shear bands, causing the
micropores inside the material to be “pulled” and eventually forming shear dimples.
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The characterization and analysis of the microstructure of AA1050/AA6061 laminated
composites mentioned above indicate that interfacial bonding quality is one of the critical
indicators for evaluating comprehensive properties. Many studies have shown that the
interface of LMCs plays an important role in the deformation process, mainly reflected in
load transfer, regulation, and redistribution of stress and strain [35]. Strong interface bond-
ing is the prerequisite for LMCs to obtain outstanding mechanical properties. Liu et al. [36]
reported that good interface bonding can delay local necking and premature fracture of
the hard layer in component metals, improve the distribution of the constituent layers,
and thus enhance the ability for uniform plastic deformation. Chen et al. [37] found that
Al/Ti laminated composites with a strong interface coupling effect achieved extraordinary
elongation which was significantly higher than that of the single material. Therefore, it is
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meaningful to study the bonding mechanism of LMCs fabricated by the rolling process. In
recent years, numerous studies have reported several recognized bonding mechanisms,
including recrystallization theory, energy theory, diffusion theory, thin-film theory, N. Bay
theory, and so on. It is generally believed that there are two bonding modes at the interface
during the rolling deformation process, namely, the fresh metal bonding zone and residual
thin layer refining zone [38]. Figure 10 shows the schematic illustration of interface evolu-
tion. The thin oxide film and work hardening layer on the treated surfaces have much lower
ductility than the matrix, making them prone to breaking during plastic deformation. The
fresh metals exposed on both sides will be extruded under the rolling pressure, and then
the atoms of the two fresh metals reach the atomic level distance at the fracture position,
attracting each other. Thereby, the metallurgical bonding forms at the interface. However,
there are still some areas where thin films are mixed between the constituent layers, and
their hardness is greater than that of the matrix. Therefore, as the deformation amount
further increases, more obvious grain refinement will occur in these areas, forming the
interface bonding differently from the former.
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4. Conclusions

In this paper, AA1050/AA6061 laminated composites were prepared through ARB
and subsequent rolling. The mechanical properties and microstructure evolution of the
laminated composites under different rolling states were explored. The main conclusions
are drawn as follows:

1. The AA1050/AA6061 laminated composites were successfully processed by three-
cycle ARB with the UTS of 236 MPa. After subsequent rolling, the UTS of A3 + RTR
and A3 + CR samples increased to 298 MPa and 310 MPa, respectively. Therefore, the
mechanical properties of AA1050/AA6061 laminated composites can be obviously
enhanced by CR;

2. Analyzing the evolution of the microstructure, compared with RTR, CR can improve
the interface structure morphology, inhibit dynamic recovery, accumulate higher
dislocation density, and further refine grain size. These factors highly contribute to
the mechanical improvement of AA1050/AA6061 laminated composites;

3. The fracture analysis results reveal that the interfacial delamination existed at the
tensile fracture surface of AA1050/AA6061 laminated composites that underwent
ARB, and weak bonding positions were also found in the room-temperature rolled
sample. In contrast, good bonding between the constituent layers was observed in
the fracture morphology of the cryorolled sample, indicating that CR can effectively
improve the interfacial bonding quality.
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