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Abstract: Desirable properties including strength, ductility and extrudability of 6060 Al-alloys are
highly dependent on processing to control the development of microstructural features. In this
study, the process chain of an extrudable 6060 Al-alloy was modeled in an Integrated Computational
Materials Engineering framework and validated experimentally via quantitative SEM-EDX and TEM.
All critical processing stages were considered including casting, homogenization heating and holding,
extrusion cooling and two-stage aging. Segregation and intermetallics formation were accurately
predicted and experimentally verified in the as-cast condition. Diffusion simulations predicted
the dissolution of intermetallics and completion of β-AlFeSi to α-AlFeSi transformation during
homogenization, in excellent agreement with quantitative SEM-EDX characterization. Precipitation
simulations predicted the development of a β′′ strengthening dispersion during extrusion cooling
and aging. Needle-shaped β′′ precipitates were observed and analyzed with quantitative high-
resolution TEM, validating predictions. Ensuing precipitation strengthening was modeled in terms
of aging time, presenting good agreement with yield strength measurements. Precipitate-Free Zones
and coarse, metastable β-type particles on dispersoids and grain boundaries were investigated.
The proposed integrated modeling and characterization approach considers all critical processing
stages and could be used to optimize processing of extrudable 6xxx Al-alloys, providing insight to
mechanisms controlling microstructural evolution and resulting properties.

Keywords: extrudable Al-alloys; ICME; modeling; characterization; casting; homogenization; aging

1. Introduction

The development of optimized microstructures and properties of extruded profiles of
6xxx alloys depends on the full understanding and control of the individual elements of the
process chain. The design of these alloys depends entirely on the development of reliable
and experimentally validated models and simulation tools to describe the microstructural
evolution during processing. The 6xxx extrudable Al-alloys have a process chain compris-
ing of casting in billets (solidification), homogenization of the billets, extrusion, and aging.
Coarse Fe-rich intermetallics, eutectics and elemental segregation at grain boundaries and
secondary dendrite arms that form upon solidification limit extrudability [1,2]. The β-
AlFeSi phase in particular can be very detrimental for extrusion, being prone to nucleating
cracks due to its monoclinic structure and plate morphology [3]. Homogenization aims
at eliminating the as-cast structure and transforming the β-AlFeSi to α-AlFeSi phase with
a cubic structure and globular morphology which is less impactful to extrudability [4–6].
Extrusion is followed by artificial aging to precipitate a fine dispersion of a strengthening
phase, typically the metastable β′′ in 6060 Al-alloys [7]. Extrusion cooling and aging condi-
tions determine the phase fraction and size distribution of precipitates and therefore control
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the ensuing mechanical properties. In particular, extrusion cooling affects the formation of
Precipitate-Free Zones which can limit ductility [8].

Modeling efforts in the past have mainly focused on describing individual elements of
the process chain. The present work is an effort to integrate the simulation of solidification,
homogenization, cooling after extrusion and artificial aging where the results of each
process step are used as initial conditions for the next processing step, with experimental
validation of simulation results at all process steps.

Many authors have developed intricate models and characterization techniques to
study particular microstructural features or individual aspects of the process chain. Starting
from solidification during ingot casting, Du et al. [9] employed a numerical micromodel
approach for the prediction of intermetallic phase formation and microsegregation in A356
alloy and compared the model with equilibrium and Scheil-Gulliver solidification calcula-
tions. The model incorporated solid back-diffusion, dendrite tip and eutectic undercooling
and used an optimized thermodynamic database description for the Al-Mg-Si-Fe-Mn sys-
tem. They noticed discrepancies when comparing solidification paths and microsegregation
between equilibrium and Scheil-Gulliver calculations with experimental data. However, a
better agreement was obtained when the micromodel was used. Cinkilic et al. [10] investi-
gated the effect of Mn on the formation of iron intermetallics during solidification using
CALPHAD-based modeling. They established a relationship between Fe/Mn ratio and
cooling rate to minimize the formation of the detrimental β-AlFeSi phase in the as-cast
microstructure in Al-Mg-Si casting alloys. Both above works were on Al-Mg-Si-based cast-
ing alloys. Regarding extrudable alloys, Sarafoglou and Haidemenopoulos [11] employed
CALPHAD-based modeling and provided maps, in the Mg-Si composition space, of phase
fractions of Mg2Si and iron intermetallics for a large composition range (0–1.2 wt.% Mg
and Si) in 6xxx alloys. The calculations were validated experimentally.

Regarding microstructure evolution during homogenization, several modeling ap-
proaches have been employed. A finite element approach was developed by Kuijpers
et al. [12], to describe the β-AlFeSi to α-AlFeSi transformation and investigate the in-
fluence of several process parameters. The model was used in another work in [13] to
study the effect of Si and Mn on the transformation kinetics and validated experimentally
for rather short homogenization times. The interaction between Si and Mn were further
investigated by Du et al. [14], employing a diffusion model. They also presented a cou-
pled CALPHAD-based and Kampmann-Wagner-Numerical (KWN) model to predict the
competitive nucleation and growth of precipitates during homogenization cooling in a
6082 alloy. They found that a multimodal Mg2Si particle size distribution develops during
homogenization cooling. A diffusion model was also developed by Priya et al. [15], to study
dissolution during homogenization holding as well as precipitation during homogenization
cooling. Finally, Sarafoglou et al. [5] developed a CALPHAD-based dual-grain model to
consider the inhomogeneous grain size on homogenization holding and homogenization
cooling. The precipitation model they also developed was based on the KWN approach
and was coupled with a strength model to predict the yield strength of the as-homogenized
billets. In addition to homogenization cooling, non-isothermal precipitation reactions also
take place during cooling following the extrusion process, often called quench sensitivity.
A physically-based model of precipitation coupled with a strength model was introduced
by Milkereit and Starink [16] to account for the quench sensitivity in several Al-Mg-Si
alloys at a range of cooling rates. Precipitation during the isothermal aging treatment has
been addressed by several researchers. Myhr et al. [17] developed a model based on the
work presented in [18,19] to describe precipitation during thermal processing in a 6005,
6060 and 6063 Al-alloys with good agreement with experimental results. Du et al. [20]
developed a model, based on the KWN framework, to predict precipitation during aging
of Al-Sc and Al-Sc-Zr alloys. The work highlighted the sensitivity of the model to ther-
modynamic description of phases, interfacial energy and diffusivity of alloying elements.
The model was further applied to Al-Mg-Si alloys in [21] with emphasis on the overaging
of the needle-shaped β′′ precipitates. A multiscale model based on Density Functional
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Theory (DFT), Monte-Carlo (MC) and phase-field approaches was developed by Kleiven
and Akola [22], aiming at investigating the formation of Mg-Si rich precipitates in the FCC
matrix of Al-Mg-Si alloys, showing that the precipitates tend to form elongated domains
either by Ostwald ripening or by coalescence, as precursors to the needle-like β′′ precip-
itates. Finally, Baganis et al. [23] presented a phase field simulation of precipitation in
6061 and 6082 alloys predicting under-aging and peak-aging conditions for different aging
temperatures.

Despite the extensive work on the field in recent years, most prior studies have focused
on individual process steps. In the present work, an integrated simulation and characteri-
zation study is provided. Emphasis is placed on modeling key microstructural features
throughout processing, including (a) microsegregation and phase formation during solidifi-
cation, (b) phase transformations and removal of microsegregation during homogenization
heating and holding, (c) precipitation during cooling after extrusion and (d) precipitation
and associated strengthening during artificial aging. Individual processing steps are linked,
utilizing microstructural simulation results as initial conditions to the next one, with in-
depth characterization at critical stages of processing providing validation of numerical
predictions. Combining microstructural modeling and characterization efforts provides
insight into the underlying mechanisms controlling the development of microstructural
features and ensuing properties upon processing of extrudable Al alloys. The novelty of
the present study lies in modeling and experimental investigation of key microstructural
features during processing, that control the final properties of extrudable Al alloys. The
developed approach demonstrates that by utilizing targeted experiments for calibration
and validation of models, it is possible to predict the influence of processing conditions
on microstructural features and ensuing material properties. Calibrated model predic-
tions can then be employed to assess the influence of process modifications, minimizing
trial-and-error experiments required to optimize industrial processes.

2. Materials and Methods

CALPHAD-based simulation of microstructure evolution was employed in the present
paper, including the following aspects of the process chain: evolution of phase fractions
and microsegregation during solidification and solidification cooling, evolution of phase
fractions and compositions during homogenization and homogenization cooling, precipita-
tion of intermetallic phases during extrusion cooling and artificial aging. Thermodynamic
calculations were carried out in Thermo-Calc (Thermo-Calc Software AB, Solna, Sweden)
version 2021b [24], diffusion calculations in DICTRA (v. 2021b) [25] and precipitation simu-
lations in the Thermo-Calc precipitation module TC-PRISMA (v. 2021b), with the TCAL8
thermodynamic and MOBAL7 mobility database for aluminum alloys [26], in accordance
with previously published work by the authors [5,11]. Extended experimental validation of
model predictions was carried out at all process steps, using optical microscopy, SEM-EDX
and TEM analysis as described below.

2.1. Simulation Methodology
2.1.1. Solidification

Solidification of the material in a billet form was studied via the Scheil-Gulliver model
in accordance with the work presented in [5,11]. The classic Scheil model as implemented
in Thermo-Calc and coupled with the TCAL8 thermodynamic database was used in this
study. The Scheil equation [27] predicts the solute redistribution during solidification,
assuming that the solidification rate is high enough such that diffusion in the solid phases
is negligible, diffusion in the liquid is infinite and local equilibrium conditions are estab-
lished on the solid-liquid interface. The classic Scheil model is independent of the cooling
rate, however modifications to account for back diffusion when cooling rates are low, or
solute trapping at high cooling rates have been developed [27,28]. The approach has been
validated experimentally in a variety of cases, including casting [5,11] and additive manu-
facturing [29] providing reasonable accuracy. In the present study, the classic calculation
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was used to predict elemental microsegregation development between primary and sec-
ondary dendrites, non-equilibrium intermetallics and eutectic mixture formation, as well
as quantification of freezing ranges, upon casting with moderate cooling rates. All major
alloying elements and phases were considered, including Mg, Si, Fe and Mn, and phases
such as α-Al (FCC) matrix, β-Mg2Si, β-AlFeSi (Al9Fe2Si2), α-AlFeSi (Al8Fe2Si), π-phase
(Al18Fe2Mg7Si10) and diamond (Si). The selection of phases was based on experimental
evidence from the literature for 6xxx Al alloys [5].

2.1.2. Solidification Cooling

The temperature profile on cooling upon casting in billets was considered by employ-
ing one-dimensional radial heat transfer simulations. Temperature-dependent thermo-
physical data required for the simulation were calculated according to CALPHAD-based
equilibrium thermodynamics in Thermo-Calc, with the chemical composition of a 6060
Al-alloy. A custom finite difference approximation code was implemented to solve the one-
dimensional heat transfer equations in cylindrical geometries, with temperature-dependent
thermophysical properties. During casting, the outer surface of the billet remains in con-
tact with water, therefore the temperature stays approximately equal to 20 ◦C, setting the
boundary condition for the outer billet surface. Leveraging the radial symmetry of the
billet, a zero-flux boundary condition was enforced at the center of the billet. The solu-
tion of the radial heat transfer equations determines the evolution of temperature profiles
along the radius of the billet upon cooling. Calculated temperature profiles in addition to
Scheil segregation profiles were then provided as input for subsequent DICTRA diffusion
simulations to determine the microstructural evolution during solidification cooling, as
elaborated in the following section.

2.1.3. Homogenization

Diffusion simulations in multi-component systems were performed in DICTRA to
predict the evolution of microstructural features such as segregation profiles and inter-
metallic phases during solidification cooling, homogenization heating and holding. The
temperature profiles form heat transfer simulations were used for solidification cooling.
For subsequent homogenization simulations, a typical heating cycle for batch homoge-
nization of 6060 Al-alloys was used, during which the material is gradually heated and
held to a temperature up to 580 ◦C over the course of several hours. The elimination
of elemental segregation in the interdendritic space, the transformation of β-AlFeSi to
the more favorable α-AlFeSi and the dissolution of undesired intermetallic compounds
and mixtures [30] was studied. The segregation profile and intermetallic phase fractions
provided by Scheil-Gulliver solidification simulations were used as initial conditions. Mass
transfer equations were solved in DICTRA in a planar geometry using a 50 µm diffusion
cell with an FCC matrix structure, representative of the primary dendritic arm spacing (half
the diameter of the grain). Intermetallics forming at late stages of solidification were treated
as dispersed phases in the FCC matrix and their contribution to the total local diffusional
mobilities was considered via a “Rule of Mixtures” homogenization function. The modeling
approach has been described in detail in [5], for a diffusion couple considering two grains
with different diameters. In this study, a simpler geometry is considered but with a more
accurate time-temperature profile. Results from the homogenization simulations can then
be the starting point for additional precipitation and strengthening calculations, to model
the aging process, after extrusion.

2.1.4. Extrusion Cooling and Artificial Aging

Precipitation of fine metastable β′′ particles during extrusion cooling and subsequent
aging was simulated via computational alloy thermodynamics and kinetics modeling.
Nucleation, growth and coarsening of precipitates during processing were calculated
according to the Kampmann-Wagner (KWN) model [5,31], coupled with CALPHAD-based
thermodynamic calculations in TC-PRISMA. The approach allows for the determination of
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the particle size distribution (PSD), average radius and needle length, number density and
volume fraction of precipitates during processing.

For precipitation calculations, the complete thermal cycle of the material after extrusion
was considered based on furnace temperature measurements, including extrusion cooling,
and double aging. Linear cooling from the maximum extrusion temperature to ambient
was considered, followed by linear heating and holding at a low aging temperature TL

Ag.

A second linear heating stage, isothermal holding at the high aging temperature TH
Ag and

linear cooling to ambient follows to complete the heat treatment. Both aging temperatures
were within typical aging temperature ranges for 6060Al, with TL

Ag measured between 165

and 180 ◦C and TL
Ag between 195 and 210 ◦C. The short time between extrusion cooling and

aging, during which the material might remain at ambient temperature and be subjected to
natural aging was also investigated, concluding that the effect is negligible for short times
and thus omitted in the final calculation.

During preheating of the billet before extrusion, most of the β-family precipitates
(i.e., β-Mg2Si, β′′, β′, U1, U2 and B′) that might have formed during homogenization
cooling, are dissolved in the matrix. Upon extrusion, the billet is adiabatically heated due
to deformation and the temperature rapidly rises. It is reasonable to assume that by the
time the profile exits the extrusion die, all β-family particles are dissolved and only coarse
α-AlFeSi and dispersoids remain. Since holding at the maximum extrusion temperature
is short, equilibrium conditions are not established at that temperature, however since all
β-family particles are dissolved, the conditions closely approximate the conditions at the
end of homogenization and prior to cooling, which can be used as the initial conditions for
subsequent precipitation calculations.

The precipitation of a single phase of β′′-Mg5Al2Si4 during extrusion cooling and aging
was considered, as it is the major strengthening precipitate after aging, as suggested by the
TEM analysis described later in the paper. The formation of overaging β-type precipitates
such as β′, U1, U2 and B′, on grain boundaries and dispersoids during extrusion cooling
was neglected and the β′′-Mg5Al2Si4 needles were modeled as prolate spheroids with a
constant aspect ratio, in the interest of simplicity. In reality the aspect ratio of β′′ changes
during aging, with the early needles being thick and short. The length then increases at a
higher rate than the cross-section, so the aspect ratio increases during aging to minimize
the surface energy of the precipitate since the top and bottom surfaces are incoherent. Yet,
as observed by TEM, the sides of β′′ needles remained fully coherent with the matrix.
As a result, the interfacial energy is relatively low, and the contribution of the elastic
strain energy is significant due to the development of coherency strains. Both effects
were considered in TC-Prisma, with the elastic strain energy calculated according to the
volumetric difference, and the interfacial energy according to CALPHAD, as a function
of composition and temperature. According to the literature, the interfacial energy of β′′,
varies from 100 to 300 mJ/m2 [32–34] depending on the crystallographic orientation of the
interface. In the present study, the interfacial energy model was adjusted using a prefactor
to result in a value of 110 mJ/m2, considering that β′′ is optimally oriented along the
<100> direction. Additionally, heterogeneous nucleation on vacancy clusters in the bulk of
the material was considered, with a number of nucleation sites per unit volume equal to
8 × 1028 m−3.

In the TC-Prisma precipitation model, needle particles are represented as prolate
ellipsoids with a small and a large radius, whereas in reality β′′ particles have a cylindrical
geometry with a rhomboidal cross-section. The small ellipsoid radius in the computational
geometry corresponds to the large radius of the β′′ rhombus cross-section in the physical
geometry. If the rhomboidal cross-section of β′′ has a side α and an acute angle θ = 75◦

(oblique angle 105◦) from the monoclinic unit cell of β′′, it can be shown that the large
rhombus diagonal is Drh = α

√
2 + 2cos(θ). The cross-sectional area can then be calculated

as A = 1+cos(θ)
2 sin(θ) r2 ∼= 1.5374r2, where r = Drh/2 is the large rhombus radius corresponding

also to the calculated small ellipsoid radius. The expression can then be used to compare
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cross-sectional area measurements with model predictions as discussed in Section 3.2.5.
Similarly, the large ellipsoid radius in the computational geometry corresponds to half
the β′′ needle length in the physical geometry, with a conversion factor such that the
particle volume is maintained. Comparing the predicted and measured needle length
requires the application of a correction factor to convert between the two geometries.
Considering that the particle volume between the two geometries should be maintained
constant we obtain Ve = Vr ⇒ 4

3 πr2
e

Le
2 = 1.5374r2

r Lr , where Le is the ellipsoid length, i.e.,
twice the large ellipsoid diameter and Lr is the physical length of rhomboidal β′′ needles.
Equating the radii then gives the conversion factor between lengths in the two geometries
as Lr ∼= 1.3647Le. The ellipsoid length Le is computed from TC-Prisma precipitation
simulations and then Lr can be compared with the measured length of β′′ needles. Note
that in all calculation results presented in the following sections, the length correction has
been applied.

2.1.5. Strengthening

Evolution of yield strength with aging time was calculated based on β′′ distribution
predictions in TC-PRISMA according to the yield strength property model of Thermo-
Calc. Even though Thermo-Calc’s proprietary model was used in this study, the basic
equations are well-established in the literature and have also been presented in detail in
previous work by the authors of [5,35,36]. More specifically, the total room temperature
yield strength was calculated in terms of the solid solution, grain boundary, dislocation
forest and precipitation strengthening contributions [5,35,36]. Solid solution strengthening
includes the intrinsic resistance of the aluminum matrix to deformation, along with the
additional strengthening from solute atoms. The grain boundary strengthening mechanism
originates from the interaction of dislocations with grain boundaries, increasing as the
grain size becomes smaller. The dislocation forest strengthening contribution arises from
the interaction of dislocations with other dislocations, becoming more prominent when
the dislocation density increases, e.g., during plastic deformation. In the present study, the
grain boundary and dislocation forest strengthening contributions to the macroscopic yield
stress were considered constant throughout extrusion cooling and aging.

Precipitation strengthening is the dominant hardening mechanism after aging of
6060Al, arising from the interaction of dislocations with very fine β′′ precipitates. In
small, coherent particles, coherency hardening is the primary precipitation strengthening
mechanism, as dislocations encounter resistance as they glide through the particle [35].
Coherency strengthening σcoh

p becomes more prominent when the mean radius r and the
volume fraction f of the shearable particles increases, with σcoh

p ∼
√

f
√

r. In large or
not fully coherent particles, the main precipitation strengthening mechanism is Orowan
strengthening, during which dislocations loop around unshearable precipitates and their
movement is inhibited. Orowan strengthening σOrow

p is more prominent when for a given
volume fraction, the interparticle distance becomes smaller, i.e., when the precipitate size
decreases, with σOrow

p ∼
√

f /r. At first stages of growth, very small precipitates exhibit
coherency hardening as coherency is maintained with the matrix. As the radius increases
beyond a threshold, or as full coherency is lost due to a phase transition, the mechanism
gradually changes to Orowan strengthening. The maximum strength is achieved at the
transition from one mechanism to another, usually occurring at the onset of overaging [36].
Detailed equations for calculating individual strengthening contributions can be found
in [5,19,24,35,36].

2.2. Experimental Methodology
2.2.1. Material

Material with a composition laying within the specification range of AA6060 alloys
was received in the as-cast and homogenized states in the form of 200 mm diameter billets,
as well as in the as-extruded and aged states, in the form of a flat, rectangular extrusion
profile with a uniform thickness of 1.6 mm.
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2.2.2. Characterization

Several specimens for each condition of the material were obtained for characterization
and testing. Discs from the middle of as-cast and homogenized billets were cut for easier
handling and then 1 cm cube specimens were sampled at ½ of the radius. Rectangular
specimens with sides of 1.6 mm × 10 mm × 10 mm were cut from the extruded and
aged flat profiles and observed along the extrusion direction. In total, three as-cast, three
homogenized, two extruded and two aged specimens were examined, presenting minimal
differences between samples of the same condition.

Characterization of the received material included metallography by Light Optical
Microscopy (OM) (Leitz Aristomet, Leica Microsystems, Wetzlar, Germany), Scanning
Electron Microscopy (SEM), Energy Dispersive X-Ray point analysis (EDX) with associated
image analysis and Transmission Electron Microscopy (TEM) analysis.

For metallographic preparation, specimens were subjected to standard grinding and
polishing with progressively finer grinding and polishing compounds to achieve a mirror
finish. Etching was performed with a Poulton’s reagent consisting of 1 mL HF, 12 mL HCl,
6 mL HNO3 and 1 mL H2O, modified by the addition of 25 mL HNO3 and 12 gr Cr2O3 (in
40 mL H2O) to improve contrast of intermetallics and grain boundaries.

SEM was performed on a Zeiss Ultra 55 LE (ZEISS Microscopy, Jena, Germany)
equipped with a Bruker EDX detector. SEM images were acquired in back-scattered
electron (BSE) mode. SEM-EDX analysis was performed at 20 kV.

TEM samples of the aged material were prepared using standard twin jet electropol-
ishing and then subjected to TEM analysis on a JEOL JEM-2100 machine (JEOL, Akishima,
Tokyo, Japan), operated at 200 kV. Precipitate statistics were measured based on the method-
ology described by [37].

2.2.3. Tensile Testing

Uniaxial tensile testing of extruded and aged samples was conducted at ambient
temperature. The ASTM E8M specification was used to prepare flat tensile specimens,
tested in a direction parallel to the extrusion direction. Three specimens for each condition
were machined, with an overall length of 180 mm, gage length of 60 mm, width of 12.5 mm
and grip width of 20 mm. The thickness was determined by the thickness of the flat
extrusion profiles and kept constant at 1.6 mm for all specimens. An INSTRON 8801 servo-
hydraulic machine (INSTRON, Norwood, MA, USA) was used to perform tensile testing
with a constant crosshead velocity of 0.5 mm/min, whereas the strain was measured with
a strain gage extensometer. Note that mechanical properties were measured in a direction
parallel to the extrusion direction. It is expected that mechanical properties are different in
other directions due to the development of texture upon extrusion. The effect of anisotropic
microstructural developments resulting in texture were not considered in the present study
and could be the subject of a follow-on work.

3. Results and Discussion
3.1. Simulation Results
3.1.1. Solidification

Solidification behavior during casting was predicted with the Scheil-Gulliver model
as presented in Section 2.1.1. The evolution of solid fraction with temperature, and the
solidification path solidification is shown in Figure 1 with the solidification sequence
predicted to be:

α-Al (FCC) → α-AlFeSi → β-AlFeSi → β-Mg2Si → π-phase → diamond (Si)
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Figure 1. Solidification path predicted with the Scheil-Gulliver model. The dotted line refers to
equilibrium solidification.

Solidification begins at the equilibrium liquidus temperature of Tlq = 655 °C, when
α-Al (FCC) dendrites nucleate and grow from the liquid. At approximately 62 ◦C, the
α-AlFeSi (Al8Fe2Si) starts solidifying along α-Al. Growth of the α-AlFeSi is hindered at
approximately 598 ◦C, when β-AlFeSi (Al9Fe2Si2) nucleates and grows with α-Al, un-
til the end of solidification. At the later stages of solidification, β-Mg2Si and π-phase
(Al18Fe2Mg7Si10) begin to grow at 568 ◦C and 560 ◦C, respectively, along with the β-AlFeSi
and the α-Al. At 557 ◦C, diamond (Si) appears and solidification ends with the formation
of a eutectic mixture involving diamond (Si), β-Mg2Si, π-phase, β-AlFeSi and α-Al, at
Tsd = 557 °C which is the non-equilibrium solidus temperature. It is noted that the π-phase
can be found in eutectic mixtures with diamond (Si) as well as in isolated particles adjacent
to β-AlFeSi, in line with the SEM-EDX experimental observations presented in later sections
of the work.

3.1.2. Solidification Cooling and Homogenization

The evolution of phase fractions upon cooling after solidification during casting as
well as heating and holding during homogenization are presented in Figure 2. Local in-
termetallics phase fraction profiles in the diffusion cell are shown in Figure 3, whereas
composition profiles in the α-Al (FCC) matrix are shown in Figure 4 at selected times
during processing. Upon solidification cooling, α-AlFeSi (Al8Fe2Si) fractions decrease
rapidly, dissolving almost completely, whereas β-AlFeSi (Al9Fe2Si2), β-Mg2Si, π-phase
(Al18Fe2Mg7Si10) and diamond (Si) fractions gradually increase. During homogeniza-
tion, α-AlFeSi nucleates and grows in contact with β-AlFeSi as the β-AlFeSi to α-AlFeSi
transformation takes place.
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Figure 2. Diffusion calculation results showing phase fractions evolution during (a) solidification
cooling and (b) homogenization.

During homogenization heating, the small fraction of α-AlFeSi remaining after so-
lidification cooling, dissolves rapidly while β-AlFeSi, β-Mg2Si, π-phase and diamond
(Si) gradually decrease in fraction. With an increasing temperature, the eutectic mixture
comprised of β-AlFeSi, β-Mg2Si, π-phase and diamond (Si) is eliminated, as indicated by
the dissolution of diamond (Si). A further increase in temperature results in the gradual dis-
solution and elimination of the π-phase, followed by the spheroidization and dissolution of
β-Mg2Si particles. As β-Mg2Si, π-phase and diamond (Si) dissolve, Mg and Si are released,
and the average composition of the matrix increases. With the increase in temperature,
diffusion takes place in the matrix, resulting in the gradual reduction of the elemental
segregation developed during casting, as the material homogenizes. Composition profiles
at selected times during processing are shown in Figure 4.

After β-Mg2Si, π-phase and diamond (Si) have been dissolved, β-AlFeSi is the only
intermetallic compound present, as shown in Figures 2b and 3d. Further heating results in
only minor morphological changes, with phase fractions remaining almost constant, until
the temperature reaches the solvus of α-AlFeSi Tα−AlFeSi

Solv = 567 °C. As the temperature rises
above the solvus, α-AlFeSi nucleates adjacent and grows against β-AlFeSi, as the β-AlFeSi
to α-AlFeSi transformation initiates, shown in Figures 2b and 3e,f. The transformation
presents an exact spatial correlation as α-AlFeSi particles grow on-top of preexisting β-
AlFeSi particles. Since the heating rate is relatively low and diffusion is accelerated due
to the elevated temperature (above 500 ◦C), the β-AlFeSi to α-AlFeSi transformation is
limited by temperature increase and not time. The diffusional processes contributing to
the transformation are significantly faster compared to the heating rate, resulting in the
establishment of near equilibrium conditions for a given temperature. The model prediction
is in agreement with SEM-EDX measurements discussed below, indicating completion
of the β-AlFeSi to α-AlFeSi transformation and elimination of segregation by the end of
homogenization at 580 ◦C.

Upon homogenization cooling, β-Mg2Si or β′ can precipitate in bulk or preferentially
on dispersoids, α-AlFeSi or grain boundaries. Such precipitates are typically fine and can
redissolve rapidly upon extrusion cooling, resulting in a microstructure very similar to the
homogenized condition prior to cooling. Large precipitates that could remain undissolved
were not observed in the homogenized material via SEM-EDX, with the exception of very
few coarse β-Mg2Si particles persisting from solidification. Therefore, homogenization
cooling was safely omitted in the calculations and the composition of the homogenized
material was used for precipitation calculations.
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Figure 3. Predicted local fraction profiles of intermetallic phases in the diffusion cell at selected times
during (a) solidification, (b)solidification cooling, (c,d) homogenization heating and (e,f) holding. A
diffusion distance from the center of a primary dendrite arm to the grain boundary was considered.
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Figure 4. Composition profiles of the α-Al matrix in the diffusion cell, at selected times during
(a) solidification, (b) solidification cooling and (c,d) homogenization heating. A diffusion distance
from the center of a primary dendrite arm to the grain boundary was considered.

3.1.3. Simulation of Precipitation during Extrusion Cooling

Precipitation simulations of metastable β′′ needle-shaped particles upon extrusion
cooling and aging were caried out with TC-Prisma in addition to room temperature yield
strength calculated. Simulation results are presented in Figures 5–9 along with the available
measurements for validation. Upon extrusion, the material can exceed the maximum ho-
mogenization temperature, reaching temperatures of up to 600 ◦C, due to adiabatic heating.
Yet β-Mg2Si-type phases become thermodynamically stable at much lower temperatures.
To reduce computational overhead, precipitation simulations for extrusion cooling started
at 500 ◦C.

The number of particles per unit volume, i.e., the number density, the rate of β′′

nucleation and the normalized driving force for precipitation of β′′ needles during extru-
sion cooling are presented in Figure 5a, where a constant cooling rate was used for the
calculations. Note that driving force is normalized by the factor RT [J/mol], with R being
the ideal gas constant and T the temperature in K. At elevated temperatures after extrusion,
β′′-Mg5Al2Si4 is thermodynamically unstable and the driving force for precipitation is
zero. With the temperature decrease, β′′-Mg5Al2Si4 becomes stable and the driving force
increases as the supersaturation of Mg and Si in the matrix becomes larger. However,
nucleation is hindered as the interfacial and strain energy dominate over the chemical
driving force for precipitation. As the temperature decreases further, the chemical driving
force dominates, promoting the nucleation of β′′. The nucleation rate increases rapidly and
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many β′′ particles form raising the number density. The nucleation rate peaks and then
gradually decreases, reaching a very small constant value, designating the end of the first
nucleation event. Accordingly, the number density rapidly increases, reaching a plateau
as new particles stop precipitating at low temperatures. This is due to the stagnation of
diffusional processes as the temperature decreases, hindering nucleation of β′′ particles.
Additionally, as diffusion is limited at low temperatures below ~100 ◦C, the particles
do not grow significantly, resulting in a small volume fraction and number density after
extrusion cooling, as shown in Figure 6. The evolution of the critical and mean particle
radius, along with the average needle length is shown in Figure 7. Note that the computed
ellipsoidal length has been converted to the equivalent rhomboidal needle length so that
calculation results are directly comparable with experimental measurements, as described
in Section 2.1.4.
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Ag.

The right scale refers to distributions at the end of the first aging step (t2, TL
Ag), the beginning (t3, TL

Ag)

and the end (t4, TH
Ag) of the second aging treatment.

3.1.4. Simulation of Precipitation during Aging

Double aging with isothermal holding at a low aging temperature TL
Ag (165–180 ◦C)

and a high aging temperature TH
Ag (195–210 ◦C) follows extrusion cooling, to harden the

material by precipitating a fine dispersion of β′′ needle-shaped particles, with simulation
results shown in Figures 5–8. Natural aging in the time between extrusion cooling and
artificial aging was deemed negligible as described in Section 2.1.4, and calculations were
therefore omitted. As the temperature slowly rises to reach TL

Ag, the precipitation driving
force is relatively high, yet due to sluggish diffusion below ~100 ◦C, nucleation and growth
of precipitates is inhibited, with β′′ fractions remaining small and the mean radius constant.
As TL

Ag is approached, the nucleation rate of the β′′ particles rises, reaching a maximum
value as the temperature becomes high enough to overcome the activation energy for
nucleation, and a second nucleation event takes place, yet phase fractions and number
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densities still remain low. The radius and length distribution of β′′ at the end of the first
heating stage is shown in Figure 8, as converted from the computational ellipsoidal to
the physical rhomboidal geometry. The distribution means are shifted towards higher
values, due to particle growth, resulting in a marginally higher mean radius and length, as
compared to the end of extrusion cooling (20 °C).
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Figure 9. Evolution of total yield strength and individual strengthening contributions with aging
time. Yield strength measurements, before and after aging, validate model predictions.

At the beginning of isothermal holding at TL
Ag, the nucleation rate of β′′ reaches a

peak resulting in rapid nucleate of new precipitates, gradually decreasing as nucleation
sites become occupied and the precipitation driving force is reduced due to the decreasing
supersaturation of Mg and Si in the matrix. As a result, the number density rises, reaching
a maximum at the end of the first isothermal holding, whereas the volume fraction of β′′

needles increases steadily as a result of the combined effects of nucleation and growth.
Yet particles remain small at the end of the first aging step, with the critical radius, the
mean radius and needle length continuously increasing but taking very small values in the
order of 1 nm. Examination of the particle size distributions indicates that a multi-modal
distribution has formed at the end of the first isothermal holding (t2, TL

Ag), with a peak
located at approximately r = 0.4 nm, a second broader one at r = 1 nm, and a very small peak
at r = 1.8 nm. The first peak corresponds to new precipitates nucleating with the critical
radius rc, whereas the second peak is formed due to the growth of nucleated precipitates
during isothermal holding. The third small peak is due to growth of β′′ that nucleated
during extrusion cooling and it is more pronounced in further stages of processing, as
radius and length increase further.

Heating to TH
Ag with a constant heating rate and isothermal holding follows. During

this stage, very few new precipitates nucleate, with the nucleation rate being negligible.
The reduced supersaturation of Si and Mg in the Al matrix as β′′ grows, in addition to the
increased temperature, results in a reduction of the nucleation driving force. Growth and
coarsening of β′′ needles are promoted instead of nucleation, resulting in a small increase
in volume fraction and a substantial decrease in number density. Small particles dissolve
whereas larger ones grow preferentially, driven by the minimization of surface energy. As a
result, the needle length and radius distributions shift to higher values and the average
radius and length increase.
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Rapid cooling to ambient temperature follows after the second isothermal holding,
with a marginal increase in volume fraction as nucleation is inhibited due to the high cooling
rate. At the end of processing, 0.837% of β′′ is predicted, very close to the experimentally
determined phase fraction of 0.91% with TEM measurements. A detailed comparison of
the experimental and numerical results after extrusion cooling and aging is presented in
Sections 3.2.5 and 3.2.6. The multi-modal size distribution of β′′ formed during aging
is maintained upon cooling to room temperature, where a broad skewed distribution is
observed, with a mean value of 2.65 nm and 32 nm, respectively. Note that the secondary
peaks in the radius and length distributions, located approximately at 3.8 nm and 48 nm
in Figure 8, originate from the growth of precipitates that formed upon extrusion cooling.
Overaging precipitates such as β′, U1, U2 or B′ are expected in this peak, however, in the
present study, only precipitation of β′′ was considered for extrusion cooling.

3.1.5. Yield Strength Evolution during Aging

The evolution of the room temperature yield strength upon processing, including
cooling after extrusion and subsequent aging is presented in Figure 9. The total yield
strength, along with the individual contributions due to precipitation hardening, dislocation
forest hardening, grain boundary and solid solution are presented and compared against
experimental yield strength measurements. Note that since the dislocation density and
grain diameter change during extrusion cooling and aging is minimal, the respective
strengthening contributions were considered constant with values of 35 MPa and 15.5 MPa,
respectively. The solid solution contribution evolves during processing, presenting a
maximum as the profile exits the extrusion die, when the matrix concentration of Si and
Mg peaks. Upon extrusion cooling, a small number of β′′ particles form, resulting in the
marginal increase in the precipitation strengthening contribution, resulting in a total yield
strength of 72.8 MPa at the end of cooling, aligning with the measured yield strength of
70.5 MPa for the as-extruded material. At first stages of aging the yield strength remains
constant, until precipitation of very fine β′′ needles commences. As β′′ forms, the solid
solution contribution is reduced, due to the depletion of Si and Mg in the matrix and
the precipitation contribution increases gradually during the first isothermal holding at
TL

Ag, accelerating during heating and holding at the following at TH
Ag, as β′′ fractions

rise. According to many authors [5,31,35], the critical radius, marking the transition in
the precipitation strengthening mechanism from coherency to Orowan hardening, falls
within the range of 1.8 to 5 nm, varying with alloy composition and specific strengthening
precipitate. In this work, a value of 2.8 nm has been employed. The needles’ mean radius
at the end of processing is determined to be 2.65 nm, implying that the predominant
precipitation strengthening mechanism is coherency hardening, with a significant portion
of particles remaining shearable by dislocations. Yet, both strengthening mechanisms are
deemed to be active, indicating that peak hardness has been achieved. The total yield
strength of the material follows the behavior of the precipitation hardening contribution,
being the major strengthening mechanism upon aging. By the end of aging, a yield strength
of 211 MPa is predicted, in good agreement with the measured value of 208 MPa of the
aged material. It is noted that UTS was measured at 165 MPa and 230 MPa, with a uniform
elongation of 19.7% and 10.1% for the extruded and aged samples, respectively.

3.2. Characterization and Experimental Validation
3.2.1. Characterization of the As-Cast Material

Metallographic images of the as-cast material at 1/2 of the billet radius, using optical
microscopy are presented in Figure 10. Intermetallic compounds can be found in the inter-
dendritic space and on grain boundaries, with a blocky, acicular or rod-shaped morphology,
characteristic of β-AlFeSi (Al9Fe2Si2) particles which are known to limit extrudability [5,30].
Irregularly shaped particles, rounded particles and eutectics were also found to a lesser
extent. Intermetallics between secondary dendrites and on grain boundaries indicate
the presence of elemental segregation, originating from rapid cooling upon casting. The
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average grain diameter of the as-cast material was measured at 100 µm, remaining constant
even after homogenization.
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SEM images showing typical microstructural features and intermetallic particles ob-
served in the as-cast condition are presented in Figure 11. Composition analysis of particles
with EDX concluded that the majority of particles were coarse β-AlFeSi and β-Mg2Si. Yet
fewer α-AlFeSi (Al8Fe2Si), quaternary π-Phase (Al18Fe2Mg7Si10) and eutectic particles
were also observed. β-Mg2Si that formed upon solidification is found in large irregularly
shaped or blocky particles that appear dark in the back-scattered SEM micrographs (see
Figure 11b). Fine dispersions of β-Mg2Si might also be present after solidification cooling,
though could not be resolved using SEM-EDX. Intermetallics other than β-Mg2Si appear
bright in the SEM images, the majority of which were identified as β-AlFeSi, found near
grain boundaries with an elongated, acicular morphology. Smaller, rounded particles
were also found, having a β-AlFeSi or an α-AlFeSi-phase structure (see Figure 11d). The
quaternary π-Phase was found as distinct particles adjacent to (wetting) β-AlFeSi or in the
form of eutectic mixtures, presenting a characteristic lamellar morphology (see Figure 11e).
Eutectics formed at later stages of solidification with the remaining liquid solidified isother-
mally as predicted in Scheil simulations. The phases included in the eutectic mixture
include the quaternary π-Phase, β-Mg2Si, β-AlFeSi and diamond (Si) along with α-Al
(FCC) aluminum matrix. It should be noted that in many cases EDX can give inconsistent
chemical compositions of phases, especially for small particles. XRD can be a more reliable
method for identifying and measuring the fraction of phases present in sufficient quantities
after casting or homogenization, however the method was not available to the authors at
the time of the study.

3.2.2. Characterization of the As-Homogenized Material

Metallographic images of the as-homogenized material at 1/2 of the billet radius,
using optical microscopy are presented in Figure 12. The average grain diameter was
measured at 100 µm, similar to the as-cast grain diameter. Metallographic observations
reveal that dendritic structures, observed in the as-cast material, have been eliminated
during homogenization, indicating that elemental segregation was removed to a great ex-
tent. This was also confirmed by EDX analysis discussed below. No eutectic particles were
observed, and the Fe-bearing intermetallics found presented morphological changes typical
in homogenized materials including rounding of particle edges, pinching of elongated
particles and segmentation into smaller particles to a lesser extent [30].
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magnification.

SEM micrographs of representative microstructural features in the homogenized ma-
terial can be found in Figure 13. In contrast to the as-cast condition, the homogenized
material presents a reduced fraction of intermetallic particles. Using EDX local composition
measurements, it is concluded that the predominant intermetallic phase remaining after
homogenization is α-AlFeSi (Al8Fe2Si), with a minimal fraction of blocky β-Mg2Si also
remaining undissolved. No β-AlFeSi (Al9Fe2Si2), π-Phase (Al18Fe2Mg7Si10) or eutectic
particles were observed, indicating that the β-AlFeSi to α-AlFeSi has been completed and
the as-cast morphology, accompanied by elemental segregation, has been eliminated. Most
of the α-AlFeSi particles appear as high aspect ratio, acicular particles with rounded edges,
pinched along their length. In comparison to β-AlFeSi particles in the as-cast material,
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α-AlFeSi particles in the homogenized material appear smaller, with a lower aspect ratio.
However, α-AlFeSi, has not been fully spheroidized yet. Additionally, dispersoids were
found within grains and along grain boundaries, presented in Figure 13d. The size and frac-
tion of the dispersoids was too small to quantify via SEM-EDX measurements. Presumably
consisting of the Mn and Si rich α-Mn (Al15Si2M4) phase which is similar in structure to
α-AlFeSi, dispersoids often form upon homogenization of Mn containing 6xxx aluminum
alloys. Thermodynamic calculations at the homogenization temperature, including the
α-Mn phase supported this hypothesis.
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Figure 13. SEM micrographs showing typical microstructural features and intermetallic particles
observed in the homogenized material. Only α-AlFeSi intermetallics were observed in (a–c), denoting
the completion of β- to α-AlFeSi transformation. A small fraction of dispersoids was also observed
as shown in (d).

3.2.3. Experimental Validation of Solidification and Homogenization Simulations

EDX measurements were used to identify the phase of intermetallics observed in the
material, and image analysis of SEM micrographs was employed to measure their fraction.
In the as-cast condition, α-AlFeSi (Al8Fe2Si), β-AlFeSi (Al9Fe2Si2), π-phase (Al18Fe2Mg7Si10),
eutectics and β-Mg2Si particles were identified. As discussed in Section 3.2.1, blocky β-Mg2Si
particles appeared dark in the BSE-SEM images, whereas α-AlFeSi, β-AlFeSi, π-phase
and eutectics appeared bright, which enabled measurements of their area fraction via
image analysis. Due to their low fraction, it was challenging to quantify the fraction of
π-phase, α-AlFeSi and eutectic particles, separately from β-AlFeSi. Therefore, the collective
volume fraction of Fe-bearing intermetallics was measured via image analysis of SEM
micrographs. Blocky β-Mg2Si, formed during solidification were measured separately,
since they could easily be resolved in the SEM micrographs. Additional β-Mg2Si can be
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found within eutectic particles, though since the resulting eutectic structure was very fine,
it was not possible to quantify using SEM-EDX. XRD could have provided supplementary
measurements for validation of phase fraction predictions, however it was not available at
the time of the study. EDS phase fraction measurements after solidification are compared
against model predictions in Table 1. Volume fractions of 0.662% β-AlFeSi, 0% α-AlFeSi,
0.234% π-phase and 0.38% eutectic mixtures are predicted at room temperature, after
solidification and cooling. Considering that β-AlFeSi and π-phase are also found within
eutectic particles, and subtracting this contribution so that is not accounted twice in the
sum, gives a total of 1.199% of Fe-bearing intermetallics, in agreement with the measured
fraction of 1.2 ± 0.1%. According to model predictions, the fraction of β-Mg2Si trapped
within the eutectic mixture is 0.128% and 0.291% could be precipitated in the matrix during
cooling, though this was not possible to verify using SEM-EDX. Removing the fraction
contributing to eutectics from the total predicted β-Mg2Si of 0.506% after solidification gives
the pre-eutectic fraction of blocky β-Mg2Si at 0.087%. The measured fraction was somewhat
lower at 0.017 ± 0.003%, though this small difference can be due to a limited sample size.
Solidification model predictions present excellent agreement with measurements in the
as-cast condition, accurately predicting the fractions of eutectic, π-Phase, β-AlFeSi and
β-Mg2Si particles. Note that to decouple the fraction of blocky β-Mg2Si from the total β-
Mg2Si fraction, the local phase fraction profiles of Figure 3 were used. Overlapping phases
in the diffusion cell of Figure 3 correspond to intermetallic mixtures such as quaternary
eutectics. Integrating over the overlapping regions allows for the calculation of intermetallic
mixture fractions and the isolation of blocky β-Mg2Si fractions, so that predictions are
directly comparable with experimental measurements. The approach has been applied
successfully to different 6xxx Al alloys as presented in [5]. In the case that individual phase
fraction measurements are available, e.g., from XRD analysis, numerical predictions could
be directly compared against experimental values without any conversion, providing a
more concrete validation.

Table 1. Model predictions as compared against measured phase fractions in the as-cast material.

Measured Volume Fraction Predicted Volume Fraction

β-AlFeSi + α-AlFeSi +
π-Phase + Eutectics 1.2 ± 0.1% 1.199%

Blocky β-Mg2Si 0.017 ± 0.003% 0.087%

In the homogenized material, α-AlFeSi (Al8Fe2Si) and blocky, pre-eutectic β-Mg2Si
particles were observed with SEM-EDX suggesting that the β- to α-AlFeSi transformation
has been completed and the cast microstructure has been eliminated with the complete
dissolution of π-phase and eutectics. A comparison between measured and predicted
phase fractions after homogenization is shown in Table 2. The volume fraction of α-AlFeSi
was determined to be 0.6%, while that of β-Mg2Si particles measured at 0.026%, slightly
elevated compared to the as-cast material, attributed to experimental uncertainties. Fine
precipitates of β-Mg2Si or metastable β′ or β′′ could also be present after homogenization
cooling, though were not possible to resolve using SEM-EDX due to their small size.
According to homogenization simulations, the fraction of α-AlFeSi is 0.554% and that of
β-AlFeSi is 0%, agreeing with experimental observations indicating that the β- to α-AlFeSi
transformation is complete. Dissolution of eutectic mixtures, β-Mg2Si and π-phase particles
is also accurately predicted, with a small discrepancy regarding the fraction of β-Mg2Si
attributed to variations in the particle size, requiring longer heat treatment times to dissolve
very large particles. The predicted phase fractions are in alignment with the experimental
measurements, validating the modeling approach. Note that dispersoids were also found
after homogenization cooling, however since it was not possible to quantify using SEM due
to their small size and fraction, were omitted in the calculations in the interest of simplicity.
In the present study, measurements were performed only at the end of solidification cooling
and homogenization. Yet the accuracy of similar diffusion simulation setups in 6xxx Al
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alloys has been validated experimentally with XRD, EDS and SEM measurements by the
authors [5,11]. XRD was not available in the present study, yet SEM-EDS measurements
aligned very well with model predictions for both the as-cast and homogenized materials.

Table 2. Model predictions as compared against measured phase fractions in the homogenized
material.

Measured Volume Fraction Predicted Volume Fraction

α-AlFeSi 0.6% 0.554%
β-AlFeSi 0% 0%

Blocky β-Mg2Si 0.026% 0%
π-Phase 0% 0%
Eutectics 0% 0%

3.2.4. Characterization of the as-Extruded Material

SEM-EDX analysis was employed to characterize the microstructure of the material
in the as-extruded condition, aiming at identifying the phases and morphology after ex-
trusion and subsequent cooling. The growth of β-Mg2Si-type precipitates on Fe-bearing
intermetallics such as α-AlFeSi (Al8Fe2Si) and α-Mn (Al15Si2M4) dispersoids was investi-
gated since it can promote the development of Precipitate-Free Zones (PFZ) during aging.
Although it is expected that due to severe deformation the grain size after extrusion is
smaller compared to that of the as-cast and homogenized conditions, grain size measured
were not performed, with emphasis placed on studying the intermetallics present after
extrusion cooling.

A typical microstructure of the as-extruded material is presented in Figure 14, using
Back Scattered Electron (BSE) SEM, with bright particles corresponding to Fe-bearing in-
termetallics that remained from homogenization. In accordance with observations for the
as-homogenized material, after extrusion cooling only α-AlFeSi and α-Mn (Al15Si2M4) dis-
persoids were present. α-AlFeSi particles appear smaller and more rounded, with an aspect
ratio close to one and smooth edges compared to the as-homogenized material, presumably
due to reheating and severe deformation during extrusion, promoting segmentation and
spheroidization of large, elongated particles.
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β-Mg2Si intermetallics were not observed with SEM in the as-extruded material,
indicating that the small fractions of blocky β-Mg2Si remaining after homogenization,
were completely dissolved upon extrusion. Newly formed, coarse β-Mg2Si particles on
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dispersoids, α-AlFeSi or grain boundaries were not observed either. EDX measurements
of local composition confirmed that in the matrix, the average Mg concentration was near
the alloy’s nominal concentration. In contrast, the matrix concentration of Si was lower
than the nominal due to the presence α-AlFeSi and α-Mn (Al15Si2M4) dispersoids, as
expected. Although coarse Mg-Si precipitates were not observed, it expected that very
fine precipitates of phases such as β-Mg2Si, β′′, β′, B′, U1 or U2, nucleated on α-AlFeSi,
dispersoids and grain boundaries after extrusion though with a very low volume fraction,
as suggested by precipitation model predictions. Those nuclei grow during aging and
contribute to the formation of PFZ, and were studied in the aged material using TEM,
discussed in the following section.

3.2.5. Characterization of the Aged Material

Transmission Electron Microscopy was employed to study the material following extru-
sion and aging. The aim was to analyze the structure and morphology of the strengthening
precipitates, investigate the occurrence of overaging particles growing on grain boundaries,
α-AlFeSi particles or dispersoids, contributing to the development of Precipitate-Free Zones
(PFZs). Upon aging, it is expected that the grain structure remains unchanged, however
grain size measured were not performed in the aged condition, with emphasis placed on
studying strengthening precipitates and PFZs.

Typical TEM micrographs are shown in the bright and dark field images of Figure 15a,b,
with a cross-section of precipitates in high magnification presented in Figure 15c,d. As
evidently shown in the figure, the needle-shaped precipitates grow preferentially along the
three <100>Al directions, and as such the aged material was examined along a <100>Al
direction. This aligns with crystallographic orientation of β′′ [33,38–40], suggesting that
β′′ is the strengthening precipitate observed. Further observations of the morphology and
orientation of cross-sections confirmed that the observed particles corresponded to the
metastable β′′-Mg5Al2Si4. More specifically a monoclinic unit cell with sides a = 15.16 ,
b = 4.05 , c = 6.74 , angle β̂ = 105.3◦, and a unit cell volume of Vcell = 399.2 3, characteristic
of β′′-Mg5Al2Si4 was observed as shown in Figure 15c,d. It can be considered as a super-
cell in the Al matrix with a||<320>Al, b||<001>Al and c||<310>Al. Consequently,
β′′-Mg5Al2Si4 needle-shaped particles maintain fully coherency with the aluminum matrix
on all sides and the lowest interfacial energy is observed on the {130}Al and {320}Al
planes, along the <001>Al needle directions [33,38]. The crystallographic relations of the
needles with the aluminum matrix are presented in Figure 15c, where the angle between
the small particle side, parallel to the [310] direction and the [100] direction of the Al
matrix, was measured at 18◦. Additionally, the angle between the

[
310

]
Al and the

[
230

]
Al

directions which are parallel to the sides of the particle, was measured at 105◦, reflecting
the monoclinic angle β̂ = 105.3◦ of the unit cell and confirming that indeed the needles are
comprised of the β′′-Mg5Al2Si4 phase.

The size distribution of β′′-Mg5Al2Si4 particles, i.e., the cross-sectional area and length
distributions of needles was determined experimentally utilizing image analysis of bright
field TEM micrographs similar to that of Figure 15a. Dark field TEM micrographs were
employed to determine the average count of precipitates per unit volume, i.e., the av-
erage number density since they provided better contrast for the needle cross-sections.
Additionally, the two-beam CBED technique used for measuring specimen thickness with
high precision required for calculating the number density. To determine the volume
fraction β′′, the average precipitate volume was multiplied with the number density. The
measured length and cross-sectional area distributions are shown in Figure 16, as com-
pared to predicted distributions from precipitation simulations converted to the equivalent
rhomboidal values as explained in Section 2.1.4. Measured needles range in cross-sectional
area from 4 to 30 nm2, with an average value of A = 12.3 nm2. The distribution is skewed
towards smaller particles as very few needles with a cross-section larger than 20 nm2 were
detected. Accordingly, the measured needle length distribution is also skewed towards
shorter particles, ranging from 10 to 240 nm, with an average length of L = 40 nm.
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Figure 15. Typical TEM micrographs of the aged material along <001>Al. Strengthening precipitates
are identified as β′′. Bright and dark field images are shown in (a,b) whereas cross-sections β′′ in
high magnification are shown in (c,d).

Considering that β′′ needles have a rhomboidal cross-section, comparing precipita-
tion model predictions with quantitative TEM measurements requires the conversion of
area measurements by defining an equivalent radius. As elaborated in Section 2.1.4, the
maximum rhomboidal radius rrm can be calculated from the cross-sectional area measured
and then directly compared against precipitation model predictions as rrm =

√
1+cos(θ)
2 sin(θ) A.

With a value of of θ = 75◦, originating from the monoclinic unit cell angle, and a mean area
value of A = 12.3 nm2, from measurements, the average maximum rhomboidal radius is
calculated as rrm = 2.83 nm. The average aspect ratio of β′′ needles was estimated based
on the average length and equivalent radius as AR = L/(2rrm) = 7.06, with L = 40 nm
as measured with TEM. Note that in order to compare length measurements with model
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predictions a volume correction factor needs to be applied as explained in Section 2.1.4.
The number density of β′′ precipitates, i.e., the number of particles per unit volume, was
measured at N = 1.85·1022 m−3 and the volume fraction at fβ′′ = 0.91%. A summary of
measurements is presented in Table 3.
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after aging.

Table 3. Summary of β′′ particle measurements in the aged material.

Measurement A (nm2) L (nm) rrm (nm) AR N (m−3) fβ” (%)

Value 12.3 40 2.83 7.06 1.85·1022 0.91

The properties of β′′ particles as measured via quantitative TEM analysis indicates
that the full potential for precipitation of metastable strengthening precipitates has been
achieved, as a result of aging processing conditions. The volume fraction is near the
equilibrium value of β′′ and the Si and Mg supersaturation in the aluminum matrix has
been eliminated. A fine dispersion of particles has been achieved with a high number
density due to the elevated driving for nucleation, promoting nucleation during the first
aging treatment. Growth to reach near equilibrium fractions took place during the second
aging treatment, without resulting in coarsening and overaging. The β′′ particles maintain
full coherency with the matrix and no overaging precipitates such as β′, U1, U2, B′ or
β-Mg2Si were found in the bulk. Despite the increased needle length, the radius is very
small and particles remain shearable by dislocations, contributing to strengthening via
coherency hardening. As discussed in Section 3.1.5, transition to the Orowan strengthening
mechanisms for β′′ takes place at the critical radius of 2.8 nm, which is very close to the
measured radius of rrm = 2.83 nm. This indicates that the aged material is very close to peak
hardness, usually achieved at the onset of overaging where transition from coherency to
Orowan strengthening takes place and the two mechanisms contribute equally to strength.
Overaging precipitates (β′, U1, U2, B′, β-Mg2Si) were not found in the bulk of the material,
yet they were detected around dispersoids and along grain boundaries. The particles found
are associated with development of Precipitate-Free Zones (PFZs) due to slow extrusion
cooling as discussed in the following paragraphs and are not an indication of overaging.

Precipitate-Free Zones (PFZs), where strengthening β′′ phase precipitates are missing,
were observed around dispersoids and along grain boundaries as shown in the TEM
micrographs of Figure 17. Many dispersoids and grain boundaries were also decorated by
coarse overaging precipitates, that presumably nucleated upon cooling after extrusion and
grew over the course of the aging treatment. The width of PFZs was quantified through
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bright field TEM micrograph measurements, finding that PFZs around dispersoids varies
between 170 and 59 nm, with an average width of 118 nm. Similarly, the average width of
PFZs on grain boundaries, was measured at approximately 153 nm. TEM measurements
suggested that dispersoids formed during homogenization, were comprised of the Mn and
Si rich α-Mn (Al15Si2M4) phase, presenting a spheroidal shape with a diameter ranging
from 70 to 140 nm. A large PFZ width is often linked to degraded ductility and uniform
elongation after aging. Upon deformation damage, inhomogeneous strain partitioning
in PFZs is thought to result in dislocation accumulation and void nucleation leading to
premature failure.
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Figure 17. Typical TEM micrographs presenting Precipitate-Free Zones (PFZs) (a) around dispersoids
and (b) along grain boundaries in the aged material. Both dispersoids and grain boundaries were
decorated by overaging precipitates, identified as mixtures of β′, U1, U2, B′ and disordered phases,
as shown in the high magnification TEM images of (c,d).

The coarse overaging precipitates, decorating grain boundaries and dispersoids can
be found in the high-resolution TEM images of Figure 17c,d. The coarse overaging particles
have cross-section diameter ranging from 10 to 30 nm, comparable to the diameter of
the dispersoids. High-resolution TEM images reveal that those particles include many
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coprecipitated metastable phases that can be identified, based on their unit cell periodicities.
The hexagonal β′ with a unit cell of a = 7.15 and c = 12.15 , the trigonal U1 with a unit cell
of a = 4.05 and c = 6.74 , the orthorhombic U2 with sides a = 6.75 , b = 4.05 and c = 7.94 ,
and the hexagonal B′ having a unit cell with sides a = 10.4 and c = 4.05 , and disordered
precipitates were identified in the overaging precipitate clusters [39–41].

The formation of PFZs and overaging precipitates clusters are interlinked, both as-
sociated with a low cooling rate after extrusion [16,17,42]. Upon cooling after extrusion,
lattice vacancies and solute atoms such as Si and Mg in the matrix migrate towards nearby
interfaces, i.e., grain boundaries and dispersoids or α-AlFeSi interfaces, driven by solid
state diffusion. Therefore, a region around dispersoids and grain boundaries becomes
depleted in vacancies and alloying elements and metastable β-family particles nucleate
during cooling preferentially on the interface, where the concentration of solute atoms
and vacancies is higher. Upon aging, fine β′′ needles precipitate in the bulk, yet not near
dispersoids and grain boundaries, where the available nucleation sites are reduced due to
a low concentration of vacancies and the driving force for precipitation is decreased due to
depletion of Mg and Si, leading to the development of PFZs. Furthermore, solute atoms
accumulated near the interface promote the growth of overaging precipitates that were
nucleated during cooling, resulting in large precipitate clusters around dispersoids and
grain boundaries. The effects are more prominent near grain boundaries, where diffusion
is accelerated due to grain boundary diffusion, resulting in increased PFZs.

3.2.6. Experimental Validation of Precipitation Model

To validate the precipitation calculations, model predictions were compared against
the available experimental data regarding the number density, volume fraction and particle
size distribution of β′′, in addition to yield-stress measurements. A summarized compar-
ison between model predictions and experiments is provided in Table 4, where a good
agreement is observed. After extrusion, cooling yield strength was measured at 70.5 MPa,
very close to the predicted value of 72.8 MPa. In the aged material, the volume fraction
and number density of β′′ needles was measured at 0.91% and 1.85·1022 m−3, respectively,
aligning well with the predicted values of 0.837% and 1.08·1023 m−3. The small discrepancy
in the number density is linked to an inconsistency in the mean needle length which was
measured at 40 nm and predicted at 32 nm. This small discrepancy is attributed to a model
limitation, keeping the needle length proportional to the radius via a constant aspect ratio.
The distribution tails towards larger needles are under predicted by the model leading to a
lower mean length value. Yet the predicted mean needle radius of 2.65 nm was in excellent
agreement with the measured value of 2.83 nm. As discussed in Sections 2.1.4 and 3.2.5,
since β′′ particles have a rhomboidal cross-section, the maximum rhomboidal radius rrm,
as calculated from the measured mean cross-sectional area, was used for comparison with
simulation results.

Table 4. Precipitation and strength model predictions as compared against measurements in the
as-extruded and aged materials.

Measurement Prediction

As-extruded material

Yield strength (MPa) 70.5 72.8
Aged material

Volume fraction of β′′ fβ′′ (%) 0.91 0.837
Number density of β′′ N (m−3) 1.85·1022 1.08·1023

Mean radius rrm (nm) 2.83 2.65
Mean length L (nm) 40 32
Yield strength (MPa) 208 211
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Predicted and measured normalized distributions (probability density function PDF)
of β′′ needle cross-sectional area and length at the end of aging are compared in Figure 16.
Equations presented in Section 2.1.4 were used to convert the predicted radius distribution
into an area distribution, for direct comparison with experiments. There is an excellent
agreement between the predicted and measured radius distributions, with the precipitation
model accurately predicting the skewed distribution after aging and the presence of a
second small peak, corresponding to particles nucleated during extrusion and grown
during aging. The predicted needle length distribution also presents reasonably good
agreement with the measured length distribution. The general shape of the distribution
is captured well by the model, with minor discrepancies at the distribution tails towards
larger needle lengths. The predicted distribution is narrower compared to the observed
one, which can be attributed to the constant aspect ratio between needle length and radius
used in the model, resulting in small discrepancies in the length and number density. In
general, the precipitation model predictions align well with measurements regarding the
radius and length distributions, the volume fraction and number density of β′′ precipitates.
In particular, the volume fraction and radius distribution, which are key parameters
influencing strength after aging [35], are in excellent agreement with the experimental
measurements.

4. Conclusions

In this work, the entire process chain of a 6060 aluminum-alloy, including solidification,
homogenization heating and holding, extrusion cooling and aging, was simulated using
computational thermodynamic and kinetic modeling. In-depth characterization of the
material in the as-cast, as-homogenized, as-extruded and aged conditions was carried
out using optical microscopy, quantitative SEM-EDX and high-resolution TEM analysis
to observe the relevant microstructural features. From the work presented, the following
conclusions can be drawn:

• Solidification and homogenization calculations were in excellent agreement with ex-
perimental measurements in the as-cast and homogenized materials. Calculations
predict the presence of coarse α-AlFeSi, β-AlFeSi, β-Mg2Si, π-phase and eutectics
containing diamond (Si) after solidification cooling, agreeing with SEM-EDX mea-
surements. The elimination of the cast structure, the dissolution of β-Mg2Si, π-phase
and eutectics, and the completion of the β-AlFeSi to α-AlFeSi transformation upon
homogenization is also predicted, in accordance with the SEM-EDX observations.

• Regarding the as-extruded material, coarse β-Mg2Si particles were not found on
dispersoids, grain boundaries or α-AlFeSi particles, after extrusion using SEM-EDX.
However, coarse, overaging particles of metastable β-type phases including β′, U1,
U2 and B′, were observed on dispersoids and grain boundaries, via TEM in the aged
material. The particles nucleated during cooling after extrusion and grew over the
course of aging.

• The formation of overaging precipitates near grain boundaries and dispersoids is
associated with the development of Precipitate-Free Zones (PFZs), where the strength-
ening phase β′′ does not form upon aging. Extended PFZs were observed in the aged
material, resulting from a relatively low extrusion cooling rate.

• In the aged condition, TEM analysis revealed a fine dispersion of needle-shaped
precipitates, identified as the fully coherent β′′, with a volume fraction 0.91%, a mean
radius of 2.8 nm and a mean length of 40 nm.

• Simulations of precipitation kinetics during extrusion cooling and aging predicted
the evolution of the volume fraction, number density, radius and length distributions
of β′′ needles, in excellent agreement with TEM observations. Minor discrepancies
regarding precipitate length were observed. The increase in yield strength due to the
precipitation of β′′ was accurately predicted, with results showing that peak hardness
was achieved when the precipitate size was approaching the transition from coherency
to Orowan strengthening.
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• Precipitation simulations revealed that most β′′ precipitates were nucleated during
the first aging holding at the low aging temperature TL

Ag (165–180 ◦C), due to a high
driving force for precipitation. Yet growth remained slow, due to limited diffusion at
low temperatures. During the second isothermal holding at the high aging temperature
TH

Ag (195–210 ◦C), the volume fraction increased as particles grow rapidly.
• Simulation predictions presented good agreement with experimental measurements,

indicating that the modeling approach can be used to optimize the composition and
processing conditions of extrudable 6xxx aluminum alloys.

• With key microstructural features modeled at critical processing stages and calibrated
with targeted experiments, the optimization of process parameters is enabled. The
approach has the potential of minimizing trial-and-error experiments required to
optimize the properties of extrudable Al alloys, reducing time and effort, therefore
improving efficiency.
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