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Abstract: The as-cast [Co40Cr25(FeNi)35−yMoy]100−xCx (x = 0, 0.5, y = 3, 4, 5 at.%) HEAs (high-entropy
alloys) were prepared by a vacuum arc melting furnace and were then hot rolled. The effect of C and
Mo elements on the microstructure evolution and mechanical properties of HEAs was systematically
analyzed. The results showed that when no C atoms were added, the HEAs consisted of FCC + HCP
dual-phase structure. In addition, as the Mo content increased, the grain size of the alloy increased
from 17 µm to 47 µm. However, only the FCC phase appeared after adding 0.5 at.% carbon in Mo
microalloyed HEAs, and the grain size of the Mo4C0.5 HEA decreased significantly. Due to the Mo
atom content exceeding the solid solution limit, the carbides of Mo combined with the C element
appeared in the Mo5C0.5 HEA. The strength of C and Mo microalloyed HEAs significantly increased
compared to HEAs with no C added. However, the Mo4C0.5 HEA exhibited excellent comprehensive
mechanical properties, which was superior to a majority of reported HEAs and conventional metal
alloys. Its yield strength, tensile strength, and elongation were 757 MPa, 1186 MPa, and 69%,
respectively. The strengthening mechanism was a combination of fine grain strengthening, TWIP
effect, and solid solution strengthening.

Keywords: microstructure; microalloying; HEA; strengthening

1. Introduction

Unlike conventional alloys that are dominated by a single element, high-entropy
alloys (HEAs) are composed of a mixture of five or more elements [1]. Due to their unique
design concept different from traditional alloys, their synthetic mechanical properties are
excellent [2–5] and mainly exhibit high hardness, high ductility, and good thermal stability,
wear resistance, and corrosion resistance.

Although strength and plasticity are a trade-off relationship [6], grain refinement [7],
micro-strip-induced plasticity (MBIP), twin-induced plasticity (TWIP), and transformation-
induced plasticity (TRIP) are important deformation mechanisms used to strengthen and
toughen materials to conquer the trade-offs. HEAs with low stacking fault energy (SFE)
(~25 MJ/m2) can promote twinning, and the TWIP effect greatly promotes the plasticity
of the alloy [8]. The TWIP effect is widely used in high-strength alloys, which exhibit a
good combination of strength and ductility. For example, due to the generation of nano
twins in the CoCrFeMnNi HEAs that increases the resistance to dislocation movement
and improves the work hardening ability, the alloys have excellent tensile properties [9].
Gludovatz et al. [10] reported that NiCoCr medium entropy alloy has a tensile strength of
1 GPa at room temperature, while still having 70% elongation after fracture. Its deformation
mode was dominated by the TWIP effect, which provided a high work hardening rate
during the deformation process. The TRIP effect refers to the martensitic transformation
under deformation. Martensitic Flat acts as a channel for blocking the dislocation slip,
where dislocations accumulate and produce back stress at the interface with the matrix,
thus blocking the movement of other dislocations and improving the work hardening
rate of the alloys. The low-temperature and high-pressure torsion experiments conducted
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with CoCrFeMnNi high entropy alloys were carried out by Shahmir et al. [11], resulting
in FCC phase transfer to HCP and BCC phases and significant grain refinement during
deformation. This was due to a decrease in stacking fault energy at low temperatures.
Li [12] successfully prepared Fe50Mn30Co10Cr10 TRIP HEA with the highest product of
strength (330 MPa) and elongation (~73%). Ulteriorly, Li [13] also induced the principle of
TWIP and interstitial TWIP-HEA and mixed them into HEAs. This phenomenon was also
reported by Praveen et al. [14] in the medium entropy alloy (MEA) CoCrNi with a higher
tensile strength and fracture elongation.

HEAs with unique microstructures also exhibited a balanced strength–ductility duo
to the addition of metallic or non-metallic elements, which significantly enhanced the
mechanical properties of equal or near-equimolar HEAs [15–17]. In the new study, it was
shown that the interstitial carbon atoms were dissolved into the Fe50Mn30Co10Cr10 HEA,
and the solution strengthening and TWIP effect occurred during plastic deformation. Li [18]
added 0.5 at.% C to the Fe50Mn30Cr10Co10 HEA. It was found that the SFE of the matrix
increased due to the interstitial strengthening of carbon. The Fe40.4Ni11.3Mn34.8Al7.5Cr6
HEA with carbon atoms was investigated by Wang et al. [19], in which the yield strength
and ductility were greatly improved when carbon atom content was added to 1.1 at.%.
Cheng et al. [20] added 0.5 at% C to FeCoCrNiMn HEA, and the results showed that carbon
had higher twinning activity and higher strength effect than that without carbon. The
introduction of carbon atoms into HEAs can reduce the SFE effectively and change the
mode of dislocation slip during plastic deformation. Additionally, carbon atoms increase
the work hardening rate and delay the necking phenomenon. Guo et al. [21] prepared
(FeCoCrNiMn)100−xCx high-entropy alloys with different carbon contents, and after cold
rolling and annealing processes, it was found that there were fine M23C6 carbides in the
high entropy. This carbide precipitate phase inhibited the migration of grain boundaries
and played a strong pinning role, ultimately resulting in an increase in strength due to the
effects of fine-grain strengthening and precipitation strengthening.

Mo is a particularly effective microalloying element, since it is not only dissolved into
the FCC solid solution but also readily forms the hard intermetallic compound [22–24]. Mo
has a larger atomic radius and is mainly used for displacement solid solution strengthening.
The microstructure, mechanical, and corrosion properties of the single-phase and the
eutectic high-entropy alloy by Mo addition have been extensively studied [25–27]. For
example, Bae et al. [25] investigated the effects of Mo content on the microstructural
and mechanical properties of Co-Cr-Fe-Ni-Mo alloys. The results demonstrated that the
precipitation of the hard intermetallic µ phase increased with increasing Mo content, and
the formation of the µ phase decreased the rate of recrystallization and grain growth. Wei
et al. [28] found that the addition of Mo atoms increased the strength of the Co-Cr-Fe-
Ni HEAs. Adding 5% Mo atoms to the alloy can increase its plastic elongation to 96%.
Li et al. [29] aimed to improve the solid solubility of Mo atoms in the equiatomic ratio
CoCrFeNi HEA; the Cr element was easily formed in the µ phase with an Mo element.
However, the Ni1.8Co0.95Cr0.8Fe0.25Mo0.475 high-entropy alloy had a high degree of lattice
distortion and solid solution strengthening effect, while the alloy still maintained a single-
phase FCC structure without precipitation.

An et al. [30] used a powder metallurgy method to prepare a series of
(CoCrFeNiAl0.5)1−x(MoC)x high-entropy alloys containing C atoms and Mo atoms and then
obtained fine equiaxed grains through hot extrusion. When adding 8 at.% MoC, the tensile
strength of the alloy increased to 1280 MPa, while still maintaining a 7% elongation. The
increase in strength was attributed to solid solution strengthening, precipitation strengthen-
ing, and fine grain strengthening. However, there were few reports on adding C and Mo to
Co-Cr-Fe-Ni HEAs simultaneously. The addition of appropriate amounts of Mo and C can
change the deformation mechanism of HEAs, ultimately improving comprehensive me-
chanical properties. The microstructure evolution and mechanical properties of these alloys
deserve further research. This work addresses this issue by evaluating the microstructural
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evolution and mechanical properties of a series of [Co40Cr25(FeNi)35−yMoy]100−xCx (x = 0,
0.5, y = 3, 4, 5 at.%) HEAs.

2. Materials and Methods

The [Co40Cr25(FeNi)35−yMoy]100−xCx (x = 0, 0.5, y = 3, 4, 5 at.%) HEA ingots were
prepared by arc-melting pure elements (≥99.9 wt.%) under a Ti-gettered high-purity
argon atmosphere in a water-cooled Cu crucible (see Figure 1). For convenience, the
[Co40Cr25(FeNi)35−yMoy]100−xCx (x = 0, 0.5, y = 3, 4, 5 at.%) samples are referred as Mo3,
Mo4, Mo5, Mo3C0.5, Mo4C0.5, and Mo5C0.5, respectively (see Table 1). The ingots were
melted five times to achieve a good homogeneity. The as-casted HEA was solution treated
at 1200 ◦C for 2 h and then water quenched to obtain a complete uniform microstructure.
About 70% hot rolling reduction was carried out. Flat tensile testing specimens with a
gage geometry of 22 × 2.5 × 1.5 mm3 were cut along the rolling direction (RD) of the plate.
Uniaxial tensile tests were conducted at room temperature with a universal testing machine
(UTM5105 electronic universal testing machine) at a strain rate of 1 × 10−3 s−1. The tensile
tests were repeated for three samples to confirm reproducibility. A Lab XRD-6000 X-ray
diffraction (XRD), with a scanning rate of 0.2◦/min from 20◦ to 100◦ under 40 kV and
40 mA, was adopted to determine the crystal structure. The microstructure was character-
ized by an FEI Quanta-400F scanning electron microscope (SEM). Electron backscattered
diffraction (EBSD) analysis was performed at 20 kV with a working distance of 18 mm and
a tilt angle of 70◦. The nalysis software (HKLCHANNEL 5 version 5.0.9.0) was utilized to
interpret the EBSD data.

Materials 2024, 17, x FOR PEER REVIEW 3 of 11 
 

 

of these alloys deserve further research. This work addresses this issue by evaluating the 
microstructural evolution and mechanical properties of a series of 
[Co40Cr25(FeNi)35−yMoy]100−xCx (x = 0, 0.5, y = 3, 4, 5 at.%) HEAs. 

2. Materials and Methods 
The [Co40Cr25(FeNi)35−yMoy]100−xCx (x = 0, 0.5, y = 3, 4, 5 at.%) HEA ingots were pre-

pared by arc-melting pure elements (≥99.9 wt.%) under a Ti-gettered high-purity argon 
atmosphere in a water-cooled Cu crucible (see Figure 1). For convenience, the 
[Co40Cr25(FeNi)35−yMoy]100−xCx (x = 0, 0.5, y = 3, 4, 5 at.%) samples are referred as Mo3, Mo4, 
Mo5, Mo3C0.5, Mo4C0.5, and Mo5C0.5, respectively (see Table 1). The ingots were melted five 
times to achieve a good homogeneity. The as-casted HEA was solution treated at 1200 °C 
for 2 h and then water quenched to obtain a complete uniform microstructure. About 70% 
hot rolling reduction was carried out. Flat tensile testing specimens with a gage geometry 
of 22 × 2.5 × 1.5 mm3 were cut along the rolling direction (RD) of the plate. Uniaxial tensile 
tests were conducted at room temperature with a universal testing machine (UTM5105 
electronic universal testing machine) at a strain rate of 1 × 10−3 s−1. The tensile tests were 
repeated for three samples to confirm reproducibility. A Lab XRD-6000 X-ray diffraction 
(XRD), with a scanning rate of 0.2°/min from 20° to 100° under 40 kV and 40 mA, was 
adopted to determine the crystal structure. The microstructure was characterized by an 
FEI Quanta-400F scanning electron microscope (SEM). Electron backscattered diffraction 
(EBSD) analysis was performed at 20 kV with a working distance of 18 mm and a tilt angle 
of 70°. The nalysis software (HKLCHANNEL 5 version 5.0.9.0) was utilized to interpret 
the EBSD data. 

 
Figure 1. Technological process of HEAs. 

Table 1. Chemical composition of HEAs (at.%). 

HEAs Co Cr Fe Ni Mo C 
Mo3 40.000 25.000 16.000 16.000 3.000 0.000 
Mo4 40.000 25.000 15.500 15.500 4.000 0.000 
Mo5 40.000 25.000 15.000 15.000 5.000 0.000 

Mo3C0.5 39.800 24.875 15.920 15.920 2.9850 0.500 
Mo4C0.5 39.800 24.875 15.4225 15.4225 3.9800 0.500 
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Figure 1. Technological process of HEAs.

Table 1. Chemical composition of HEAs (at.%).

HEAs Co Cr Fe Ni Mo C

Mo3 40.000 25.000 16.000 16.000 3.000 0.000
Mo4 40.000 25.000 15.500 15.500 4.000 0.000
Mo5 40.000 25.000 15.000 15.000 5.000 0.000

Mo3C0.5 39.800 24.875 15.920 15.920 2.9850 0.500
Mo4C0.5 39.800 24.875 15.4225 15.4225 3.9800 0.500
Mo5C0.5 39.800 24.875 14.9250 14.9250 4.9750 0.500

3. Results and Discussion

The XRD diffraction patterns of the HEAs are shown in Figure 2a. When C atoms were
not added (x = 0), the diffraction peak of the sample corresponded to the FCC + HCP dual
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phase in Mo3, Mo4, and Mo5 HEAs. However, after the addition of carbon atoms (x = 0.5),
the reflection of the alloy corresponding to the HCP phase disappeared, and only the FCC
diffraction peak at the 2θ value of ~43.4◦ was observed. It is meaningful that HEAs could
maintain a uniform solid solution phase composition when a small amount of carbon was
added. Figure 2b shows more detailed information on the FCC phase (200) peak. From the
graph, it can be seen that, both before and after the addition of C, the (200) peak shifted to
the left significantly with the increase of Mo and C atoms, indicating that the increase of Mo
and C atoms could increase the lattice distortion degree of the HEAs. Mo in solid solutions
can expand the lattice parameter, and the solid solution C atoms further increase the lattice
distortion degree. The SEM-BSE images of the hot-rolled HEAs are shown in Figure 3. The
grain size was uniform, and no component segregation and dendrites appeared. It was
observed that a large number of annealing twins appeared in some deformed grains. This
was mainly attributed to the not fully dynamic recrystallization process during hot rolling.
The energy spectrum analysis was performed on the white particles of the Mo5C0.5 HEA in
Figure 4. It was found that the white particles were enriched with the Mo element, which
were the carbides of Mo combined with the C element. This was mainly because the Mo
atom content exceeded the solid solution limit of the Mo5C0.5 HEA.
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Figure 5 shows the EBSD image of hot-rolled HEAs. The alloy not only contained
fully recrystallized grains, but it also contained deformed grains and a large amount of
twin boundaries. Compared with as-cast alloys, the grain size was significantly smaller,
and there was no component segregation or dendrite appearance. The alloy structure was
composed of equiaxed grains and elongated grains, with a small amount of annealing
twins. The uneven distribution of deformed grains could be observed in the grains. This
was mainly attributed to the dynamic recrystallization process of the alloy during hot
rolling, where the grains continuously recovered and grew during the deformation process,
resulting in a decrease in the grain size [31], which helped to achieve fine grain strength-
ening and to improve the mechanical properties of the alloy. A similar carbon-doped
Fe40.4Ni11.3Mn34.8Al7.5Cr6 alloy was studied by Wu [32]; the microstructure of equiaxed
grains and elongated grains, as well as the dense dislocation walls, indicated that the
alloy did not fully recrystallize, which was consistent with this result. As the Mo content
increased without adding C, the grain size of the alloy increased from 17 µm to 47 µm.
However, after adding 0.5 at.% carbon, the grain size of the alloy increased in the Mo3C0.5
and Mo5C0.5 HEAs, while that the grain size of Mo4C0.5 decreased significantly.
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Figure 6 shows the tensile engineering stress–strain curve of the HEAs. It can be
seen that, without the addition of carbon, the yield strength and tensile strength of the
alloy showed a trend of first increasing and then decreasing with the increase of Mo
content, while the elongation showed a trend of first decreasing and then increasing. The
yield strength and tensile strength of the Mo4 alloy increased to 703 MPa and 1107 MPa,
respectively(see Table 2). The reason for this is that the Mo element increased the lattice
distortion, the lattice friction stress, and the solid solution strengthening effect. Due to the
significant increase in the grain size, the strength of the Mo5 HEA decreased significantly.
On the other hand, the precipitation phase of σ and µ gradually increased with the increase
in Mo contents, which can be segregated at grain boundaries and can cause the early
cracking of grain boundaries under a tensile test. After adding 0.5 at.% C content, the yield
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strength and tensile strength of the HEAs showed the same trend compared to the HEAs
with no carbon added. However, the strength of C and Mo microalloyed HEAs increased
by 99 MPa, 54 MPa, and 105 MPa, respectively, which was the result of interstitial solid
solution strengthening caused by carbon atoms. From Figure 6b, it can be seen that the
hot-rolled Mo4C0.5 HEA exhibited excellent comprehensive mechanical properties; its yield
strength, tensile strength, and elongation were 757 MPa, 1186 MPa, and 69%, respectively.
This was due to the elimination of structural segregation and the reduction in grain size
in the Mo4C0.5 alloy after hot rolling. It is very significant to us in this research work. It
is appropriate to infer that work hardening is caused by pinning the dislocations by the
precipitates, such as carbides [33]. The strengthening mechanism is the combination of fine
grain strengthening, interstitial solid solution strengthening, precipitation strengthening,
and solid solution strengthening.
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Figures 7 and 8 show the EBSD phase diagrams of the HEAs before and after defor-
mation. The red and green regions represent the FCC phase and HCP phase, respectively.
It can be seen that, without the addition of carbon, the HCP phase significantly increased
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after deformation. This is because the alloy underwent a phase transformation-induced
plasticity (TRIP) effect during tensile deformation, and some unstable FCC phases changed
into HCP phases. After adding 0.5 at.% carbon, the alloy transformed into a phase with a
large amount of FCC and a phase with a very small amount of HCP before deformation.
This indicated that the addition of carbon element helped to enhance the stability of the
FCC phase in the alloy, and the stacking fault energy of the alloy was relatively low at this
time. After deformation, it could be observed that the HCP phase content increased, but
the volume fraction of HCP phase decreased significantly compared to the HEAs without
carbon addition. At this time, the deformation mechanism was no longer dominated by the
TRIP effect but mainly by the twinning-induced plasticity (TWIP) effect. This is because the
addition of a small amount of carbon element increased the stacking fault energy and the
stability of the FCC phase of HEAs, which reduced the TRIP effect. The number of deforma-
tion twins at 60◦ increased significantly after deformation. Deformation twins were mainly
generated in grains inclined towards <101> and <111> orientations, which indicated that
the formation of deformation twins was closely related to the initial orientation of the grains.
The relationship between grain orientation and deformation twinning is very similar to
the trend of TWIP steel. In the process of deformation, dislocation plugs up on the twin
interface, and the annealing twin boundary will gradually change into a small-angle grain
boundary of less than 5◦. The deformation mechanism was controlled simultaneously by
dislocation slip and deformation twins. When the deformation was larger, the deformation
twins occupied the positions of annealing twins and inhibited the dislocation movement,
which caused the number of interfaces with the mismatched angle between 2◦ and 10◦ to
increase. Deformation twins were mainly formed at grain boundaries of <111> and <100>
grain orientations and mainly expanded along the <111>//TA orientation (//TA is defined
as parallel to the direction of the tension axis). The TWIP effect made the twin the leading
deformation mechanism. The dislocation slip and twinning mechanism competed with
each other in the process of tensile deformation, which jointly affected the microstructure
evolution. The generation of deformation twins hindered the dislocation slip and formed
a dislocation accumulation zone, which ensued the uniform deformation and effectively
delayed the occurrence of necking, finally causing excellent comprehensive mechanical
properties for the Mo4C0.5 HEA. Apparently, the studied Mo4C0.5 HEA in this present work
possesses excellent comprehensive mechanical properties, making it superior to a majority
of reported HEAs and conventional metal alloys (see Figure 9).
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Table 2. Mechanical properties of HEAs.

HEAs Yield Strength (MPa) Tensile Strength (MPa) Elongation
(%)

Mo3 611 1030 64
Mo4 703 1107 62
Mo5 422 925 64

Mo3C0.5 710 1120 73
Mo4C0.5 757 1186 69
Mo5C0.5 527 1071 71
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4. Conclusions

(1) There were FCC + HCP dual phases in Mo3, Mo4, and Mo5 HEAs when no C atoms
were added. As the Mo content increased, the grain size of the alloy increased from
17 µm to 47 µm. However, only the FCC phase appeared after adding 0.5 at.% carbon,
and the grain size of the Mo4C0.5 HEA decreased significantly.

(2) Due to the Mo atom content exceeding the solid solution limit, the carbides of Mo
combined with C element appeared in the Mo5C0.5 HEA. The strength of C and
Mo microalloyed HEAs had a significant increase compared to HEAs with no C
added, which was the result of interstitial solid solution strengthening caused by
carbon atoms.

(3) The Mo4C0.5 HEA exhibited excellent comprehensive mechanical properties, making
it superior to a majority of reported HEAs and conventional metal alloys. Its yield
strength, tensile strength, and elongation were 757 MPa, 1186 MPa, and 69%, respec-
tively. The strengthening mechanism was the combination of fine grain strengthening,
the TWIP effect, and solid solution strengthening.
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