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1. Introduction

The advanced science and technology of polymer matrix nanomaterials are rapidly
developing fields that focus on the synthesis, characterization, and application of nano-
materials in polymer matrices [1–5]. Combined together as an interdisciplinary area, they
integrate principles from materials science, chemistry, physics, and engineering to create
novel materials with enhanced properties.

In recent years, researchers have achieved significant advancements in the design and
fabrication of polymer matrix nanocomposites. These materials consist of polymer matrices
that are reinforced or modified with nanoscale fillers such as nanoparticles, nanofibers,
and nanotubes [6]. The incorporation of these nanofillers into the polymer matrix leads to
improved mechanical, electrical, thermal, and optical properties.

A key challenge in this field is achieving uniform dispersion and strong interfacial
interactions between the polymer matrix and the nanofillers. Various techniques, including
melt mixing, solution blending, templated synthesis, and in situ polymerization, have
been employed to overcome this challenge [7–12]. These techniques enable precise control
over the distribution of nanofillers within the polymer matrix, resulting in materials with
tailored properties.

Polymer matrix nanomaterials find applications in a wide range of industries, includ-
ing aerospace, electronics, energy, automotive, and biomedical [13–19]. For example, in
the biomedical field, polymer matrix nanomaterials can be used for drug delivery systems,
tissue engineering scaffolds, and biosensors [20]. In aerospace applications, nanocompos-
ites offer lightweight and high-strength alternatives to conventional materials, leading to
improved fuel efficiency and reduced emissions [21].

Furthermore, advances in characterization techniques such as transmission electron
microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and thermal
analysis methods have allowed researchers to study the structure–property relationships of
polymer matrix nanomaterials on the nanoscale [22–24]. These techniques provide valuable
insights into the orientation, dispersion, and interfacial interactions of nanofillers within
the polymer matrix.

In summary, the advanced science and technology of polymer matrix nanomaterials
are rapidly evolving fields that offer exciting prospects for the development of innovative
materials with enhanced properties. The precise control of nanofiller dispersion within
polymer matrices, along with the use of advanced characterization techniques, enables
researchers to tailor the properties of these materials for various applications [25,26].
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In dealing with these challenging aspects of polymer matrix nanomaterials, the goal
of the present Special Issue is to introduce the current knowledge on the designs, synthesis
processes, characterizations, properties, and applications of polymer matrix nanomaterials.

2. Contributions

Kim et al. [27] prepared polypropylene composites filled with randomly dispersed
graphene nanoplatelets (GNPs) and a segregated GNP network. Theoretical and exper-
imental investigations were conducted to explore the enhancements in the thermal and
electrical conductivities of the composites achieved through the selective localization of
GNP fillers using a segregated structure and the formation of a conductive network.

Zhu et al. [28] successfully synthesized a series of molecular wires based on [2.2]paracy-
clophane-1,9-dienes and then elucidated the influence of transannular π–π interaction on
carrier transport in these wires using the STM break junction technique. Both the current–
voltage characteristics and single-molecule conductance could be systematically adjusted
through the transannular π–π interaction.

Most of the current research on agitator design primarily focuses on enhancing solid–
liquid mixing efficiency and homogeneity, while neglecting the stability of the liquid level.
He et al. [29] utilized computational fluid dynamics modeling to compare the performance
of two types of rotor–stator agitators in solid–liquid mixing operations. The evaluation
included aspects such as power consumption, homogeneity, and liquid-level stability. The
results indicated that the cross structure rotor–stator agitator achieved a significantly lower
standard deviation of particle concentration σ of 0.15 compared to the A200 agitators, with
a 42% reduction.

Yeh et al. [30] studied the impact of hydrophilic and hydrophobic mesoporous sil-
ica particles (MSPs) on the dielectric properties of composite membranes derived from
polyester imide (PEI). The study revealed a clear trend in the dielectric constant of the
membranes: PEI containing hydrophilic MSPs > PEI > PEI containing hydrophobic MSPs.

Yin et al. [31] conducted a numerical investigation on the displacement of immiscible
fluid in porous media using the lattice Boltzmann method. The results demonstrated that
the wetting gradient can control the displacement pattern and efficiency. By introducing
a wetting gradient in porous media, the stability of the flow front can be enhanced. This
finding was confirmed across a wide range of parameters, including different wetting
gradients, capillary numbers, viscosity ratios, and porosities.

Arputharaj et al. [32] provided a comprehensive review of biopolymeric nanoparti-
cles developed for biomedical applications, such as drug delivery, imaging, and tissue
engineering. The authors also discussed important fabrication techniques, along with
the challenges and future perspectives in this field. It is crucial to address the interaction
between nanoparticles and the immune system, as well as their elimination from the human
body, in future studies.

Pozdnyakov et al. [33] conducted an analysis of the structural characteristics and
direct current (DC) electrical conductivity of organic–inorganic nanocomposites composed
of thermoelectric Te0 nanoparticles and poly(1-vinyl-1,2,4-triazole). The findings revealed
that the DC electrical conductivity of nanocomposites containing 2.8 and 4.3 wt% Tellurium
at 80 ◦C exceeded the conventional boundary of 10−10 S/cm, separating dielectrics and
semiconductors.

Bekeschus et al. [34] generated unilamellar vesicles using 1-palmitoyl-2-oleoyl-glycero-
3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS).
These vesicles were then incubated with pristine, carboxylated, or aminated polystyrene
spheres to form lipid coronas around the particles. This study, for the first time, demon-
strated the influence of different lipid types on differently charged micro- and nanoplastic
particles and the resulting biological implications.

Acierno et al. [35] conducted a study to examine the impact of different types of
nanoparticles on the UV weathering resistance of polyurethane (PU) treatment in polyester-
based fabrics. The findings revealed that incorporating nanoparticles into impregnated
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fabrics did not significantly hinder polymer degradation following UV exposure. How-
ever, the nanoparticles appeared to enhance the reinforcement of PU polymers within
the textile structure, thereby improving the overall mechanical strength, particularly after
UV exposure.

Xie et al. [36] employed a simple solvent-handling method to fabricate silylated
GO/FeSiAl epoxy composites. They subsequently explored the microwave absorption
properties and thermal conductivity. Remarkably, it was observed that these composites
achieved a reflection loss of up to −48.28 dB and an effective range of 3.6 GHz when
operating at frequencies between 2.575 and 2.645 GHz, with a modest thickness of just
2 mm. These results underscored the high absorption performance of the composites,
making them suitable for packaging 5G base stations.

The Guest Editors would like to extend their congratulations to all of the authors
whose remarkable results have been published in this Special Issue. The papers presented
here are expected to greatly contribute to the research community’s understanding of
the current status and trends in the advanced science and technology of polymer matrix
nanomaterials. Moreover, the Guest Editors cordially invite all scientists working in this
field to submit innovative articles for consideration in the second edition of the Special Issue
on “Advanced Science and Technology of Polymer Matrix Nanomaterials (2nd Edition)”.
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